1. Field of Invention
The present disclosure involves a device and method for dynamically regulating operating characteristics of a pump and increasing a range of optimal operating parameters. More specifically, the present disclosure relates to adjustable vanes upstream of a pump diffuser that respond to varying flow conditions allowing the pump to optimally operate at the varying conditions.
2. Description of Prior Art
Submersible pumping systems are often used in hydrocarbon producing wells for pumping fluids from within the wellbore to the surface. These fluids are generally liquids and Include produced liquid hydrocarbon as well as water. One type of system used employs an electrical submersible pump (ESP). ESPs are typically disposed at the end of a length of production tubing and have an electrically powered motor. Often, electrical power may be supplied to the pump motor via a cable. The pumping unit is usually disposed within the well bore just above where perforations are made into a hydrocarbon producing zone.
Centrifugal submersible pumps typically employ a stack of rotatable impellers and stationary diffusers, where the impellers and diffusers alternate in the stack and are arranged coaxial with one another. Passages provided through both the impellers and diffusers define a flow path through which fluid is forced while being pressurized in the pump. Maximum pump efficiency generally occurs at a particular flow rate or along a range of flow rates, where the range is typically significantly less than the operating range of flow rates. Pumps are usually designed to operate at or close to a maximum efficiency. However, fluid flow rates through a pump may change, such as due to depletion of fluids in a reservoir, so that over time a pump may not be operating at its maximum efficiency.
The present disclosure describes example embodiments of a pump that is adjustable to operate at a best efficiency at varying rates of fluid flow. In an example embodiment the pump includes art impeller and a diffuser that is generally coaxial with the impeller. Passages are included in the impeller and the diffuser, where the passages define at least a portion of a flow path. Between the impeller and diffuser is an insert that has an annulus in fluid communication with the passages and is intersected by the flow path. Vanes are included that mount in the annulus, the vanes are adjustably positioned within the annulus, so that when a position of the vanes is adjusted, an area of the flow path in the annulus is varied. Optionally, the vanes are elongate members that pivot about a line substantially transverse to the annulus. In an alternate embodiment, the vanes are elongate members that pivot about a line substantially aligned with travel of the annulus. A motor may optionally be coupled with the vanes that is used for adjustably positioning the vanes. The insert can further include an annular hub, where the hub has an inner radius circumscribing an outer radius of a portion of the impeller, and an outer radius that defines an inner radial-surface of the annulus. The insert may also include a shroud having an inner radius that defines an outer radial surface of the annulus and having a lower end in contact with an upper end of a lower diffuser and an upper end in contact with a lower end of an upper diffuser. In an example, adjusting the area of the flow path in the annulus changes a flow rate at which the pump operates at a maximum efficiency. Optionally, the passages are spaced apart from one another at angular locations around an axis of the pump; the spaced apart passages can define multiple flow paths through the pump, that are also spaced apart at angular locations around the axis of the pump. In this example an adjustable vane is provided in each of the flow paths.
Also included herein is method of pumping fluid. In an example embodiment the method includes providing a pump having an impeller, a diffuser coaxial to and adjacent the impeller, and passages in the impeller and the diffuser that are in fluid communication. The method includes rotating the impeller to urge fluid through the passages and along a flow path in the pump. The pump can be operated at a maximum efficiency by adjusting an area of the flow path in a space between the impeller and the diffuser. In one example, adjusting the area of the flow path includes providing adjustable vanes in the flow path between the impeller and the diffuser, and pivoting the vanes. Alternatively, the flow rate of fluid through the pump can be monitored, and the area of the flow path can be reduced when the flow rate decreases. In an optional embodiment, the flow rate of fluid through the pump is monitored and increased when the flow rate increases. The impeller and diffuser can each have multiple passages to define multiple flow paths. In this alternate embodiment, the area of each flow path in the space between the impeller and the diffuser can be adjusted to operate the pump at its maximum efficiency.
The present disclosure also includes a pumping system. In one example embodiment the pumping system includes an electrical submersible pump (ESP) that is made up of an impeller and a diffuser that are coaxial and adjacent one another. Passages are included-that are formed axially through the impeller aid diffuser and an insert is set between the impeller and diffuses. The insert has an annular space that is in fluid communication with the passages. The annular space and passages define a flow path through the ESP. Also included with this embodiment is a vane in the annular space, where the vane is selectively pivotable into orientations to define a restriction in the flow path. The system further includes production tubing attached to the ESP. The system can optionally further include a motor operatively coupled to the vanes for orienting the vanes. In an example, adjusting the vanes regulates flow through the ESP and varies a value of a flow rate of maximum efficiency of the pump. Adjusting the vanes can regulate flow through the ESP and may vary a range of operating flow rates of the pump. In an example embodiment, the insert further includes an annular hub with an inner radius that circumscribes an outer radius of a portion of the impeller. The hub also has an outer radius that defines an inner radial surface of the annul us. A shroud is included with this embodiment that has an inner radius defining an outer radial surface of the annulus. The shroud has a lower end in contact with an upper end of a lower diffuser and an upper end in contact with a lower end of an upper diffuser. The passages of this example are spaced apart from one another at angular locations around an axis of the pump to define multiple Sow paths through the pump spaced apart at angular locations around the axis of the pump and wherein an adjustable vane is provided in each of the flow paths.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout,
An example embodiment of a portion of a pump 30 in accordance with the present disclosure is shown in a side sectional view in
the example of
A vane 48 is shown set within the annulus 46 that in one example is a generally elongate member selectively positioned into different orientations within the annulus 46. The pump 30 is shown inserted within a tubular 49, where the tubular 49 can be a wellbore tubular and the pump 30 can be an electrical submersible pump. Optionally, the tubular 49 can be a transfer line, such as a caisson, for transmitting fluid to another location. Additional details of the vane 48 are illustrated in the side partial sectional views of
Referring now to
In
The depiction in
Pump efficiency can he affected by the cress sectional area of the flow path, including the cross sectional area of the pardon of the flow path between the impeller and diffuser. As such, selectively regulating the area of the flow path through the pump 30, such as within the area between an impeller and diffuser, can allow for operating adjustments so the pump can operate at a maximum efficiency. Referring now to
The pump head curves 601, 602, 603, also correlate to the cross sectional area of the flow path portion 52 and how it is controlled by selective positioning of the vanes 481-484. As shown, pump head curve 601 generally yields an increased pump head with increased Sow rate and thus can be shown to correspond to the configuration of the pump in
Further identified in the plot of
A plan sectional view of an example embodiment of an insert 40 is shown in
With reference now to
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. For example, pump 30, 76 is not limited to a single insert 40 therein, but instead can optionally include inserts 40 strategically positioned therein, an insert 40 between each adjacent diffuser 32 and impeller 34, or an insert 40 between a discharge of an impeller 34 and inlet to a diffuser 32. In the drawings and specification, there have been disclosed illustrative embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
This application claims priority to and the benefit of co-pending U.S. Provisional Application Ser. No. 61/527,830, filed Aug. 26, 2011, the full disclosure of which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61527830 | Aug 2011 | US |