The present invention relates to an exercise apparatus, and more particularly to an exercise apparatus including an elastic resistance element or band suspended transversely between two frame elements. The elevation and lateral slope of the elastic element, as well as the relative tension within the element, may be freely adjusted. As such, a variety of resistance exercises may be accomplished by a user from various attitude and positional perspectives.
Exercise, as opposed to mere human activity, has been a part of history almost since records have been kept. The Olympic Games being, perhaps, the best historic example of vigorous human activity with no goal aside from competition one person to another, or against a separate metric, i.e., distance or time. In this regard, inasmuch as humankind has sought to improve their performance in such contests, and to enhance their physical well-being generally, exercise has played a role for many in their pursuit of life. This role of exercise in society has generally ebbed and increased in accord with access to leisure. In an agricultural community before the industrial age, it would likely have been unnecessary, and the leisure time likely unavailable, to pursue a separate course of exercise or training. In the early industrial age, likewise, many vocations still required considerably physical dexterity and stamina. However, as the post-industrial revolution has immerged, both with shorter work-weeks and less physically taxing work, exercise has become its own industry.
Each January we are collectively inundated with offers to help us achieve our goals of weight-loss, strength, or other certification of physical accomplishment. Trends, thru the years, have abounded for both exercise technique, diet, and nutrition. Various devices have proliferated and receded, i.e., universal gyms, Nautilus, Bow-Flex, etc., various team and solitary activities, i.e., jogging, tennis, golf, yoga, etc., and some extreme variations on them, i.e., tough mudders (jogging and obstacles with mild electrocution), Bikram (hot) yoga, Cross-Fit (Olympic weight lifting plus exhaustive cardio). Diet, likewise, can proceed to the extremes, i.e., paleo, no carbs at all, all-fruit, no animal based products, only organic, etc.
The short-coming in any of the foregoing is a combination of access and complexity. For some, difficult access is reason enough to be spurred to be a part of the group, i.e., exclusivity, climbing Everest or running thru Death Valley, is but a small fraternity. For others, even going to a gym next-door can be either intimidating and/or too much trouble or simply un-appealing. Likewise, for food and nutrition, not having access to what is needed at the right moment, can unravel months of effort. As far as apparatus: some exercise devices simply defy understanding, even to the well initiated and sophisticated. Many devices are bought, but few are used.
Therefore, a need exists for an exercise apparatus that is simple to comprehend, use, is convenient and uses today's technology to offer a smarter more efficient way to build strength.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
According to a first aspect of the invention, a transversely suspended elastic element, band, or wire is provided; the element extending side-to-side from sturdy upright stanchions or extended arm members. The element may, itself, be resilient, i.e., a bungee-type, or it may be, instead, relatively non-resilient and attached at each end thereof to resilient elements, i.e., spring or elastic elements thru a pulley and belt, etc., associated with or within the stanchions or arm members. The height of the element, at each lateral extent thereof associated with each stanchion or extended arm member may be adjusted, and the resilience, or resistance of the element, to motion transverse to the element may adjusted according to the exercise motion being performed or the resistance desired. A suggested exercise sequence or sequences could be pre-programmed, in accord with a specific user, into the device to guide a user throughout a regimented workout via webcast community workout sequences, adjusting band height and tension in timed intervals in accord with exercise and motion and instruction.
The benefits of elastic resistance vs. weights or gravity-based strength building: 1) Muscles adapt and react; 2) More functional movements; and, 3) Better mimics the strength curve of muscles.
