The present disclosure is directed to toy vehicle tracks, and more particularly to toy vehicle tracks that incorporate intersections at which the pathway formed by the toy vehicle track crosses over itself, such as in a figure-8 track formation. The intersection assemblies described in the present disclosure incorporate adjustable components to allow a user to allow toy vehicles traversing the crossing pathways of the intersection to either collide with each other, or to bypass each other, for example at different elevations.
Toy tracks for toy vehicles such as toy cars may be used to set up play race courses and other play settings for the toy vehicles, to provide entertainment and challenges to players. In a simulated race course setting, the toy tracks are often set up in a looped course for the toy vehicles to circumnavigate. Typically, some sort of electrical or mechanical means is used to provide a motive force for the vehicles. For example, many tracks employ a pair of rotating, opposed bumpers between which the toy vehicles pass and are accelerated by the bumpers' rotation. An example of one configuration of such an assembly can be found in U.S. Pat. No. 6,793,554. Other examples of propulsion mechanisms, sometimes referred to as “boosters,” may be found in the following patents and publications: U.S. Pat. No. 5,052,972, U.S. Pat. No. 5,165,347, U.S. Pat. No. 5,299,969, U.S. Pat. No. 5,402,730, U.S. Pat. No. 5,899,789, U.S. Pat. No. 6,241,573, US20080242193. Such track setups provide for the players to race cars against one another, either directly or successively, and to watch the cars as they travel along the course and perform stunts and crash.
The track pathway in play race course settings usually provides a generally flat surface disposed between an opposing pair of side rails, so that the toy vehicles are more or less constrained to traverse the guided pathway as they move. The track forming the pathway may be formed as a single unitary piece, but is often provided as a series of interconnectable segments. In either case, the pathway configurations in race course settings may vary quite a bit, such as to provide a number of different turns, twists, jumps, and so forth, along the pathway, either by means of specially-shaped track pieces, and/or by other structure coupled or incorporated into the track, such as ramps, inclines, and so forth.
Optionally, a pathway configuration may provide an opportunity for players to collide (or a challenge for players to avoid colliding) the toy vehicles traversing the track with one or more obstacles, and/or with each other. By incorporating an intersection in which the pathway crosses over itself, such as in a classic Figure-8 formation, for example, players may find excitement in attempting to crash (or avoid crashing) toy vehicles into each other as they enter into and cross through the intersection. Such collisions may result in one (or more) toy vehicles being propelled from the pathway, especially if one or more of the vehicles are moving with a fair amount of speed.
Some examples of toy vehicle tracksets incorporating intersecting pathways may be found in U.S. Pat. No. 3,734,500, U.S. Pat. No. 4,513,966, U.S. Pat. No. 4,519,789, U.S. Pat. No. 5,899,789, U.S. Pat. No. 6,062,942, U.S. Pat. No. 6,478,654, U.S. Pat. No. 6,913,508, US20070293122 and US20080020675. Some examples of toy vehicle tracksets with adjustable ramps and components can be found in U.S. Pat. No. 3,204,574, U.S. Pat. No. 3,814,021, U.S. Pat. No. 3,858,875, U.S. Pat. No. 4,094,089, U.S. Pat. No. 5,234,216, U.S. Pat. No. 6,676,480, and U.S. Pat. No. 6,951,497. The disclosures of all of these and all other references cited in this disclosure are incorporated herein by reference for all purposes.
In the described embodiments, an intersection assembly for use with a toy vehicle track provides at least two toy vehicle pathways that cross each other at a transverse angle. One or both toy vehicle pathways may include a jump assembly having a ramp portion adapted to launch a toy vehicle over a gap and toward a corresponding receiving portion that is spaced therefrom. Optionally, some embodiments may include a first toy vehicle pathway with a jump assembly, and a second toy vehicle pathway consisting of a flat portion of track.
