1. Field of the Invention
The present invention relates to an adjustable wrench, and more particularly to an adjustable wrench that has a preferred structural strength and can rotate bolts of different sizes conveniently.
2. Description of Related Art
A conventional adjustable wrench comprises a handle, a fixed jaw, a rotating shaft, and a movable jaw. The fixed jaw is formed on an end of the handle and has a curved inner side. The rotating shaft is rotatably mounted in the curved inner side of the fixed jaw to rotate in an opposite direction relative to the handle. The movable jaw is slidably mounted on the end of the handle, faces the fixed jaw and the rotating shaft to hold and rotate a hexangular head of a bolt in a backward or a forward direction. Although the conventional adjustable wrench can be used to rotate bolts of different sizes in the backward or the forward direction, the rotating direction of the rotating shaft is opposite to the rotating direction of the conventional adjustable wrench when the handle is rotated in a backward direction. Then, the conventional adjustable wrench cannot rotate backwardly with a smaller range of movement.
In addition, the movable jaw of the conventional adjustable wrench does not have a structure to block the hexangular head of the bolt. When the conventional adjustable wrench is used to rotate a small-size bolt, the engaging position between the hexangular head of the small-size bolt and the jaws of the conventional adjustable wrench is deeper than the engaging position between the hexangular head of the ordinary-size bolt and the jaws of the conventional adjustable wrench. When the conventional adjustable wrench is rotated, the corners of the hexangular head of the small-size bolt may be worn and torn by the jaws of the conventional adjustable wrench. Furthermore, when a hexangular head of a bolt is rotated by the conventional adjustable wrench, and the movable jaw abuts aslant against a flat of the hexangular head of the bolt. Because an inner side of the movable jaw is flat and the inner side of the movable jaw cannot securely abut against the flat of the hexangular head of the bolt when the movable jaw abuts aslant against the flat of the hexangular head of the bolt, this may reduce the torque of the conventional adjustable wrench and cannot prevent the hexangular head of the bolt escaping from the fixed jaw and the movable jaw. Then, the user cannot rotate the hexangular head of the bolt conveniently.
To overcome the shortcomings, the present invention provides an adjustable wrench to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide an adjustable wrench that has a preferred structural strength and can rotate bolts of different sizes conveniently.
The adjustable wrench in accordance with the present invention has a wrench body, a clamping element, and a ratcheting jaw. The wrench body has a handle, a head, and a thumbscrew. The head is formed on the handle and has a connecting block, a fixed jaw, a curved slot, two pin holes, a positioning pin, a mounting recess, two pivot holes, and a sliding slot. The clamping element is movably connected to the wrench body and has a sliding bar, a ribbed slab, and a movable jaw. The sliding bar is slidably mounted in the sliding slot and engages the thumbscrew. The ribbed slab is formed on the sliding bar and is mounted in the sliding slot. The movable jaw has an engaging surface and a positioning block. The ratcheting jaw is a curved block capable of sliding forward and retracting backward inside the curved slot and has two mounting boards, a receiving recess, an engaging surface, an abutting surface, an engaging protrusion, a holding recess, and an elastic element.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
The wrench body 10 is elongated and has a handle 11, a head 12, and a thumbscrew 13. The handle 11 has a front end and a rear end. The head 12 is formed on the front end of the handle 11 and has a top side, a bottom side, two sidewalls, a connecting block 121, a fixed jaw 122, a curved slot 123, two pin holes 124, a positioning pin 125, a mounting recess 126, two pivot holes 127, and a sliding slot 128.
With reference to
The curved slot 123 is formed in the connecting block 121 and the fixed jaw 122 between the front side of the connecting block 121 and the inner side of the fixed jaw 122 to form the two sidewalls of the head 12, and has an inner surface, a forward end, and a backward end. The inner surface of the curved slot 123 is curved and may be a single curved surface or a multi-curved surface. The forward end of the curved slot 123 is formed in the front side of the connecting block 121 and is opposite to the fixed jaw 122. The backward end of the curved slot 123 is formed in the inner side of the fixed jaw 122. In the present invention, a backward end is defined as an end heading toward the backward direction during a ratcheting rotation of the head 12 in the backward direction. Opposite to the backward end, a forward end is defined as an end heading toward the forward direction while the head 12 is being rotated in the forward direction.
The pin holes 124 are respectively formed through the two sidewalls of the head 12 and communicate with the curved slot 123. The positioning pin 125 may be a rivet or a screw and is inserted through the pin holes 124 and the curved slot 123. The mounting recess 126 may be rectangular and is formed through the top side and the bottom side of the connecting block 121 and has two opposite inner sides. The opposite inner sides of the mounting recess 126 face to each other. The pivot holes 127 are respectively formed through the opposite inner sides of the mounting recess 126, are formed through the connecting block 121, and align with each other.