The differences between the invention and conventional exercise devices are many. To wit: Transverse band vs. linear resistance bands. Infinitely adjustable resistance (tension) and height, allows for incremental adjustability of tension (vs just a thicker or thinner band). All the benefits of elastic resistance strength training without pausing to swap plates. Electronics—to automatically adjust, monitor and optimize workouts. Easy to use—ergonomic, simple auto or manual adjustment, gentle, not intimidating. Simplicity: few moving parts vs. dozens in many exercise machines. Physiological benefits of transverse vs. linear resistance and weights. New kinds of workouts that are gentler, faster, multi-dimensional. Gentler workout for youth, older, disabled and PT patients. Takes up less space as comparable weight/resistance machines. Weighs less than full-body workout machines, less shipping cost. Simple design is less intimidating and visually appealing. Saves time by adjusting quickly and easily. More Efficient—many exercises can be doubled—pushing and pulling in one movement thereby saving workout time. Changing resistance/weight is safe and quick. Installs easily in home, studio, or gym facility. Easy to use, multiple exercises from one position. More gentle, natural way to build tone and muscle. Speeds up the loading phase of exercise (vs. weight machines). Vector force in all planes because they are not gravity-dependent (vs. weight machines). Electronics—Adjustment, Feedback, Health Metrics, Preset exercise programs, Internet connectivity, video instruction. Apps for smart devices, (smart phone, tablet, watch).
Other aspects of the invention, including apparatus, devices, systems, converters, processes, and the like which constitute part of the invention, will become more apparent upon reading the following detailed description of the exemplary embodiments.
The exercise apparatus and methods associated therewith are described with reference to the following figures. These same numbers are used throughout the figures to reference like figures and components.
Reference will now be made in detail to exemplary embodiments and methods of the invention as illustrated in the accompanying drawings, in which like reference characters designate like or corresponding parts throughout the drawings. It should be noted, however, that the invention in its broader aspects is not limited to the specific details, representative devices and methods, and illustrative examples shown and described in connection with the exemplary embodiments and methods.
This description of exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “horizontal,” “vertical,” “up,” “down,” “upper”, “lower”, “right”, “left”, “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship. Additionally, the word “a” and “an” as used in the claims means “at least one” and the word “two” as used in the claims means “at least two”.
In the present description, certain terms have been used for brevity, clearness and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed. The different apparatus and methods described herein may be used alone or in combination with other systems and methods.
The elastic element 1 can be an off-the-shelf bungee type product, or it can be a specified elastic element, i.e., a particular diameter and modulus of elasticity, more resistant to UV, if used outdoors. The relative resistance to stretching can be identified by virtue of a color coding, i.e., red is tough, white is less severe, and blue is easy, or labelling, i.e., 1 is easy, up to 10 as most resistant. The frame 2 and its constituent elements, 24, 26, 28, can be a variety of dimensions, but the goal is that a sufficient range of motion is possible for the exercise being undertaken. The relative size of the frame 2 would have to account for physical constraints of the user location, however. The frame 2 and associated base 3, if portable, need to be sufficiently resistant to the motion of the user in exercising, but the user standing upon the base 2 will help in this regard.
This transverse adjustable, i.e., height and tension, configuration enables forces and resistance transverse to the tensioned band as opposed to linear resistance along the band. The transverse force is more natural, uniform in accumulation of resistance, and is gentler to engage and use. This is especially the case when a user engages at more than one location along the band using the hand and foot-strap devices disclosed herein.
The height adjustment and tensioning may be contained within the trolley 5, i.e., the trolley 5 could have an electronic motor, powered via a rechargeable battery element, and a user simply activates the motor using a switch until the desired height is achieved. The tensioning device located in the trolley 5 likewise could have a similar, but high torque motor, i.e., like a portable nut driver, and tension could be adjusted by winding the band 4 around a reel until desired tension is achieved. The band 4 would be directed to such a reel using a fairlead to ensure integrity of the band in use as it is repeatedly tensioned and released. The band 4 could also be a wire, tensioned by a separate resilient element located in the trolley or, through a pulley and cable (or belt or chain), elsewhere in the frame upright 24. The remote resilient element could, itself, be a bungee type elastic element, or a spring (wound, coil, or torsion) element.
The band element 4 may also be subject to twist tensioning. One side of the band is prevented from twisting in its mount to the trolley 5, while the other side may rotate the band 4 until desired resistance to lateral/transverse motion is achieved in the band 4. Again, a ratchet and pawl type of rotation securing element may be used for manual versions, whereas an electric motor may be used for auto adjusting versions. As an alternative, the uprights may be positioned further apart to increase tension in the band. A turnbuckle device could be incorporated into the top and bottom transverse braces, and the distance therebetween could be expanded or reduced to respectively increase or decrease tension in the band.