In the described embodiments, one (or both) of the jump assemblies, or at least the ramp portion(s) thereof, is movable between one or more positions in which the trajectory of a toy vehicle traversing one toy vehicle pathway does not intersect the trajectory of a toy vehicle traversing the other pathway, and one or more positions in which the toy vehicle trajectories intersect. In an “intersect” position, toy vehicles traversing the two toy vehicle pathways at substantially the same time will collide. As such, a user may use the intersection assembly to crash, or avoid crashing, toy vehicles traversing the toy vehicle track.
The intersection assemblies, their components, and operation, may be understood more readily after a consideration of the drawings and the Detailed Description.
To further a racing theme, track sets consistent with this disclosure may optionally incorporate additional components and/or decor consistent with the theme. Optionally, track sets may include some, or no accessory components, and/or different accessory components than those described herein. Moreover, track sets incorporating one or more intersections may take other configurations than as shown, and thus may include more than one intersection assembly.
As seen in
Intersection assembly 30 includes a first toy vehicle pathway 32 and a second toy vehicle pathway 34, which crosses the first pathway 32 at a transverse angle. In the illustrated embodiment, first pathway 32 is defined by ramp members 36, 38, also referred to herein as a ramp portion and a receiving portion, respectively. Ramp members 36, 38 are spaced to form a gap therebetween, and as such, the ramp portion (36) is adapted to launch a toy vehicle across the gap and toward the receiving portion (38).
Second pathway 34 of the illustrative embodiment shown in
For clarity, the ramp members defining the first pathway are referred to as first ramp portion 36 and first receiving portion 38, and the ramp members defining the second pathway are referred to herein as second ramp portion 40 and second receiving portion 42. Additionally, each corresponding pair of ramp members may be thought of as a jump assembly, such that first ramp portion 36 and first receiving portion 38 collectively form a first jump assembly 44, and second ramp portion 40 and second receiving portion 42 collectively form a second jump assembly 46.
The trajectories of toy vehicles traversing the jump assemblies may vary somewhat, for example due to different vehicle shapes and sizes, and may even differ with the same toy vehicle, for example due to variations in vehicle velocity, angle of departure from the ramp portion, and so forth. Receiving portions 38 and 42 are each shown to have a wider opening and higher side walls as compared with ramp portions 36 and 40, such as to ensure that a toy vehicle launched from a ramp portion will be “caught” by the corresponding receiving portion. Optionally, one or both of the receiving portions may be disposed at a slightly lower elevation as compared with their corresponding ramp portions.
Although the illustrated intersection assembly 30 is shown to include two jump assemblies, both including gaps that “overlap” with each other, other embodiments consistent with this disclosure may include more or fewer than two jump assemblies. For example, an alternate embodiment of an intersection assembly may include only one jump assembly, such that a first toy vehicle pathway through an intersection is defined by the jump assembly, whereas a second toy vehicle pathway through the intersection may consist of a flat portion of track, with the first and second pathways disposed so that a vehicle passing through the jump assembly may jump over the flat portion of track.
In either case, the trajectories of toy vehicles traversing the first and second pathways of the intersection may intersect, or bypass by each other without intersecting, depending on how one pathway is positioned relative to the other.
With reference to
The second jump assembly is supported on the base 50, and the first jump assembly is movably supported on the framework 52. More specifically, second ramp portion 40 and second receiving portion 42 are supported on base 50 via respective track supports 20. However, first ramp portion 36 and first receiving portion 38 are slidably mounted to the upright supports, respectively.
As such, the first jump assembly 44 is movable relative to the second jump assembly 46 via translation in a direction that is transverse to the first and second toy vehicle pathways. More particularly, in the illustrated embodiment, the movement is along a substantially vertical axis, so that the trajectory of a toy vehicle passing therethrough may be elevationally adjusted relative to that of a toy vehicle passing through the second jump assembly. As explained in detail below, this feature may allow a user of the track set 10 to determine whether the trajectories of toy vehicles traversing the jump assemblies 44, 46 may intersect or bypass each other, and thereby control whether two toy vehicles, each traversing one of the jump assemblies at substantially the same time, will collide with each other or not.
