Adjustable upper seatback module

Information

  • Patent Grant
  • 10035442
  • Patent Number
    10,035,442
  • Date Filed
    Monday, January 25, 2016
    8 years ago
  • Date Issued
    Tuesday, July 31, 2018
    6 years ago
Abstract
A vehicle seating assembly has a seat having a lower seat and a seatback extending upwardly from the lower seat. The seatback has a lower stationary seatback base portion having a seatback frame assembly, and an upper movable seatback hood module vertically adjustable relative the lower stationary portion. The upper movable seatback hood module has an upper seatback slide bracket, and a plurality of rail guides slidably engaging a rail. An electric motor drive unit engages a driven member to vertically adjust the upper movable seatback hood module relative the lower stationary portion when the electric motor drive unit is actuated.
Description
FIELD OF THE INVENTION

The present invention generally relates to a vehicle seating assembly for a vehicle, and more particularly to a vehicle seating assembly having an upper seatback module for the seatback assembly having an adjustable height.


BACKGROUND OF THE INVENTION

Motor vehicle customers value and appreciate features that enhance their driving experience. In particular, consumers desire features that allow the vehicle seating assembly to adapt to fit their individual body types and sizes relative the passenger compartment of the motor vehicle, especially the motor vehicle controls. However, such features must employ designs that will accommodate the full range of occupant body types and sizes. To date, the only height adjustment for occupants has been to raise, lower, or tilt the entire total seat assembly and/or raise, lower, or tilt the headrest. Hence, a vehicle seating assembly which assists in providing additional adjustment would be advantageous.


SUMMARY OF THE INVENTION

One aspect of the present invention includes a vehicle seating assembly for a vehicle that assists in extending the seatback height to provide upper back support through the range of occupants.


Another aspect of the present invention includes a vehicle seating assembly for a motor vehicle having a lower seat and a seatback extending upwardly from the lower seat. The seatback comprises a lower stationary seatback base portion, which further comprises a seatback frame assembly, and an upper movable seatback hood module vertically adjustable relative the lower stationary portion. The upper movable seatback hood module further comprises an upper seatback slide bracket, a plurality of rail guides mounted to one of the seatback frame assembly or the upper seatback slide bracket and a rail mounted to the other of the seatback frame assembly or the upper seatback slide bracket, the plurality of rail guides slidably engaging the rail. An electric motor drive unit is mounted to one of the seatback frame assembly or the upper seatback slide bracket, and a driven member is mounted to the other of the seatback frame assembly or the upper seatback slide bracket, wherein the electric motor drive unit engages the driven member to vertically adjust the upper movable seatback hood module relative the lower stationary portion when the electric motor drive unit is actuated.


Yet another aspect of the present invention includes a seatback for a motor vehicle comprising an upper hood vertically adjustable relative a lower portion, a plurality of rail guides slidably engaging a rail, a motor mounted to a lower portion frame or an upper hood slide bracket, and a driven member mounted to the other of the lower portion frame or the upper hood slide bracket, wherein the motor engages the driven member to vertically adjust the upper hood relative the lower portion.


A further aspect of the present invention includes a vehicle seating assembly for a motor vehicle comprising lower seat and a seatback extending upwardly from the lower seat. The seatback comprises a lower seatback base portion supported by a seatback frame assembly, an upper movable seatback hood module vertically adjustable relative the lower portion supported by a front upper slide bracket in cooperation with a rear upper seatback slide bracket, a plurality of rail guides mounted to one of the seatback frame assembly or the rear upper seatback slide bracket and a rail mounted to the other of the seatback frame assembly or the rear upper seatback slide bracket, the plurality of rail guides slidably engaging the rail. An electric motor drive unit is mounted on one of the seatback frame assembly or the rear upper seatback slide bracket, and operatively coupled with the other of the seatback frame assembly or the rear upper seatback slide bracket, wherein the electric motor drive unit vertically adjusts the upper movable seatback hood module relative the lower stationary portion when the electric motor drive unit is actuated.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a perspective view of the vehicle seating assembly in accordance with the present disclosure installed in the motor vehicle;



FIG. 2 is a perspective view of the vehicle seating assembly in accordance with the present disclosure;



FIG. 3 is a perspective view of the lower seat of the vehicle seating assembly in accordance with the present disclosure;



FIG. 4 is a is an exploded perspective view of the lower seat of the vehicle seating assembly in accordance with the present disclosure;



FIG. 5 is a front perspective view of the cushion frame assembly in accordance with the present disclosure;



FIG. 6 is a rear perspective view of the cushion frame assembly in accordance with the present disclosure;



FIG. 7A is a front perspective view of the seatback with the upper movable seatback hood module in the lowermost position in accordance with the present disclosure;



FIG. 7B is a front perspective view of the seatback with the upper movable seatback hood module in the uppermost position in accordance with the present disclosure;



FIG. 8 is a front perspective view of the upper movable seatback hood module in accordance with the present disclosure;



FIG. 9 is a front perspective view of the headrest in accordance with the present disclosure;



FIG. 9A is an exploded front perspective view of the headrest in accordance with the present disclosure;



FIG. 9B is an exploded front perspective view of the headrest, headrest dovetail, headrest cup, dovetail receiver, and rear upper slide bracket in accordance with the present disclosure;



FIG. 10 is a front perspective view of the headrest cup in accordance with the present disclosure;



FIG. 11 is a rear exploded perspective view of the headrest dovetail, roller bearings, and dovetail receiver in accordance with the present disclosure;



FIG. 12 is a front perspective view of the U-shaped member of the headrest in accordance with the present disclosure;



FIG. 13 is a front perspective view of the upper movable seatback hood module in accordance with the present disclosure;



FIG. 14 is a front perspective view of the upper movable seatback hood module and the U-shaped member installed in accordance with the present disclosure;



FIG. 15 is a front perspective view of the upper movable seatback hood module with the headrest removed in accordance with the present disclosure;



FIG. 16 is a cross-sectional view of the upper portion of the seatback in accordance with the present disclosure;



FIG. 17 is an exploded front perspective view of the upper movable seatback hood module in accordance with the present disclosure;



FIG. 18 is a front perspective view of the rear upper slide bracket of the seatback in accordance with the present disclosure;



FIG. 19 is a rear view of the rear upper slide bracket of the seatback in accordance with the present disclosure;



FIG. 20 is a front perspective view of the seatback frame assembly and the back frame bracket of the seatback in accordance with the present disclosure;



FIG. 21 is a front perspective view of the rail guides and rails of the seatback in accordance with the present disclosure;



FIG. 22 is a front perspective view of the back frame bracket of the seatback in accordance with the present disclosure;



FIG. 23 is a rear perspective view of the back frame reinforcement bracket of the seatback in accordance with the present invention;



FIG. 24 is a rear perspective view of the motor nut of the seatback in accordance with the present invention;



FIG. 25 is a front perspective view of the electric motor drive unit of the seatback in accordance with the present invention; and



FIG. 26 is a side perspective view of the trim panel of the vehicle seating assembly in accordance with the present invention.





