1. Field of the Invention
The present invention generally relates to medication package filling systems and methods and more specifically to adjustable transmission channels used in connection with the medication filling apparatus.
2. Description of the Related Art
Solid medication is often packaged in disposable packages which include cavities for retaining individual doses of medication. Automated devices are used to fill these packages. Typically, a package is arranged into an array of individual cavities and a plurality of transmission channels are provided in one-to-one correspondence with the individual cavities of the package.
One problem associated with using conventional automated solid pharmaceutical packaging systems is that typically a wide variety of different sized medication is packaged using the same apparatus. The solid pharmaceutical and nutraceutical transmission channels of the packaging apparatus are typically used for small pills capsules and tablets which may vary substantially in their respective the physical dimensions. In some instances, for example, when placing elongated capsules in the package, it is necessary to ensure that the transmission channel from the dispensing mechanism or hopper to the package is sufficiently sized to ensure that the elongated capsule does not become stuck. Additionally, when filling package cavities with small pills, it is necessary to ensure that the transmission channel for the small pills is properly aligned with the cavity so that the small pills are properly transmitted to the appropriate package cavity location. Because of the size differences, it is often difficult to utilize a single transmission channel for packaging solid pharmaceutical and nutraceutical products. This is particularly true because it may be preferred to have a certain pill orientation when utilizing certain pill packaging machinery. For example, when packaging elongated capsules, it may be desired to maintain a generally vertical orientation for the capsules.
Currently, none of the conventional solutions adequately address each of the design concerns associated with the various physical dimensions for the pills capsules and tablets that are typically packaged with an automated packaging device. Accordingly, there remains a need in the field for an improved solid pharmaceutical and nutraceutical transmission channel for use in conjunction with automated packaging systems.
It is therefore one object and advantage of the present invention to provide an adjustable transmission channel for use in connection with the automated packaging of a variety of sizes of medication;
Another object of the present invention is to provide an adjustable transmission channel having internal physical dimensions which may be altered as desired for the purpose of packaging solid pharmaceuticals and nutraceuticals of various shapes and sizes. It is a further object of the present invention to provide an adjustable solid pharmaceutical and nutraceutical transmission channel which may be conveniently adjusted.
In accordance with the present invention, a temporary storage structure includes a plurality of cavities which are also referred to as adjustable transmission channels. Advantageously, the physical dimensions of the cavities or transmission channels may be adjusted for the purpose of providing more suitable or preferred dimensions for the temporary storage cavities and/or transmission channels that are used in conjunction with an automated packaging system.
In a preferred exemplary embodiment of the present invention, the adjustable transmission channels and/or temporary storage mechanisms of the present invention include an outer frame member and a top cover plate having a plurality of openings formed therein. It is preferred that the openings in the top cover plate have a tapered portion located above each cavity or transmission channel which is used to direct a solid pharmaceutical or nutraceutical product into the adjustable cavity and/or transmission channel located therebelow.
The adjustable transmission channel is preferably formed by first and second interlocking structures that define the sidewalls of the adjustable transmission channel and/or temporary storage structures of the present invention. Advantageously, moving the first and second interlocking structures together or apart causes alteration of the physical cavities defined by the interlocking sidewalls. This adjustment may be used to achieve a more suitable cavity and/or transmission channel for the solid pharmaceutical and/or nutraceutical products that are processed with an automated packaging system.
In a preferred exemplary embodiment, a pneumatic drive or screw drive is provided for the purpose of applying pressure against at least one of the adjustable portions which may be biased against this motion by a spring or similar such structure. Those of ordinary skill in the art will recognize that virtually any type of mechanical or electromechanical drive may be utilized for the purpose of adjusting the physical dimensions of the cavities and/or transmission channels. Specifically, hydraulic drives, pneumatic drives screw drives or solenoid drives may also be provided for the purpose of adjusting the physical dimensions of the cavities by pushing against at least one of the portions defining the interlocking sidewalls of the cavities. As noted, springs or other members may be provided to push outward against the force of the drive mechanism. Those skilled in the art will appreciate that the inward pressure that is applied against one or more of the interlocking structures may be substituted with an outward motion for the mechanical drive when spring bias or other mechanical bias is provided in an inward direction.