In
More specifically, in
In
In
Thus, in the illustrated embodiment, the first jump assembly is movable between a first (or upper) bypass position, in which the first toy vehicle trajectory passes above the second toy vehicle trajectory, and a second (or lower) bypass position, in which the first toy vehicle trajectory passes beneath the second toy vehicle trajectory, through an intermediate position in which the first and second toy vehicle trajectories intersect.
Of course, the arrows A and B are simplified representations of the trajectories of toy vehicles traversing the jump assemblies, shown for the sake of convenience and ease of explanation. The actual trajectories of toy vehicles traversing the jump assemblies are defined by the volumes of space through which the toy vehicles pass. Also, even though the track set may be designed for use with a specific scale of toy vehicle, such as 1/64 toy vehicles, such toy vehicles vary somewhat in size and shape, and thus may define different trajectories. Thus, the “intersect” position of the jump assembly shown in
The mounting of the first ramp portion 36 and first receiving portion 38 to the upright supports is described with additional reference to
First ramp portion 36 and first receiving portion 38 may be mounted to the sliding supports by any suitable method. For example, the portions may be welded, molded, or otherwise attached to the sliding supports, or secured mechanically, such as by means of one or more fasteners. Optionally, one or both sliding supports may include a bracing or connecting member to which the ramp and receiving portions may be detachably mounted.
In the illustrated embodiment, the sliding supports are configured to move relative to the corresponding upright supports in a range of movement between an upper position that corresponds to the first position of the first jump assembly, and a lower position that corresponds to the second position of the first jump assembly. More specifically, in the illustrated embodiment, channels 66 define the range and axis of movement between the extreme upper and lower positions of sliding supports 58. As such, the range and direction of movement of one of the jump assemblies relative to the other may be varied, such as among different embodiments, if a different framework configuration is incorporated, for example a framework that defines a non-vertical range of movement. In such embodiments, it may not be accurate to refer to non-intersecting pathways as passing “above” or “below” each other; rather, the framework of such intersection assemblies may be configured such that a first toy vehicle pathway may be translated from a first bypass position, in which the trajectory of a toy vehicle traversing the first toy vehicle pathway passes on one side of the trajectory of a toy vehicle traversing a second toy vehicle pathway, to a second bypass position, in which the trajectory of a toy vehicle traversing the first toy vehicle pathway passes on the opposite side of that of a toy vehicle traversing the second toy vehicle pathway.
In the illustrated embodiment, the sliding supports are movably coupled to, and sized relative to, upright support 54 to permit continuous slidable movement of one relative to the other, permitting continuous translation of the first ramp portion 36 and first receiving portion 38. Thus,
To facilitate sliding movement, the supports and other components of the framework may be fabricated from a rigid, smooth material, such as a suitable plastic, such as to minimize interference from friction. Additionally, with reference to
For example, an alternative embodiment may include an intersect position in which the toy vehicle trajectories are slightly offset from (or partially overlap) one another, such as to cause toy vehicles traversing the pathways at substantially the same time in a certain manner. One such intersect position may be one in which the lower portion of a toy vehicle traversing the first pathway collides with the top portion of a vehicle simultaneously traversing the second pathway.
Moreover, although not required to all embodiments, in the illustrated embodiment, the sliding supports 58 are mechanically and rigidly coupled for cooperative, corresponding translation, by means of a cross-piece 68 joining the top portions of the back members of the sliding portions. As such, the ramp members of the movable jump assembly are moved as a unit. In other embodiments, the sliding supports and/or ramp members may be configured for independent movement relative to each other, and still other embodiments may include a configuration in which only one of the ramp or receiving portions of one or more jump assemblies is movable, such as a jump assembly that includes a movable ramp portion that moves relative to a corresponding, stationary receiving portion.