DETAILED DESCRIPTION OF THE EMBODIMENTS

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Referring to FIG. 1, a vehicle seating assembly 10 is illustrated inside the vehicle cabin 8 of a vehicle 6. The vehicle seating assembly 10 may be a seat for a driver, a seat for a passenger, a rear bucket seat, a rear row of seats, as shown, or any other vehicle seat. The vehicle seating assembly 10 includes a lower seat 12 and a seatback 14 pivotably attached to the lower seat 12. The seatback 14 of the vehicle seating assembly 10 includes a forward facing surface 16 and a rearward facing surface 18, each of which may be covered with a protective and/or decorative material 20. Leather and/or vinyl are often and preferably employed. The vehicle seating assembly 10 also includes a headrest 22 operably coupled to an upper portion 24 of the seatback 14 of the vehicle seating assembly 10. The vehicle seating assembly 10 also typically includes a vehicle seat base 26 configured to provide structural support to the vehicle seating assembly 10. The vehicle seat base 26 is preferably supported on seat mounting rail assemblies 28, as is known in the art. The seat mounting rail assembly 28 is configured to allow the vehicle seating assembly 10 to be adjusted in forward and rearward directions relative to the longitudinal axis of the vehicle 6.


It is understood that the vehicle seating assembly 10 may be positioned in various locations throughout the vehicle other than the illustrated position, such as a passenger side location, a mid-row location, and a rear seat location. The vehicle seating assembly 10 is thereby slidably coupled with a floor 32. It is also conceivable that the vehicle seating assembly 10 may not include the seat mounting rail assembly 28 and alternatively may be fixedly coupled with the floor 32 of the vehicle.


Lower seat 12 includes a cushion frame assembly 30, which in turn includes a cushion frame 34, to which a seat belt buckle 36 is attached. A suspension system 38 is disposed within a rear portion 40 of the cushion frame assembly 30 and beneath and juxtaposed with a cushion foam assembly 42 disposed above for support of the occupant. The suspension system 38 is preferably formed from tunable springs 44 which support a central panel 46. Preferably, at least one variable tension spring 48 is mounted to the cushion frame assembly 30. The suspension system 38 may also include a motor 50, a gear 52, and a spring attachment member 54. A fixedly mounted connecting rod 56 extends between lateral sides 58, 60 of the cushion frame 34 and a sleeve 62 rotatably encircles the connecting rod 56. The motor 50 and gear 52 are operably coupled to the sleeve 62 and the spring attachment member 54 is rigidly mounted on the sleeve 62.


As shown in FIGS. 4 and 5, the variable tension springs 48 are mounted in tension between the spring attachment member 54 and a cushion pan 64 pivotably mounted to and forming a forward portion 66 of the cushion frame 34. When activated, the motor 50 and gear 52 are adapted to rotate the sleeve 62 and spring attachment member 54. In the illustrated example, rotating the sleeve 62 and spring attachment member 54 rearward raises a rear portion 68 of the variable tension springs 48 and increases the tension applied to the variable tension springs 48. Raising the rear portion 68 of the variable tension springs 48 raises the height of the seating surface 70. Additionally, as is understood by one of ordinary skill in the art, increasing the tension on the variable tension springs 48 decreases the flex or extension thereof, which means the variable tension springs 48 and cushion foam assembly 42 will move downward a smaller distance when placed under load, such as when an occupant sits on the vehicle seating assembly 10. Conversely, rotating the sleeve 62 and spring attachment member 54 forward lowers the rear portion 68 of the variable tension springs 48 and decreases the tension applied to the variable tension springs 48. This increases the flex or extension of the variable tension springs 48, which means the variable tension springs 48 and cushion foam assembly 42 will move downward a greater distance when an occupant is seated in vehicle seating assembly 10. Further, lowering the rear portion 68 of the variable tension springs 48 lowers the height of the seating surface 70.


As shown in FIGS. 4, 5, and 6, a cushion leg jounce bracket 72 is attached to a rear portion 65 of the cushion pan 64, preferably at a point about midway on the cushion frame 34. The cushion leg jounce bracket 72 includes a base 74 attached to the cushion pan 64 with two extended jounce paddles 76, 78 that act much like a diving board or cantilevered beam to support the back of the thighs. Preferably, the cushion leg jounce bracket 72 forms the pair of jounce paddles 76, 78 symmetrically disposed along either side of a longitudinal centerline C of the vehicle seating assembly, with a notch 80 separating each of the jounce paddles 76, 78 at the base 74 along the longitudinal centerline C of the vehicle seating assembly. Preferably, each of the jounce paddles 76, 78 is about 150 mm wide transverse to the longitudinal centerline C of the vehicle so as to provide adequate support to the back of each of an occupant's thighs.


Each of the jounce paddles 76, 78 extends upwardly and forwardly to form a vertical gap G between a distal end 84, 86 of each jounce paddle 76, 78 and a forward edge 82 of the cushion pan 64 and is thereby preferably disposed to independently support one of the occupant's thighs. Each of the jounce paddles 76, 78 may be resiliently urged downwardly by the weight of the occupant's thigh without contacting the forward edge 82 of the cushion pan 64 and thereby provide resilient support. However, is it conceivable that the cushion leg jounce bracket 72 may be arranged having a single jounce paddle, or a pair of jounce paddles 76, 78 that may be selectively coupled and uncoupled to act independently under a respective thigh of the occupant.


The cushion leg jounce bracket 72 is preferably formed as a single molded component, but may be formed from two symmetrical pieces arranged on either side of the longitudinal centerline C of the vehicle seating assembly 10, each comprising one of the jounce paddles 76, 78. Preferably, the cushion leg jounce bracket 72 is formed from glass-filled injection molded nylon having a thickness of about between 2.5 and 3.5 mm. However, it should be noted that the cushion leg jounce bracket 72 may be effectively tunable to specific performance criteria by appropriate selection of the material from which the cushion leg jounce bracket 72 is fabricated, the thickness of the cushion leg jounce bracket 72, the addition of ribs (not shown) on the bottom of the paddles on the cushion leg jounce bracket 72, and the addition of a split line along the cushion leg jounce bracket 72 proximate the base 74 of the notch 80 separating the pair of jounce paddles 76, 78.


The cushion foam assembly 42 is disposed above and is attached to the cushion frame 34 as shown in FIG. 3, and is supported at a forward portion 66 by the cushion leg jounce bracket 72. Preferably, the underside of the cushion foam assembly 42 is provided with a durable surface material that is particularly wear resistant, in that the relative movement between the jounce paddles 76, 78 of the cushion leg jounce bracket 72 and the underside of the cushion foam assembly 42 will tend to wear on the underside of the cushion foam assembly 42.


Preferably, the cushion pan 64 is pivotably, and thereby adjustably, mounted to the cushion frame 34 by a pair of pivots 88 located on either side of the cushion frame assembly 30. The cushion pan 64 so mounted may be manually and pivotally adjusted by use of a knob or lever (not shown), as is well known in the seating arts, or a remotely pivotally adjusted by use of a motorized gear assembly (not shown), as is also well known in the seating arts.


The cushion leg jounce bracket 72 disclosed herein provides a flexible thigh support assembly that assembles directly to the cushion pan 64. The cushion leg jounce bracket 72 provides passive supports that are capable of acting independently under the load of each leg, and thereby reducing leg muscle fatigue and provide support for important vehicle functions, especially such as acceleration and braking with the right leg and manual gear shift or relaxation on the left leg.


As shown in FIGS. 7A, 7B, 16, 17, and 20, the seatback 14 includes a seatback frame assembly 90, that includes a back carrier 94, a front cushion 92, and a rear trim panel 96 that enclose the seatback frame assembly 90 in a clamshell type arrangement. Preferably, as will be discussed more fully below, the seatback 14 includes a lower stationary seatback base portion 98 and an upper movable seatback hood module 100 that allows the upper portion 24 of the seatback 14 to be raised and lowered in accordance with the occupant's preference and, in particular, to properly locate the headrest 22 and a speaker assembly 196, both addressed in more detail below. The upper movable seatback hood module 100 includes a front upper seatback slide bracket 102 that forms a front of the upper movable seatback hood module 100, rear upper seatback slide bracket 104, hood foam 106, and a hood back trim panel 110. The front upper seatback slide bracket 102 and hood back trim panel 110 enclose the rear upper seatback slide bracket 104 in a clamshell-type arrangement, as shown in FIG. 17.