Additional devices for engaging the elastic element 1 are shown in
The elastic element 101 can be an off-the-shelf bungee type product, or it can be a specified elastic element, i.e., a particular diameter and modulus of elasticity, more resistant to UV, if used outdoors. The relative resistance to stretching can be identified by virtue of a color coding, i.e., red is tough, white is less severe, and blue is easy, or labelling, i.e., 1 is easy, up to 10 as most resistant.
This transverse adjustable, i.e., height and tension, configuration enables forces and resistance transverse to the tensioned band 101 as opposed to linear resistance along the band in the same way as the other embodiments described herein. The transverse force is more natural, uniform in accumulation of resistance, and is gentler to engage and use. This is especially the case when a user engages at more than one location along the band using the hand and foot-strap devices also disclosed herein.
In this embodiment a single transverse member 105, subtended at clamp/detent 135 equipped slider elements 127, is shown as the height adjuster for the transverse lateral band or wire 101. This specific embodiment shows a worm/screw gear 133 type of height adjuster, engaging transverse member 105 which is equipped with an internal spiral cavity, or retained nut(s), for receiving the worm gear 133 as it turns to adjust the transverse element 101 location upwardly or downwardly via slider elements 127 guided along on frame elements 125. The worm gear 133, in this embodiment, could be manually driven or electrically driven using a step-motor 137 to sense revolutions and adjust height accordingly. The transverse member 105 also includes a tensioning system 140, at an end thereof, to increase and decrease the tension in the band 101. The tensioning system 140 shown is preferably an electrical motor 142 driven reel that, when rotated, tensions or loosens the band 101, through pulleys, like a tennis net tension adjuster.
In use, a user may manually adjust height and tension in accord with the selected exercise being accomplished. That is, a specific height for the transverse elastic element may be chosen for bench press type motion, arm curls, arm extensions, deadlift, or squat. These adjustments may be done manually, i.e., by moving a peg and sliding the trolley/sliding element on each side to a new peg hole and twist adjusting, or ratchet and pawl adjusting or electric reel adjusting, the tension in the band. The adjustment could be semi-automated wherein the user activates a stepper motor to drive the worm gear in the stanchion/sliding element to place the trolley/sliding element at a selected height, and thereafter engage a separate motorized winding drum to increase tension, or twist the band to create tension, and thereafter engage in the exercise movement. Or, alternatively, the user experience may be fully automated and also social. For example, a user identifies their user profile for the machine, User 1, and then selects a particular exercise routine already in the control center or downloads a sequence from an online provider. The sequence then initiates by automatically setting the height, i.e., 1 foot from the ground, and a tension of 150 lb equivalent, for dead lift reps. After the machine senses, either optically or thru a strain gauge, etc., that a rep sequence has been accomplished, the band re-sets for bench press at 3 feet height and 100 lb equivalent, following that sequence, it resets at 4.5 foot height for squats at a 200 lb equivalent tension, and lastly it resets to a 3.5 foot height and a 60 lb. equivalent for curls. These sequences can be unlimited in scope and variation. The exercise routines can be monitored remotely by a trainer or therapist or other medical professional. Limits for work, i.e., heart rate, breath rate, weight equivalent may be set with alarms or reminders to slow down, speed up, try harder, not exceed, etc. In this way, a user may feel encouraged and watched over, without the need to summon another person to observe the workout. Records of the workout may be forwarded to a group social site where comparison and contest(s) may be conducted, etc.
It should be understood that various changes and modifications to the presently disclosed embodiment as described herein will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the spirit and scope of the present application and without diminishing its intended advantages.
The present application is a non-provisional utility patent filing claiming the benefit of prior provisional filing 62/336,612, filed May 14, 2016, and U.S. application Ser. No. 15/593,047, filed May 11, 2017, now U.S. Pat. No. 10,252,096, and U.S. application Ser. No. 16/368,241, filed Mar. 28, 2019, the entire contents of each are incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
62336612 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15593047 | May 2017 | US |
Child | 16368241 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16368241 | Mar 2019 | US |
Child | 16992390 | US |