As shown most clearly in
In use, that is, when the intersection assembly 30 forms a part of a track 12 that a toy vehicle 16 is traversing, the toy vehicle, upon entering the intersection assembly in either toy vehicle pathway will jump the gap, if its velocity is sufficient to carry it from the ramp portion across the gap to the receiving portion, whereupon the toy vehicle will exit the intersection assembly and proceed along the track. In a closed-loop track arrangement such as the figure-8 configuration shown in
If multiple vehicles are simultaneously traversing track 12, their relative speeds and/or the timing at which they are placed or launched onto the track may result in two vehicles simultaneously entering the intersection assembly, one on the first toy vehicle pathway and one on the second.
The operation of the intersection assembly shown in the illustrated embodiment is as follows: by moving handle 72 upward or downward, a user may change the trajectory of a toy vehicle traversing the first jump assembly 44 relative to that of a toy vehicle traversing the second jump assembly 46, such as by moving jump assembly from the upper bypass position shown in
Although not required to all embodiments, as shown in
Thus, although biasing mechanisms in other embodiments may bias movable components to other positions than as shown, the biasing mechanism of the illustrated may result in simple, one-handed operation of the intersection assembly 30, for example by allowing a user to move the first jump assembly to a desired position simply by pressing downward on the handle, as indicated by arrows C in
Thus, when multiple vehicles are simultaneously traversing the track, by using the handle, a user may move or hold the first jump assembly to, or in, a desired position, for example to collide toy vehicles or allow them to traverse the intersection without colliding. Additionally, the biasing structure, in coordination with the continuously translatable range of movement of the sliding supports relative to the upright supports, may allow the user to quickly revert the first jump assembly to the upper bypass position simply by releasing the handle. Depending on the hand-eye coordination of the user, this may present an additional level of challenge in causing or avoiding a collision, and/or may allow a user to impart additional upward force to a toy vehicle being launched from the ramp portion of the first jump assembly as it is being moved quickly upward.
The various components of the illustrated toy vehicle track sets, and its various components and accessories, if present, may be fabricated from any suitable material, or combination of materials, such as plastic, foamed plastic, wood, cardboard, pressed paper, metal, or the like. A suitable material may be selected to provide a desirable combination of weight, strength, durability, cost, manufacturability, appearance, safety, and the like. Suitable plastics may include high-density polyethylene (HDPE), low-density polyethylene (LDPE), polystyrene, acrylonitrile butadiene styrene (ABS), polycarbonate, polyethylene terephthalate (PET), polypropylene, or the like. Suitable foamed plastics may include expanded or extruded polystyrene, or the like.