The forward facing surface 112 of the upper portion 24 of the seatback 14 includes a central recess 114 that corresponds with and receives a headrest cup 116. The headrest cup 116 is preferably formed as a polymeric shell mounted within the central recess 114 and on the forward facing surface 112 of the seatback 14 and is disposed in front of a forward surface 122 of the rear upper seatback slide bracket 104. In turn, the headrest 22 is received within a recess 120 of the headrest cup 116 disposed on the forward facing surface 112 of the seatback 14. As shown in FIG. 13, the headrest 22 is thereby mounted within the upper movable seatback hood module 100 on the upper portion 24 of the seatback 14.


In particular, in the case of high-performance seats installed in motor vehicles that are designed for racing and motor track use, it is often required that the occupants, especially the driver, wear a helmet or other type of protective headgear adapted to protect the head of the occupant. However, existing headrests are often in the way and tend to push the head of the driver forward to uncomfortable positions due to the bulk of existing headrests. While such headrests can often be removed, rear head support is likewise removed. In the case of performance seats that are intended to be used in racing or sporting applications, this is especially unacceptable. Instead, what was needed was a performance seat that was adaptable to accommodate racing helmets and head gear, especially in the head region where movement and viewing flexibility is most needed, while also providing adequate support.


Accordingly, the present disclosure provides a headrest 22 that can be easily assembled and installed in the seatback 14, as well as be readily removable and reinstalled without the need for tools or adjustment. The headrest 22, that further provides a pivoting adjustment mechanism and supporting structure, as discussed below, may be readily attached to the upper portion 24 of the seatback 14 by means of a “dovetail” design to secure it in place, yet allow the headrest 22 to be readily removed for racing or motor track use or service requirements and readily reinstalled. That is, as shown in FIGS. 8, 9B, and 13-16, the headrest 22 is mounted to the forward surface 122 of the rear upper seatback slide bracket 104 via a headrest dovetail 124 that is removably received within a dovetail receiver 126 mounted to the rear upper seatback slide bracket 104. Preferably, the headrest may be articulated forward and backward around a pair of pivots 128 near its base 130 and the headrest 22 can be entirely removed from the seatback 14, as discussed below.


The headrest 22 disclosed herein avoids the problems of existing headrests by being installed within the headrest cup 116 and by being readily removable and reinstallable, thereby allowing the headrest 22 to be removed from the seatback 14 to expose the headrest cup 116 within which the driver's or passenger's helmet can be received. The present disclosure avoids the disadvantages of prior removable headrest designs and replaces the posts that extend downwardly to allow the vertical adjustment for the headrest 22 height with a dovetail attachment mechanism. With the headrest 22 simply removed from the seatback 14, as is discussed further detail below, an ample cavity is formed within which a helmet or other headgear may be received to allow the driver and/or passenger to occupy the seat with relative comfort. In such a case, the headrest cup 116, even with the headrest 22 removed, still offers head and neck support in the event of a rear impact to minimize whiplash and other injuries. In this regard, it is further noted that the headrest cup 116 is preferably lined with a rubber padding 132, so that with the headrest 22 removed, any jostling or other contact of the occupant's helmet or headgear with the headrest cup 116 is dampened and minimized.


The headrest 22 includes a headrest cover 134 that encases the headrest 22, which further includes a headrest front foam member 136, an EPP foam member 137, a headrest mechanism 138 comprising a generally U-shaped tubular member 140 and a rear mounting base plate 142, and a rear foam member 144. Preferably, the U-shaped tubular member 140 and the rear mounting base plate 142 are fabricated from steel. The U-shaped tubular member 140 comprises two vertically and upwardly extending arms 146 that each engages a respective right and left end of an upwardly and rearwardly tilted U-shaped support 148 for providing rigid structural support to the headrest 22, as shown. The U-shaped tubular member 140 is pivotally mounted to the rear mounting base plate 142 by the pair of opposed pivots 128, one of which includes a spring-loaded ratchet mechanism 150, as shown in FIG. 12, which in one embodiment normally urges the headrest 22 to a forward position by a spring 151. In use, the headrest 22 can be pivoted forward from a maximum rearward position in discrete increments by the action of a pawl 152 engaging a cam 154 until reaching a maximum forward position. After reaching the maximum forward position, the pawl 152 is released from the cam 154 to release the ratchet mechanism 150 which, in turn, releases and allows the return of the headrest 22 to its rearward position. While the headrest 22 shown herein is intended for manual adjustment, it is contemplated that a motor and quick disconnect for the power to the motor (not shown) can be provided to facilitate ready removal of the headrest 22 from the seatback 14 and reinstallation thereof.


As shown in FIGS. 9B and 11, the dovetail attachment mechanism includes the headrest dovetail 124 mounted to the rear of the headrest 22, in particular to the rear mounting base plate 142, via a plurality of mechanical fasteners, as is known in the art. The headrest dovetail 124 comprises a rectangular block member 158 that preferably has a cavity 160 formed in a central portion thereof to minimize weight. A plurality of mechanical fastener openings 162 is provided on a forward surface 164 of the rectangular block member 158 about the cavity 160 to facilitate attachment of the rectangular block member 158 to the rear mounting base plate 142 of the headrest 22. A pair of laterally engaging tabs 166 extends laterally in both side directions beyond the lateral dimensions of the rectangular block member 158 proximate a rear surface 168 of the headrest dovetail 124. An upper edge 170 extends slightly above an upper surface 172 of the rectangular block member 158.


The dovetail receiver 126, best shown in FIGS. 9B, 11, and 16, is mounted to the forward surface 122 of the rear upper seatback slide bracket 104 via a plurality of conventional mechanical fasteners. That is, the dovetail receiver 126 has a rear surface 176 that is juxtaposed with the forward surface 122 of the rear upper seatback slide bracket 104 and is rigidly attached thereto. A forward surface 178 and an upper surface 180 of the dovetail receiver 126 are provided with an opening that forms a T-shaped slot 182. The T-shaped slot 182 has a lateral width on the upper surface 180 that exceeds the lateral width of the forward surface 178. The T-shaped slot 182 is thus formed on the forward surface 178 and upper surface 180 of the dovetail receiver 126. A lower surface within the T-shaped slot 182 forms a bottom shoulder 184 thereof.


A T-shaped slot 186 in the headrest cup 116 is shaped to conform to the shape of the T-shaped slot 182, the headrest cup 116 concealing the remaining structure of the dovetail receiver 126 in order to provide an aesthetically pleasing appearance, as shown in FIG. 15. The dovetail receiver 126, so situated relative the T-shaped slot 186, is adapted to receive the laterally engaging tabs 166 of the headrest dovetail 124 as the headrest dovetail 124 is slid downwardly through the T-shaped slot 186 and into an upper opening 188 of the T-shaped slot 182 in the dovetail receiver 126 from above until bottoming out on the bottom shoulder 184. With the laterally engaging tabs 166 of the headrest dovetail 124 so inserted into the T-shaped slot 182, the headrest 22 is rigidly attached to the headrest dovetail 124 and may thereby be securely installed in the central recess 114 of the seatback 14.