The sliding slot 128 is formed through the front side of the connecting block 121, communicates with the curved slot 123 and the mounting recess 126, and has a bar-shaped slot 1281 and a board-shaped slot 1282. The bar-shaped slot 1281 is formed through the connecting block 121, communicates with the mounting recess 126, and has a width. The board-shaped slot 1282 is formed through the front side of the connecting block 121, communicates with the curved slot 123 and the bar-shaped slot 1281, and has a width. The width of the board-shaped slot 1282 is narrower than the width of the bar-shaped slot 1281.
The thumbscrew 13 is rotatably mounted in the mounting recess 126 of the head 12, extends into the bar-shaped slot 1281 of the sliding slot 128, and has an axial line B and a pivot rod 131. The pivot rod 131 is axially mounted in and extends through the thumbscrew 13 along the axial line B, and is mounted in the pivot holes 127 of the head 12 via the mounting recess 126 to enable the thumbscrew 13 to be rotatably mounted in the head 12. With reference to
The clamping element 20 is movably connected to the wrench body 10 and has a rear end, a front end, a sliding bar 21, a ribbed slab 22, and a movable jaw 23.
The sliding bar 21 is formed on the rear end of the clamping element 20, is slidably mounted in the bar-shaped slot 1281 of the sliding slot 128, engages the thumbscrew 13, and has a rear side, a front side and multiple teeth 211. The teeth 211 are formed on and protrude from the rear side of the sliding bar 21, are spaced apart at intervals, extend into the mounting recess 126 and engage the thumbscrew 13 to enable the sliding bar 21 to move relative to the head 12 when the thumbscrew 13 is rotated relative to the head 12.
The ribbed slab 22 is formed on and protrudes from the front side of the sliding bar 21, is mounted in the board-shaped slot 1282 of the sliding slot 128 and has a front side and an inner side. The front side of the ribbed slab 22 extends out of the front side of the connecting block 121 via the board-shaped slot 1282 of the sliding slot 128. The inner side of the ribbed slab 22 faces the curved slot 123 of the head 12.
The movable jaw 23 is formed on and protrudes from the front side of the ribbed slab 22 opposite to the sliding bar 21, faces the fixed jaw 122 to hold and rotate a hexangular head 50 of a bolt and has a rear end, a front end, an inner side, an engaging surface 231, a limiting protrusion 232, a front notch 233, a positioning block 234, two contacting faces 235, a rear notch 236, and multiple limiting notches 237. The rear end of the movable jaw 23 is formed on and protrudes from the front side of the ribbed slab 22.
The engaging surface 231 is formed on the inner side of the movable jaw 23 between the rear end and the front end of the movable jaw 23, faces the inner side of the fixed jaw 122 and the curved slot 123 and has a normal line C perpendicular to the engaging surface 231 as shown in
The limiting protrusion 232 is formed on the front end of the movable jaw 23. The front notch 233 is formed in the inner side of the movable jaw 23 between the limiting protrusion 232 and the engaging surface 231 of the movable jaw 23. With reference to
The ratcheting jaw 30 is a curved block capable of sliding forward and retracting backward inside the curved slot 123 of the head 12 and has a backward area, a forward area, an outer surface, an inner surface, a front portion, a rear portion, two mounting boards 31, a receiving recess 32, an inner notch 33, an engaging surface 34, an abutting surface 35, an engaging protrusion 36, a holding recess 37, and an elastic element 38. The backward area of the ratcheting jaw 30 is defined within the ratcheting jaw 30 as an area heading toward the backward direction during a ratcheting rotation of the head 12 in the backward direction. Opposite to the backward area, the forward area of the ratcheting jaw 30 is defined within the ratcheting jaw 30 as an area heading toward the forward direction while the head 12 is being rotated in the forward direction.
The outer surface of the ratcheting jaw 30 has a shape that corresponds to the inner surface of the curved slot 123 to allow the ratcheting jaw 30 to slide inside the curved slot 123 of the head 12. The inner surface of the ratcheting jaw 30 faces the inner side of the movable jaw 23 to enable the hexangular head 50 of the bolt to be held between the inner surface of the ratcheting jaw 30 and the inner side of the movable jaw 23.
The two mounting boards 31 are formed on the rear portion of the ratcheting jaw 30, are spaced apart at an interval, are parallel with each other, and are slidably mounted in the curved slot 123 of the head 12. Each one of the mounting boards 31 has a top face, a bottom face, a front side, a guide hole 311, and a pressing protrusion 312. The guide hole 311 is a curved hole, is formed through the top face and the bottom face of the mounting board 31, aligns with the guide hole 311 of the other mounting board 31, and has a backward area and a forward area. The backward area of the guide hole 311 is defined within the guide hole 311 as an area heading toward the backward direction during a ratcheting rotation of the head 12 in the backward direction. Opposite to the backward area, the forward area of the guide hole 311 is defined within the guide hole 311 as an area heading toward the forward direction while the head 12 is being rotated in the forward direction. The positioning pin 125 is mounted through the guide holes 31 via the pin holes 124. More precisely, the positioning pin 125 is mounted through the curved slot 123 and the forward areas of the guide holes 311 of the mounting boards 31. The pressing protrusion 312 is formed on and protrudes from the front side of the mounting board 31.