The exemplary embodiments and methods illustrated and disclosed herein are believed to encompass multiple distinct inventions with independent utility. While each has been disclosed in an exemplary form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations of the concepts and components are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where any description recites “a” or “a first” element or the equivalent thereof, such description should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/172,620, which was filed on Apr. 24, 2009 and is entitled “TOY TRACK WITH RAMP ADJUSTMENT MECHANISM”. The complete disclosure of the above-identified patent application is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1551002 | Beck | Aug 1925 | A |
1715891 | Beck | Jun 1929 | A |
3204574 | Frisbie et al. | Sep 1965 | A |
3359920 | Iammatteo | Dec 1967 | A |
3469340 | Breneman et al. | Sep 1969 | A |
3559335 | See et al. | Feb 1971 | A |
3621602 | Barc et al. | Nov 1971 | A |
3633902 | Worden | Jan 1972 | A |
3636651 | Hubiak et al. | Jan 1972 | A |
3641704 | Sims et al. | Feb 1972 | A |
3708116 | Woodward | Jan 1973 | A |
3734500 | Cooper | May 1973 | A |
3814021 | McHenry | Jun 1974 | A |
3858875 | Nemeth et al. | Jan 1975 | A |
4091561 | Kimura | May 1978 | A |
4094089 | Sano | Jun 1978 | A |
4140276 | Halford | Feb 1979 | A |
4185409 | Cheng | Jan 1980 | A |
4249733 | Eddins et al. | Feb 1981 | A |
4254576 | Matsumoto et al. | Mar 1981 | A |
4355807 | Prehodka | Oct 1982 | A |
4383688 | Prehodka | May 1983 | A |
4425735 | Kulesza et al. | Jan 1984 | A |
4513966 | Mucaro et al. | Apr 1985 | A |
4513967 | Halford et al. | Apr 1985 | A |
4519789 | Halford et al. | May 1985 | A |
4558867 | Hippely | Dec 1985 | A |
4605230 | Halford et al. | Aug 1986 | A |
4715843 | Ostendorff et al. | Dec 1987 | A |
D305676 | Ngai | Jan 1990 | S |
5038685 | Yoneda et al. | Aug 1991 | A |
5052972 | Suimon et al. | Oct 1991 | A |
5102133 | Chilton et al. | Apr 1992 | A |
5165347 | Wagner | Nov 1992 | A |
5174569 | Ngai | Dec 1992 | A |
5205554 | Copson | Apr 1993 | A |
5234216 | Ostendorff | Aug 1993 | A |
5254030 | Ostendorff et al. | Oct 1993 | A |
5299969 | Zaruba | Apr 1994 | A |
5402730 | Salter et al. | Apr 1995 | A |
5433641 | Rudell et al. | Jul 1995 | A |
5542668 | Casale et al. | Aug 1996 | A |
5890948 | Nilsson | Apr 1999 | A |
5899789 | Rehkemper et al. | May 1999 | A |
6000992 | Lambert | Dec 1999 | A |
6062942 | Ogihara | May 2000 | A |
6089951 | Ostendorff | Jul 2000 | A |
6170754 | Halford | Jan 2001 | B1 |
6216600 | Verret | Apr 2001 | B1 |
6241573 | Ostendorff et al. | Jun 2001 | B1 |
6435929 | Halford | Aug 2002 | B1 |
6478654 | Rehkemper et al. | Nov 2002 | B1 |
6676480 | Sheltman | Jan 2004 | B2 |
6695675 | Ngan | Feb 2004 | B1 |
6793554 | Newbold | Sep 2004 | B1 |
6913508 | Hornsby et al. | Jul 2005 | B2 |
6951497 | Ngan | Oct 2005 | B1 |
D542876 | Laurienzo et al. | May 2007 | S |
7261614 | Laurienzo et al. | Aug 2007 | B2 |
7549906 | Bedford et al. | Jun 2009 | B2 |
7901266 | Ostendorff | Mar 2011 | B2 |
20050287915 | Sheltman et al. | Dec 2005 | A1 |
20050287916 | Sheltman et al. | Dec 2005 | A1 |
20050287919 | Sheltman et al. | Dec 2005 | A1 |
20070049160 | Matthes et al. | Mar 2007 | A1 |
20070293122 | O'Connor et al. | Dec 2007 | A1 |
20070293123 | Nuttall et al. | Dec 2007 | A1 |
20080020675 | Ostendorff | Jan 2008 | A1 |
20080242193 | Filoseta et al. | Oct 2008 | A1 |
20080265048 | O'Connor | Oct 2008 | A1 |
20080268743 | O'Connor et al. | Oct 2008 | A1 |
20110101120 | O'Connor et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
0540530 | May 1993 | EP |
1251917 | Aug 2005 | EP |
2251193 | Jul 1992 | GB |
2252736 | Aug 1992 | GB |
03047286 | Feb 1991 | JP |
9201497 | Feb 1992 | WO |
0158556 | Aug 2001 | WO |
2007131205 | Nov 2007 | WO |
2007131207 | Nov 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110101120 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61172620 | Apr 2009 | US |