The T-shaped slot 182 in the dovetail receiver 126 is further provided with a pair of recesses 190 within which a pair of spring-loaded roller bearings 192 is mounted. A matching pair of indented dimples 194 is provided in the rear surface 168 of the headrest dovetail 124 and is aligned with each of the spring-loaded roller bearings 192 when the headrest 22 is installed. With the indented dimples 194 so aligned with and engaged by the spring-loaded roller bearings 192, the spring-loaded roller bearings 192 are resiliently urged into the indented dimples 194 and secure the headrest dovetail 124 within the T-shaped slot 182 of the dovetail receiver 126. However, by simply exerting a moderate upward force on the headrest 22, the spring-loaded roller bearings 192 can be urged rearwardly, so as to release their engagement with the indented dimples 194. The headrest dovetail 124 can thereby be easily detached from the T-shaped slot 182 of the dovetail receiver 126 for removal of the entire headrest 22 from the seatback 14. Thus, the headrest 22 can be readily removed from the seatback 14 without the use of tools or the need for adjustment. Similarly, the headrest 22 can be readily reinstalled into the headrest cup 116 of the seatback 14 again without the use of tools or the need to perform any types of adjustment.


It should be noted that the disclosed embodiment for mounting the headrest 22 to the upper portion 24 of the seatback 14 itself provides no vertical adjustment of the headrest 22 relative to the upper portion 24 of the seatback 14. Rather, as set forth the below, the height of the headrest 22 can be adjusted by adjustment of the upper portion 24 of the seatback 14. This is particularly advantageous in that existing headrest assemblies using adjustable posts are typically movable within a vertical range of about 50 cm. However, since the upper portion 24 of the seatback 14 of the present disclosure, as further discussed below, is adapted to move within a range H of 75 mm, as shown in FIG. 7A, the headrest 22 disclosed herein is provided with even greater adjustability.


In addition, as shown in FIGS. 13, 14, and 15, a speaker assembly 196 is mounted proximate the bottom of the headrest cup 116 via a pair of speaker openings 198, 200 through both the headrest cup 116 and rear upper seatback slide bracket 104 that receive a pair of speakers 206 shown in FIG. 16. The speaker assembly 196 can include traditional woofer and tweeter systems to more recent piezo-electric speaker systems. Preferably, the speakers include dual 7.5-watt drivers.


A resonance cavity 202 is formed proximate to and just below the headrest cup 116, preferably within the rear upper seatback slide bracket 104, within which the speaker assembly 196 is received. The resonance cavity 202 comprises an enclosed volume, preferably about 290 cm3. Since the resonance cavity 202 is formed in the rear upper seatback slide bracket 104, it is thus enclosed within the seatback 14 between the front upper seatback slide bracket 102 and hood back trim panel 110.


The pair of speaker openings 198, 200 is preferably arranged in side-by-side relation on the lower portion 204 of the headrest cup 116 and the speaker assembly 196 comprises the pair of speakers 206, each received and mounted within one of the pair of speaker openings 198, 200. The pair of speaker openings 198, 200 opens into the headrest cup 116 disposed on the lower portion 204 of the headrest cup 116. As shown in FIG. 8, a slot 210 is formed between the pair of speaker openings 198, 200, the slot 210 being provided to receive a clip 212 depending from a bottom surface 214 of the polymeric shell of the headrest cup 116 by which the polymeric shell of the headrest cup 116 is partially attached to the seatback 14. It has been found that a positive and rigid attachment of the polymeric shell of the headrest cup 116 to the seatback 14 proximate the speakers 206 prevents undesired vibration of the polymeric shell of the headrest cup 116 when the speakers volume is raised. Further, the slot 210 is sealed from the resonance cavity 202 by an enclosed cap 216 extending downwardly from the slot 210 into contact with the rearward surface 218 of the resonance cavity 202.


The resonance cavity 202 further includes a pair of passive radiator openings 220, 222 arranged in side-by-side relation and disposed on a rear surface 240 of the rear upper seatback slide bracket 104, within which each one of a pair of the passive radiators 224, 226 is received. The pair of passive radiator openings 220, 222 forms rearward facing openings. The pair of passive radiators 224, 226 each comprises a circular elastomeric diaphragm.


A headrest cup speaker grill 228 is disposed above the speaker openings 198, 200 and below the headrest 22, and a forward facing gap F is provided between the headrest cup speaker grill 228 and a lower portion 230 of the headrest 22, as shown in FIG. 7B. The headrest cup speaker grill 228 is comprised of a thin gauge perforated metal mesh. Preferably, the perforated metal mesh is comprised of aluminum mesh about 0.005 inches in thickness.


As noted above, the seatback 14 includes the lower stationary seatback base portion 98 and an upper movable seatback hood module 100 that allows the upper portion 24 of the seatback 14 to be raised and lowered in accordance with the customer's preference and, in particular, to properly locate the headrest 22 and the speaker openings 198, 200. The lower stationary seatback base portion 98 is supported by the seatback frame assembly 90, while the upper movable seatback hood module 100 is vertically adjustable relative the lower stationary seatback base portion 98 and is supported by the front upper seatback slide bracket 102 in cooperation with the rear upper seatback slide bracket 104.


Preferably, a set of four rail guides 232, 234, 236, 238 is mounted to the rear surface 240 of the rear upper seatback slide bracket 104, as shown in FIG. 19. The rail guides 232, 234, 236, 238 are arranged in a generally rectangular orientation in two pairs on each side of the rear upper seatback slide bracket 104 about its centerline C. That is, the plurality of rail guides 232, 234, 236, 238 are mounted to the rearward facing surface 240 of the rear upper seatback slide bracket 104 in a pair of rows on the rearward facing surface 240 of the rear upper seatback slide bracket 104 and on opposite sides of and relative the centerline C thereof.


The rail guides 232, 234, 236, 238 are in turn engaged by a pair of slide rails 242, 244 mounted to a back frame bracket 246. The pair of slide rails 242, 244 is mounted in abutting relation with a forward facing surface 252 of the back frame bracket 246. Each of the slide rails 242, 244 has a base 254 in parallel relation with a forward facing surface 256 of the seatback frame assembly 90, a pair of cooperating legs 258, 260 extending orthogonally from the base 254 and a pair of opposing tabs 262, 264 extending orthogonally from the cooperating legs 258, 260 in a plane parallel to the base 254. Likewise, each of the rail guides 232, 234, 236, 238 has a base 266 in parallel relation with the rearward facing surface 240 of the rear upper seatback slide bracket 104 and a pair of ears 268, 270 extending outwardly from the base 266, the pair of ears 268, 270 being displaced from the rearward facing surface 240 of the rear upper seatback slide bracket 104 and slidingly engaged on either side by the opposing tabs 262, 264 of the slide rails 242, 244. Each of the rail guides 232, 234, 236, 238 thereby slidingly engages one of the slide rails 242, 244.


Although the preferred embodiment has been described, it should be noted that the plurality of rail guides 232, 234, 236, 238 may be mounted to either of one of the seatback frame assembly 90 or the front upper seatback slide bracket 102 and the rail may be mounted to the other of the seatback frame assembly 90 or the front upper seatback slide bracket 102, so long as the slide rails 242, 244 slidably engage the plurality of rail guides 232, 234, 236, 238.


As shown in FIGS. 7A, 7B, and 16, the lower stationary seatback base portion 98 comprises a forward facing surface 271 and a rearward facing surface 272. The forward facing surface 271 includes a lower seatback cushion 274 having an outer covering 276, while the rearward facing surface 272 comprising a semi-rigid lower back panel 278 extending upwardly relative the lower stationary seatback base portion 98. The upper movable seatback hood module 100 also includes a forward facing hood covering 280, an upper closeout panel 282 attached to a bottom portion 284 of the upper movable seatback hood module 100 beneath the forward facing hood covering 280, and the rearward-facing hood back trim panel 110.