Other objects and advantages of the present invention will be apparent in light of the following Detailed Description of the Presently Preferred Embodiments.
The features of the present invention which are believed to be novel are described in detail herein below. The organization and manner of the structure and operation of the invention, together with further objects and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying drawings wherein like reference numerals identify like elements in which:
While the invention may be susceptible to embodiment in different forms, there are shown in the drawings and will be described herein in detail, specific embodiments with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated.
An automated medication package filling apparatus shown generally at 10 in
Additionally, the system described in this application can be utilized with the automated packaging system described in application Ser. No. 09/539,834 filed on Mar. 30 1, 2000, titled Automated Solid Pharmaceutical Product Packaging Machine. This previously filed application is incorporated herein by reference and the disclosure of the referenced previously filed application should be considered part of the instant application. Furthermore, the system described in this application can be utilized with the automated packaging system described in application Ser. No. 09/704,134 filed on Nov. 1, 2000, titled Automated Solid Pharmaceutical Product Packaging Machine. This previously filed application is incorporated herein by reference and the disclosure of the referenced previously filed application should be considered part of the instant application. The system of the instant application can also be used with the systems and methods described in now issued U.S. Pat. No. 6,508,279 which is also incorporated herein by reference. Those skilled in the art will also appreciate that the systems and methods described in the instant application can also be used with a variety of other automated packaging systems so that a desired transmission cavity or temporary storage location size can be dynamically altered as desired.
Those of ordinary skill in the art will recognize that the adjustable transmission channels of the present invention may be used in other solid pharmaceutical and nutraceutical filling systems. It should also be recognized that the adjustable transmission channels may be temporarily stacked to provide an intermediate storage of a solid pharmaceutical or nutraceutical product as described in patent application Ser. No. 09/704,134. For example, when utilized in such a system, a shuttle mechanism may be provided for temporarily moving one of the adjustable cavity structures beneath another for the purpose of receiving solid products from the upper structure. This is accomplished by alignment of the upper and lower cavities when desired for selectively dropping the solid pharmaceutical or nutraceutical products.
As described in some of the above-referenced earlier filed patent applications, the structures embodying the upper and lower adjustable transmission channels or cavities 14 and 16 may be operatively connected to an X-Y drive mechanism 20 which may be utilized to advantageously position one of the adjustable transmission channels 16 or cavities beneath a dispensing a funnel (not shown) positioned above the adjustable transmission channels and/or cavities such as the member 16. Such an arrangement is described in earlier filed application Ser. No. 09/704,134 which is incorporated herein by reference.
In one embodiment, the upper structure 16 having adjustable transmission channels or cavities initially has its cavities filled and medication received by the upper adjustable transmission channels or cavities 16 is deposited into the adjustable transmission channels or cavities of the lower structure 14. In the preferred exemplary embodiment, the medication remains in the lower structure having the adjustable transmission channels or cavities 14 until a further temporary storage member receives the medication from the lower structure 14 and places the medication into the product package (not shown).
By placing a medication in the upper structure 16 having the adjustable transmission channels or cavities first, filling of the upper adjustable transmission channel 16 can occur while the medication is being transferred from the lower structure 14 to a temporary storage member and ultimately to the product package. In this manner higher throughput can be achieved.
One of the structures 14, 16 having the adjustable transmission channels or cavities is shown in more detail in
The perimeter frame support 29 is illustrated as a unitary body which may be comprised of, for example, a durable plastic, or aluminum, those of ordinary skill in the art will recognize that the frame may be embodied as several different portions which are secured to provide support for the adjustable cavity portions. It should also be recognized that other types of supports may be provided for adjustably securing one or more members that define the adjustable cavities and/or transmission channels of the present invention.
The frame 29 is generally rectangularly-shaped and includes a first end wall 52, a second end wall 54 generally parallel to the first end wall 52, and two side walls 56, 58 extending between the first and second end walls 52, 54 and generally perpendicular to the first and second end walls 52, 54. A pin aperture 60 is provided through each end wall 52, 54 at approximately the center thereof for the purpose of providing alignment of the structures.
Those skilled in the art will readily appreciate that any a suitable material may be used for forming the interlocking bodies provided that they have adequate strength for the purpose of defining the cavities and that they may provide the desired reliability for the product. It should also be recognized that the various interlocking sidewall structures may be machined to provide a resultant cavity having a desired range of dimensions. Adjustment of the cavity and/or transmission channel size can readily be accomplished by adjusting the spacing of the various interlocking structures as described below.
By adjusting the size of the medication apertures 37 different sized medications can be received and capsules can be preferably maintained in a generally vertical position.
In the preferred exemplary embodiment, the relative motion of the interlocking sidewall members is provided by mechanically driving one of the interlocking sidewall members into the other. As noted above, various drive mechanisms may be utilized but is preferred that a screw drive mechanism is used so that various stopping positions can be achieved incrementally throughout the range of potential motion. At lease one of the interlocking sidewall structures 33, 34 may be provided with springs that bias its motion toward or away from the other interlocking sidewall structure. The drive motor 32 is then utilized to push against the spring biased action until the desired dimensions for the cavities 37 are achieved.
Those skilled in the art will recognize that virtually any type of drive mechanism may be utilized for adjusting the relative position of the interlocking sidewall structures 33, 34. Specifically, for example, pneumatic drives, hydraulic drives and electromechanical drive such as a solenoid may be used for physically altering the relative position of the interlocking structures. It should also be recognized that even manual adjustment of the two interlocking structures may be provided for the purpose of conveniently adjusting the physical dimensions of the cavities.
It should also be noted that the cavity space defined by the interlocking sidewall members may include a structure having openings corresponding to each of the cavities that is arranged beneath the cavities such that its horizontal displacement may be used to selectively drop solid products contained in the cavities. This can be achieved simply by sliding motion of a plate having openings corresponding to each of the cavities or it may also be achieved by having first and second adjustable cavity structures with one located directly beneath the other. The sliding motion of one relative to the other may be used to selectively release solid products from upper cavities to lower cavities as described in application Ser. No. 09/704,134 which does not incorporate the adjustable cavities of the present invention.
In accordance with a preferred exemplary embodiment of the present invention, the system which controls the physical dimensions of the cavity by driving the motor as desired is preferably controlled by a microprocessor. In such an embodiment, for example, when working with the robotic arm system referenced above and incorporated herein by reference, the adjustment of the physical dimensions for the cavities is made while the robotic arm is moving to grab the appropriate dispensing cassette. For example, when a larger pill is being accessed by the robotic arm, the microprocessor driven controller advantageously automatically adjusts the spacing so that the cavities are altered appropriately to correspond with the larger pill size. In such an embodiment, the robotic arm is then used to selectively position the dispensing cassette directly over the receiving cavities as noted in this earlier filed application. Thereafter, when smaller pills are being dispensed, the physical dimensions of the cavities may be reduced while the robotic arm is traversing to select an appropriate dispensing cassette containing a smaller solid pharmaceutical or nutraceutical product.
As noted above, one primary reason for utilizing the adjustable cavities of the present invention is so that elongated capsules may be maintained in a vertical orientation. This may be desired in order to facilitate improved throughput of the packaging machinery. Other applications and packaging machinery may utilize the system in another manner but still fall within the scope of the claims.
While the preferred embodiment of the present invention are shown and described, it is envisioned that those skilled in the art may devise various modifications of the present invention without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4377230 | Burkner | Mar 1983 | A |
5375342 | Giesler | Dec 1994 | A |
5551217 | Huening et al. | Sep 1996 | A |
5765606 | Takemasa et al. | Jun 1998 | A |
6023916 | Bouthiette | Feb 2000 | A |
6186731 | Vickers et al. | Feb 2001 | B1 |
7032378 | Ioku et al. | Apr 2006 | B2 |
7412811 | Marcus et al. | Aug 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20080142402 A1 | Jun 2008 | US |