Preferably, in order to present a pleasing appearance at all times, the upper closeout panel 282 extends downwardly behind and below an upper edge 288 of the lower seatback cushion 274 when the upper movable seatback hood module 100 is moved to an upmost raised position. Likewise, the rearward facing hood back trim panel 110 extends downwardly below an upper edge 290 of the upwardly extending lower back panel 278 when the upper movable seatback hood module 100 is moved to the upmost raised position. Also, the forward portion of the lower stationary seatback base portion 98 includes the forward facing surface 271, a back foam cushion 292, and the seatback frame assembly 90, wherein the upper closeout panel 282 extends downwardly and is vertically displaceable within a space defined between the forward facing surface 112 and back foam cushion 292 and the seatback frame assembly 90.


An electric motor drive unit 294 is mounted on one of the seatback frame assembly 90 or the rear upper seatback slide bracket 104, and is operatively coupled with the other of the seatback frame assembly 90 or the rear upper seatback slide bracket 104, as shown in FIG. 16. The electric motor drive unit 294 thus may vertically adjust the upper movable seatback hood module 100 relative the lower stationary seatback base portion 98 when the electric motor drive unit 294 is actuated.


Preferably, the electric motor drive unit 294 is mounted on the seatback frame assembly 90 and a driven member 296 is mounted on the rear upper seatback slide bracket 104, as shown in FIG. 16. The driven member 296 preferably comprises a motor nut 298, and the electric motor drive unit 294 further comprises an electric motor 300 with a threaded output shaft 302 that engages the motor nut 298 to vertically adjust the upper movable seatback hood module 100 relative the lower stationary seatback base portion 98 when the electric motor drive unit 294 is actuated.


Preferably, the electric motor 300 is mounted to a rearward facing surface 304 on back frame bracket 246, which is in turn rigidly attached to the seatback frame assembly 90 that forms the supporting structure for the lower stationary seatback base portion 98 of the seatback 14. The electric motor 300 preferably is mounted to the back frame bracket 246 via a back frame reinforcement bracket 306 and thereby engages and selectively drives the vertically extending threaded output shaft 302.


An upper portion of the vertically extending threaded shaft 302 is received within a threaded opening 308 within the motor nut 298, where the motor nut 298 is in turn rigidly attached to the rearward facing surface 240 of the rear upper seatback slide bracket 104. When the electric motor 300 is actuated, the rotation of the vertically extending threaded output shaft 302 drives the motor nut 298 upward or downward, depending on the initial position and direction of rotation. A slot 310 in the back frame bracket 246 allows the motor nut 298 to move upwardly and downwardly relative the back frame bracket 246. As the motor nut 298 is rigidly mounted to the rear surface 240 of the rear upper seatback slide bracket 104, the upper movable seatback hood module 100 is moved either upwardly or downwardly, again depending upon its initial position and the direction of rotation, relative the lower stationary backseat base portion 98. Thus, the interaction of the rail guides 232, 234, 236, 238 with the slide rails 242, 244 allows for the upper movable seatback hood module 100 to rise and lower relative to the lower stationary backseat base portion 98 of the seatback 14.


Although the electric motor 300 is preferably disclosed as being mounted on the seatback frame assembly 90 and the driven member 296 is mounted on the rear upper seatback slide bracket 104, the components can be reversed. That is, the electric motor drive unit 294 may be mounted on the rear upper seatback slide bracket 104, and the driven member 296 may be mounted on the seatback frame assembly 90. A switch 312 with which to actuate the electrical motor 300 may be disposed on an outboard trim panel 314 of the seat assembly, as shown in FIG. 26.


Based on the 50th percentile adult male model, the upper movable seatback hood module 100 has a neutral position N, as shown in FIG. 7A, wherein the headrest 22 and the speakers 206, 208 are located at the optimum position relative the occupant's head and ears. Further, a vertical gap D is defined between a lower edge 316 of the forward facing hood covering 280 and the upper edge 288 of the lower seatback cushion 274. Preferably, the upper movable seatback hood module 100 is thus displaceable from the neutral position N to a lowermost lowered position, where the vertical height between the lowermost lowered position and the neutral position N is about 10 mm. Preferably, the upper movable seatback hood module 100 is also displaceable from the neutral position N to an upmost raised position over a vertical gap U, where the vertical height between the lower edge 316 and the upper edge 288 and thus between the upmost raised position and the neutral position N is about 65 mm. Thus, preferably, the total vertical height H between the lower edge 316 and the upper edge 288 and thus between the upmost raised position and the lowermost lowered position is about 75 mm, thereby providing a wide range of adjustment heights to accommodate occupants of different heights and builds. That is, this embodiment provides appropriate positioning of the headrest 22 and the speakers 206 relative the occupant's head and may be customized to the particular stature of the occupant. By employing the upper moveable seatback hood module 100 of the present disclosure, with a total travel of 75 mm in the vertical direction via an electric motor 300 that moves on multiple slide rails 242, 244 that allows the upper moveable seatback hood module 100, including the headrest 22, to adjust its height to the range of occupant sizes from shortest to tallest statures, the occupant's comfort is enhanced.


In accordance with another feature of the present disclosure, the headrest 22 and speakers 206 are thus placed precisely at the lower ear level of the occupant to enhance the occupant's listening experience and sense of own space. By packaging the speaker assembly 196 in the upper moveable seatback hood module 100, sound and music may be enjoyed close to the occupant's ears and within a central recess 114 of the upper moveable seatback hood module 100 assembly. The acoustics are maximized by the sound waves having short distances to travel. This proximity creates an occupant experience of “live” sounds and clear listening. Particularly in combination with the built-in resonance cavity 202 below the speaker openings 198, 200 and the dual passive radiators 224, 226 positioned at the rear and bottom of the resonance cavity 202, the headrest 22 and speakers 206 location has been found to be optimal for best listening and acoustics.


Further, the disclosed sound system provides to the occupant of the vehicle seating assembly 10 the ability to engage in private communications without using the main cabin speaker system. That is, during the use of integrated, hands-free mobile telephone conversations and vehicle systems that provide text reading capabilities during vehicle operation, the speaker assembly 196 disposed just behind the ears of the occupant allows for lower volumes and thus a more private telephone conversation or text reading experience.


Moreover, it will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the terms “coupled” in all of its forms, couple, coupling, coupled, etc. and “connected” in all of its forms, connect, connecting, connected, etc. generally means the joining of two components electrical or mechanical directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components electrical or mechanical and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


For purposes of this disclosure, the term “operably connected” generally means that one component functions with respect to another component, even if there are other components located between the first and second component, and the term “operable” defines a functional relationship between components.


It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc. without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown in multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of the wide variety of materials that provide sufficient strength or durability, in any of the wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is to be understood that variations and modifications can be made on the aforementioned structure and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A vehicle seating assembly for a motor vehicle having a lower seat and a seatback extending upwardly from the lower seat, the seatback comprising: a lower stationary seatback base portion further comprising a seatback frame assembly;an upper movable seatback hood module vertically adjustable relative the lower stationary portion, the upper movable seatback hood module further comprising an upper seatback slide bracket;a plurality of rail guides mounted to one of the seatback frame assembly or the upper seatback slide bracket and a slide rail mounted to the other of the seatback frame assembly or the upper seatback slide bracket, the plurality of rail guides engaging the slide rail; andan electric motor drive unit mounted to one of the seatback frame assembly or the upper seatback drive bracket, and a driven member mounted to the other of the seatback frame assembly or the upper seatback slide bracket, wherein the electric motor drive unit engages the driven member to vertically adjust the upper movable seatback hood module relative the lower stationary portion when the electric motor drive unit is actuated,wherein the lower stationary seatback base portion comprises a forward facing surface and a rearward facing surface, the forward facing surface comprising a lower seatback front cushion having an outer covering and the rearward facing surface comprising a lower back panel extending upwardly relative the lower stationary seatback base portion, andthe upper movable seatback hood module comprises a forward facing hood covering, an upper closeout panel attached to a bottom portion of the upper movable seatback hood module beneath the forward facing hood covering, and a rearward facing hood back panel; andwherein the upper closeout panel extends downwardly behind and below an upper edge of the lower seatback front cushion when the upper movable seatback hood module is moved to an upmost raised position and the rearward facing hood back panel extends downwardly below an upper edge of the upwardly extending lower back panel when the upper movable seatback hood module is moved to the upmost raised position.
  • 2. The vehicle seating assembly of claim 1, wherein a headrest is integrated into the upper movable seatback hood module.
  • 3. The vehicle seating assembly of claim 2, wherein the headrest is received within a headrest cup disposed on the forward facing surface of the upper movable seatback hood module.
  • 4. The vehicle seating assembly of claim 3, wherein the upper movable seatback hood module further comprises a speaker assembly mounted in the headrest cup, and a resonance cavity formed proximate the headrest cup within which the speaker assembly is received.
  • 5. The vehicle seating assembly of claim 1, wherein the electric motor drive unit is mounted on the seatback frame assembly and the driven member is mounted on the upper seatback slide bracket.
  • 6. The vehicle seating assembly of claim 1, wherein the electric motor drive unit is mounted on the upper seatback slide bracket and the driven member is mounted on the seatback frame assembly.
  • 7. The vehicle seating assembly of claim 1, wherein the driven member is a motor nut and the electric motor drive unit further comprises an electric motor with a threaded output shaft that engages the motor nut.
  • 8. The vehicle seating assembly of claim 1, wherein a forward portion of the lower stationary seatback base portion comprises the forward facing surface, the lower seatback front cushion and the seatback frame assembly, wherein the upper closeout panel extends downwardly and is vertically displaceable within a space defined between the forward facing surface and the seatback frame assembly.
  • 9. The vehicle seating assembly of claim 1, wherein the upper movable seatback hood module has a neutral position and wherein when the upper movable seatback hood module is the neutral position, a vertical gap of about 10 mm is defined between a lower edge of the forward facing hood covering and the upper edge of the lower seatback cushion member.
  • 10. The vehicle seating assembly of claim 9, wherein the upper movable seatback hood module is displaceable from the neutral position to an upmost raised position, and wherein a vertical displacement between the upmost raised position and the neutral position is about 65mm, and wherein the upper movable seatback hood module is displaceable from the neutral position to a lowermost lowered position, and wherein a vertical displacement between the lowermost lowered position and the neutral position is about 10 mm.
  • 11. The vehicle seating assembly of claim 1, wherein the upper movable seatback hood module is displaceable between the upmost raised position and a lowermost lowered position, and wherein the vertical displacement between the upmost raised position and the lowermost lowered position is about 75 mm.
  • 12. A seatback for a motor vehicle comprising an upper hood vertically adjustable relative a lower portion, a plurality of rail guides slidably engaging a rail, a motor mounted to a lower portion frame or an upper seatback slide bracket, and a driven member mounted to the other of the lower portion frame or the upper seatback slide bracket, wherein the motor engages the driven member to vertically adjust the upper hood relative the lower portion; wherein the lower portion has a seatback frame assembly and the plurality of rail guides is mounted to one of the seatback frame assembly or the upper seatback slide bracket and the rail is mounted to the other of the seatback frame assembly or the upper seatback slide bracket, the plurality of rail guides slidably engaging the rail; andwherein a pair of rails are mounted to a forward facing surface of the seatback frame assembly, each of the pair of rails having a base in parallel relation with the forward facing surface of the seatback frame assembly, a pair of cooperating legs extending orthogonally from the base and a pair of opposing tabs extending orthogonally from the legs in a plane parallel to the base.
  • 13. The seatback of claim 12, wherein the plurality of rail guides are mounted to a rearward facing surface of the upper seatback slide bracket in a pair of rows on opposite sides of the rearward facing surface of the upper seatback slide bracket relative a centerline thereof, each of the rail guides having a base in parallel relation with the rearward facing surface of the upper seatback slide bracket and a pair of ears extending outwardly from the base, the pair of ears being displaced from the rearward facing surface of the upper seatback slide bracket and slidingly engaged on either side by the opposing tabs of the rails.
  • 14. The seatback of claim 12, wherein the motor is mounted on the seatback frame assembly and the driven member is mounted on the upper seatback slide bracket.
  • 15. A vehicle seating assembly for a motor vehicle comprising: a lower seat; anda seatback extending upwardly from the lower seat, wherein the seatback comprises a lower seatback base portion supported by a seatback frame assembly, an upper movable seatback hood module vertically adjustable relative the lower portion supported by a front upper slide bracket in cooperation with a rear upper seatback slide bracket, a plurality of rail guides mounted to one of the seatback frame assembly or the rear upper seatback slide bracket and a slide rail mounted to the other of the seatback frame assembly or the rear upper seatback slide bracket, the plurality of rail guides slidably engaging the slide rail; andan electric motor drive unit mounted on one of the seatback frame assembly or the rear upper seatback slide bracket, and operatively coupled with the other of the seatback frame assembly or the rear upper seatback slide bracket, wherein the electric motor drive unit vertically adjusts the upper movable seatback hood module relative the lower stationary portion when the electric motor drive unit is actuated,wherein the seatback further comprises an upper seatback base bracket attached to a forward facing surface of an upper portion of the seatback frame assembly and the pair of slide rails are mounted in abutting relation with a forward facing surface of the upper seatback base bracket, and wherein the plurality of rail guides are mounted to a rearward facing surface of the rear upper seatback slide bracket in a pair of rows on opposite sides of the rearward facing surface of the rear upper seatback slide bracket relative a centerline thereof, each of the rail guides slidingly engaging one of the slide rails.
  • 16. The vehicle seating assembly of claim 15, wherein the upper seatback base bracket comprises the pair of slide rails attached to the forward facing surface of the upper portion of the seatback frame assembly on each side relative the centerline of the seatback frame assembly.
US Referenced Citations (279)
Number Name Date Kind
771773 Feely Oct 1904 A
2272505 Biggs Feb 1942 A
2661050 Felter Dec 1953 A
2725921 Markin Dec 1955 A
2958369 Pitts et al. Nov 1960 A
3403938 Cramer et al. Oct 1968 A
3512605 McCorkle May 1970 A
3550953 Neale Dec 1970 A
3833257 Dove Sep 1974 A
3880462 Mednick Apr 1975 A
3880463 Shephard Apr 1975 A
3929374 Hogan et al. Dec 1975 A
4027112 Heppner et al. May 1977 A
4058342 Ettridge Nov 1977 A
4205877 Ettridge Jun 1980 A
4324431 Murphy et al. Apr 1982 A
4334709 Akiyama et al. Jun 1982 A
4353595 Kaneko et al. Oct 1982 A
4440443 Nordskog Apr 1984 A
4518201 Wahlmann et al. May 1985 A
4541669 Goldner Sep 1985 A
2609221 Bottcher Sep 1986 A
4609221 Bottcher Sep 1986 A
4616874 Pietsch et al. Oct 1986 A
4629248 Mawbey Dec 1986 A
4638884 Lee Jan 1987 A
4664444 Murphy May 1987 A
4720141 Sakamoto et al. Jan 1988 A
4752982 Jones et al. Jun 1988 A
4767155 Kousaka et al. Aug 1988 A
4915447 Shovar Apr 1990 A
5104189 Hanai et al. Apr 1992 A
5108150 Stas et al. Apr 1992 A
5112018 Wahls May 1992 A
5120109 Rangoni Jun 1992 A
5145232 Dal Monte Sep 1992 A
5171062 Courtois Dec 1992 A
5174526 Kanigowski Dec 1992 A
5203608 Tame Apr 1993 A
5344211 Adat Sep 1994 A
5364164 Kuranami Nov 1994 A
5370443 Maruyama Dec 1994 A
5518294 Ligon, Sr. et al. May 1996 A
5560681 Dixon Oct 1996 A
5597203 Hubbard Jan 1997 A
5658050 Lorbiecki May 1997 A
5647635 Aumond et al. Jul 1997 A
5690387 Sarti Nov 1997 A
5692802 Aufrere et al. Dec 1997 A
5755493 Kodaverdian May 1998 A
5758924 Vishey Jun 1998 A
5769489 Dellanno Jun 1998 A
5823620 Le Caz Oct 1998 A
5826938 Yanase et al. Oct 1998 A
5836648 Karschin et al. Nov 1998 A
5836651 Szerdahelyi Nov 1998 A
5868450 Hashimoto Feb 1999 A
5887071 House Mar 1999 A
5902014 Dinkel et al. May 1999 A
5913568 Brightbill et al. Jun 1999 A
5951039 Severinski et al. Sep 1999 A
5979985 Bauer et al. Nov 1999 A
6024406 Charras et al. Feb 2000 A
6062642 Sinnhuber et al. May 2000 A
6079781 Tilley Jun 2000 A
6109690 Wu et al. Aug 2000 A
6145925 Eksin et al. Nov 2000 A
6155593 Kimura et al. Dec 2000 A
6179379 Andersson Jan 2001 B1
6189966 Faust et al. Feb 2001 B1
6196627 Faust et al. Mar 2001 B1
6206466 Komatsu Mar 2001 B1
6217062 Breyvogel et al. Apr 2001 B1
6220661 Peterson Apr 2001 B1
6224150 Eksin et al. May 2001 B1
6296308 Cosentino et al. Oct 2001 B1
6312050 Eklind Nov 2001 B1
6364414 Specht Apr 2002 B1
6375269 Maeda et al. Apr 2002 B1
6394525 Seibold May 2002 B1
6394546 Knoblock et al. May 2002 B1
6454353 Knaus Sep 2002 B1
6523892 Kage et al. Mar 2003 B1
6530622 Ekern Mar 2003 B1
6550856 Ganser et al. Apr 2003 B1
6565150 Fischer et al. May 2003 B2
6619605 Lambert Sep 2003 B2
6682140 Minuth et al. Jan 2004 B2
6695406 Plant Feb 2004 B2
6698832 Boudinot Mar 2004 B2
6736452 Aoki et al. May 2004 B2
6758522 Ligon, Sr. et al. Jul 2004 B2
6808230 Buss et al. Oct 2004 B2
6824212 Malsch et al. Nov 2004 B2
6848742 Aoki et al. Feb 2005 B1
6860559 Schuster, Sr. et al. Mar 2005 B2
6860564 Reed et al. Mar 2005 B2
6866339 Itoh Mar 2005 B2
6869140 White et al. Mar 2005 B2
6890029 Svantesson May 2005 B2
6908151 Meeker et al. Jun 2005 B2
6938953 Haland et al. Sep 2005 B2
6955399 Hong Oct 2005 B2
6962392 O'Connor Nov 2005 B2
6975737 Hirao Dec 2005 B2
6988770 Witchie Jan 2006 B2
6991289 House Jan 2006 B2
6997473 Tanase et al. Feb 2006 B2
7040699 Curran et al. May 2006 B2
7100992 Bargheer et al. Sep 2006 B2
7131694 Buffa Nov 2006 B1
7140682 Jaeger et al. Nov 2006 B2
7159934 Farquhar et al. Jan 2007 B2
7159938 Shiraishi Jan 2007 B1
7162048 Shims Jan 2007 B2
7185950 Pettersson et al. Mar 2007 B2
7213876 Stoewe May 2007 B2
7216915 Kammerer et al. May 2007 B2
7229118 Saberan et al. Jun 2007 B2
7261371 Thunissen et al. Aug 2007 B2
7344189 Reed et al. Mar 2008 B2
7350859 Klukowski Apr 2008 B2
7350865 Pearse Apr 2008 B2
7393005 Inazu et al. Jul 2008 B2
7425034 Bajic et al. Sep 2008 B2
7441838 Patwardhan Oct 2008 B2
7445287 Chou Nov 2008 B2
7467823 Hartwich Dec 2008 B2
7478869 Lazanja et al. Jan 2009 B2
7481489 Demick Jan 2009 B2
7506924 Bargheer et al. Mar 2009 B2
7506938 Brennan et al. Mar 2009 B2
7523888 Ferry et al. Apr 2009 B2
7530633 Yokota et al. May 2009 B2
7543888 Kuno Jun 2009 B2
7559607 Archambault Jul 2009 B2
7578552 Bajic et al. Aug 2009 B2
7578554 Lee et al. Aug 2009 B2
7597398 Lindsay Oct 2009 B2
7614693 Ito Nov 2009 B2
7637568 Meeker et al. Dec 2009 B2
7641281 Grimm Jan 2010 B2
7668329 Matsuhashi Feb 2010 B2
7669925 Beck et al. Mar 2010 B2
7669928 Snyder Mar 2010 B2
7686394 Nishikawa Mar 2010 B2
7712833 Ueda May 2010 B2
7717459 Bostrom et al. May 2010 B2
7726733 Balser et al. Jun 2010 B2
7735932 Lazanja et al. Jun 2010 B2
7752720 Smith Jul 2010 B2
7753451 Maebert et al. Jul 2010 B2
7775602 Lazanja et al. Aug 2010 B2
7784863 Fallen Aug 2010 B2
7802843 Andersson et al. Sep 2010 B2
7819470 Humer et al. Oct 2010 B2
7823971 Humer et al. Nov 2010 B2
7845729 Yamada Dec 2010 B2
7857381 Humer et al. Dec 2010 B2
7871126 Becker et al. Jan 2011 B2
7891701 Tracht et al. Feb 2011 B2
7909360 Marriott et al. Mar 2011 B2
7931294 Okada et al. Apr 2011 B2
7931330 Ito et al. Apr 2011 B2
7946649 Galbreath et al. May 2011 B2
7954897 Kidokoro Jun 2011 B2
7963553 Huynh et al. Jun 2011 B2
7963595 Io et al. Jun 2011 B2
7963600 Alexander et al. Jun 2011 B2
7966835 Petrovski Jun 2011 B2
7967379 Walters et al. Jun 2011 B2
7971931 Lazanja et al. Jul 2011 B2
7971937 Ishii et al. Jul 2011 B2
8011726 Omori et al. Sep 2011 B2
8013655 Ito et al. Sep 2011 B2
8016355 Ito et al. Sep 2011 B2
8029055 Hartlaub Oct 2011 B2
8038222 Lein et al. Oct 2011 B2
8075053 Tracht et al. Dec 2011 B2
8109569 Mitchell Feb 2012 B2
8123246 Gilbert et al. Feb 2012 B2
8128167 Zhong et al. Mar 2012 B2
8130987 Kaneda et al. Mar 2012 B2
8162391 Lazanja et al. Apr 2012 B2
8162397 Booth et al. Apr 2012 B2
8167370 Arakawa et al. May 2012 B2
8199940 Yokota Jun 2012 B2
8201886 Maierhofer Jun 2012 B2
8210568 Ryden et al. Jul 2012 B2
8210605 Hough et al. Jul 2012 B2
8210611 Aldrich et al. Jul 2012 B2
8226165 Mizoi Jul 2012 B2
8297708 Mizobata et al. Oct 2012 B2
8342607 Hofmann et al. Jan 2013 B2
8408646 Harper et al. Apr 2013 B2
8516842 Petrovski Aug 2013 B2
8579373 Pradier Nov 2013 B2
9126508 Line et al. Sep 2015 B2
9566884 Line Feb 2017 B2
9616776 Kondrad Apr 2017 B1
9809131 Line Nov 2017 B2
20040195870 Bohlender et al. Oct 2004 A1
20050200166 Noh Sep 2005 A1
20060043777 Friedman et al. Mar 2006 A1
20070120401 Minuth et al. May 2007 A1
20070200398 Wolas et al. Aug 2007 A1
20080174159 Kojima et al. Jul 2008 A1
20080231099 Szczepkowski et al. Sep 2008 A1
20080292117 Guenther Nov 2008 A1
20090039690 Simon et al. Feb 2009 A1
20090066122 Minuth et al. Mar 2009 A1
20090165263 Smith Jul 2009 A1
20090322124 Barkow et al. Dec 2009 A1
20100026066 Graber et al. Feb 2010 A1
20100038937 Andersson et al. Feb 2010 A1
20100140986 Sawada Jun 2010 A1
20100148550 Kidd Jun 2010 A1
20100171346 Laframboise et al. Jul 2010 A1
20100187881 Fujita et al. Jul 2010 A1
20100201167 Wieclawski Aug 2010 A1
20100231013 Schlenker Sep 2010 A1
20100259081 Kuno Oct 2010 A1
20100270840 Tanaka et al. Oct 2010 A1
20100301650 Hong Dec 2010 A1
20100320816 Michalek Dec 2010 A1
20110018498 Soar Jan 2011 A1
20110074185 Nakaya et al. Mar 2011 A1
20110095513 Tracht et al. Apr 2011 A1
20110095578 Festag Apr 2011 A1
20110109128 Axakov et al. May 2011 A1
20110109217 Park et al. May 2011 A1
20110121624 Brncick et al. May 2011 A1
20110133525 Oota Jun 2011 A1
20110163574 Tame et al. Jul 2011 A1
20110163583 Zhong et al. Jul 2011 A1
20110186560 Kennedy et al. Aug 2011 A1
20110187174 Tscherbner Aug 2011 A1
20110235832 Riopel Sep 2011 A1
20110254335 Pradier et al. Oct 2011 A1
20110260506 Kuno Oct 2011 A1
20110272548 Rudkowski et al. Nov 2011 A1
20110272978 Nitsuma Nov 2011 A1
20110278885 Procter et al. Nov 2011 A1
20110278886 Nitsuma Nov 2011 A1
20110298261 Holt et al. Dec 2011 A1
20120032486 Baker et al. Feb 2012 A1
20120037754 Kladde Feb 2012 A1
20120063081 Grunwald Mar 2012 A1
20120080914 Wang Apr 2012 A1
20120091695 Richez et al. Apr 2012 A1
20120091766 Yamaki et al. Apr 2012 A1
20120091779 Chang et al. Apr 2012 A1
20120109468 Baumann et al. May 2012 A1
20120119551 Brncick et al. May 2012 A1
20120125959 Kucera May 2012 A1
20120127643 Mitchell May 2012 A1
20120129440 Kitaguchi et al. May 2012 A1
20120162891 Tranchina et al. Jun 2012 A1
20120175924 Festag et al. Jul 2012 A1
20120187729 Fukawatase et al. Jul 2012 A1
20120248833 Hontz et al. Oct 2012 A1
20120261974 Yoshizawa et al. Oct 2012 A1
20130076092 Kulkarni et al. Mar 2013 A1
20130285426 Arant et al. Oct 2013 A1
20140203606 Line et al. Jul 2014 A1
20140203610 Line et al. Jul 2014 A1
20140203617 Line et al. Jul 2014 A1
20140270322 Silverstein Sep 2014 A1
20140300167 Datta Oct 2014 A1
20140334638 Barksdale et al. Nov 2014 A1
20140355783 Subat Dec 2014 A1
20140355793 Dublin et al. Dec 2014 A1
20150165935 Sachs et al. Jun 2015 A1
20150201260 Oswald et al. Jul 2015 A1
20160039320 Subat et al. Feb 2016 A1
20160137106 Subat et al. May 2016 A1
20160159260 Subat Jun 2016 A1
20160257227 Takada et al. Sep 2016 A1
20160522430 Fujita et al. Sep 2016
Foreign Referenced Citations (31)
Number Date Country
102006061226 Jun 2008 DE
102012006074 Nov 2012 DE
627339 Dec 1994 EP
0670240 Feb 1995 EP
754590 Jan 1997 EP
0594526 Mar 1997 EP
926969 Jan 2002 EP
1266794 Mar 2004 EP
1123834 Oct 2004 EP
1050429 Oct 2005 EP
1084901 Jun 2006 EP
1674333 Aug 2007 EP
1950085 Dec 2008 EP
1329356 Nov 2009 EP
2565070 Mar 2013 EP
2008189176 Aug 2008 JP
201178557 Apr 2011 JP
2011098588 May 2011 JP
2011251573 Dec 2011 JP
1020080066428 Jul 2008 KR
1020110051692 May 2011 KR
101180702 Sep 2012 KR
9511818 May 1995 WO
9958022 Nov 1999 WO
2006131189 Dec 2006 WO
2007028015 Aug 2007 WO
2008019981 Feb 2008 WO
2008073285 Jun 2008 WO
2010096307 Aug 2010 WO
2011021952 Feb 2011 WO
2012008904 Jan 2012 WO
Non-Patent Literature Citations (9)
Entry
M. Grujicic et al., “Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger-vehicle occupants,” Materials and Design 30 (2009) 4273-4285.
“Thigh Support for Tall Drivers,” http://cars.about.com/od/infiniti/ig/2009-Inifiniti-G37-Coupe-pics/2008-G37-cpe-thigh-support.htm (1 page).
Mladenov, “Opel Insignia Receives Seal of Approval for Ergonomic Seats,” published Aug. 27, 2008, http://www.automobilesreview.com/auto-news/opel-insignia-receives-seal-of-approval-for-ergonomic-seats/4169/ (2 pages).
Brose India Automotive Systems, “Adaptive Sensor Controlled Headrest,” http://www.indiamart.com/broseindiaautomotivesystems/products.html, Oct. 9, 2012 (12 pages).
ecoustics.com, “Cineak Motorized Articulating Headrest Preview,” http://www.ecoustics.com/ah/reviews/furniture/accessories/cineak-motorized-headres, Oct. 9, 2012 (3 pages).
“‘Performance’ Car Seat Eliminates Steel,” published in Plastics News—Indian Edition Plastics & Polymer News, http://www.plasticsinformart.com/performance-car-seat-eliminates-steel/ Jan. 2012 (3 pages).
“Frankfurt 2009 Trend—Light and Layered,” by Hannah Macmurray, published in GreeenCarDesign, http://www.greencarddesign.com/site/trends/00138-frankfurt-2009-trend-light-and-layered, Sep. 2009 (9 pages).
General Motors LLC, “2013 Chevrolet Spark Owner Manual,” copyright 2012, 356 pages.
“Imola Pro-Fit,” Cobra (http://cobra.subseports.com/products/cat/seats/brand/Cobra/prodID/656), date uknown, 2 pages.
Related Publications (1)
Number Date Country
20170210256 A1 Jul 2017 US