The receiving recess 32 is formed in the ratcheting jaw 30 between the two mounting boards 31 and communicates with guide holes 311 of the two mounting boards 31. In addition, when the ratcheting jaw 30 is slidably moved toward the clamping element 20, the receiving recess 32 is disposed around the ribbed slab 22 to prevent the two mounting boards 31 from interfering with and impacting on the clamping element 20. The inner notch 33 is formed in the inner surface of the ratcheting jaw 30 at the front portion of the ratcheting jaw 30 adjacent to the two mounting boards 31. The engaging surface 34 is formed on the inner surface of the ratcheting jaw 30 adjacent to the inner notch 33, and is opposite to the two mounting boards 31.
The abutting surface 35 is formed aslant on and protrudes from the inner surface of the ratcheting jaw 30 adjacent to the engaging surface 34, and is opposite to the inner notch 33. The engaging protrusion 36 is formed in the inner surface of the ratcheting jaw 30 between the engaging surface 34 and the abutting surface 35. With reference to
The holding recess 37 is formed in the rear portion of the ratcheting jaw 30, communicates with the receiving recess 32 and the two guide holes 311, and has a closed inner end. The elastic element 38 may be a spring or an elastic sheet, is mounted in the holding recess 37, and has two ends. The two ends of the elastic element 38 respectively abut the closed inner end of the holding recess 37 and the positioning pin 125.
With reference to
In the present invention, the ribbed slab 22 is formed between the sliding bar 21 and the movable jaw 23 to increase the structural strength of the clamping element 20, and the receiving recess 32 is formed in the ratcheting jaw 30 between the two mounting boards 31 to prevent the two mounting boards 31 from interfering with and impacting on the clamping element 20 when the clamping element 20 is moved toward the fixed jaw 122 or when the ratcheting jaw 30 is slidably moved toward the clamping element 20 relative to the fixed jaw 122.
In the present invention, we define that a bolt is rotated to be fastened in a forward direction, for example, clockwise, and is rotated to be loosened in a counterclockwise direction as shown in
When the hexangular head 50 of the bolt is mounted between the fixed jaw 122, the movable jaw 23, and the ratcheting jaw 30, the user can rotate the thumbscrew 13 to enable the movable jaw 23 to move toward the hexangular head 50 of the bolt. Then, two of the flats of the hexangular head 50 can be respectively pressed between the engaging surface 231 of the movable jaw 23 and the engaging protrusion 36 of the ratcheting jaw 30. In addition, the front side of the ribbed slab 22 and the inner side of the positioning block 234 are pressed against a flat that is formed at a rear side of the hexangular head 50 of the bolt. When the movable jaw 23 abuts against the hexangular head 50 of the bolt, the angle α is formed between the engaging surface 231 and the hexangular head 50 of the bolt as shown in
The adjustable wrench in accordance with the present invention can be applied to the hexangular heads 50 of bolts of different sizes. Preferably, the adjustable wrench can be applied to the hexangular heads 50 of bolts of the size more than 6 millimeters. With reference to
When the user rotates the head 12 in a clockwise direction to fasten the bolt, the hexangular head 50 of the bolt is rotated in the same direction. Because the length percentage (E/L) of the engaging protrusion 36 contacting and engaging the hexangular heads 50 is between 30% and 90% of the total length L of the corresponding flat of the hexangular head 50, the hexangular head 50 of the bolt can be rotated smoothly in a clockwise direction. During the rotating process, the corners of the hexangular head 50 are respectively moved at the notches 233, 236, 33 and this can prevent the corners of the hexangular head 50 from knocking against the jaws 23, 30.
With reference to
During the above-mentioned rotating process (the head 12 is rotated in a counterclockwise direction), the front notch 233 can press and push the corner of the hexangular head 50 to move inwardly to the rear end of the movable jaw 23 and can prevent the hexangular head 50 from slipping out of the jaws 23, 30. In addition, when the hexangular head 50 is rotated with the movable jaw 23 and the ratcheting jaw 30, the corners of the hexangular head 50 can escape from direct contact with the movable jaw 23 and the ratcheting jaw 30, thereby preventing wearing and tearing by the jaws 23, 30. After rotating the head 12 backwardly in a counterclockwise direction, the user can rotate the head 12 forwardly in a clockwise direction to enable the engaging protrusion 36 of the ratcheting jaw 30 and the engaging surface 231 of the movable jaw 23 to press the flats of the hexangular head 50, and enable the front side of the ribbed slab 22 and the inner side of the positioning block 234 to press against a flat that is formed at a rear side of the hexangular head 50 of the bolt. Then, the head 12 can be rotated again in a clockwise direction by the user to rotate the hexangular head 50 of the bolt.
With reference to
With reference to
During the above-mentioned rotating process (the head 12 is rotated in a counterclockwise direction), the limiting notch 237 can press and push the corner of the small-size hexangular head 60 to move inwardly to the rear end of the movable jaw 23 and can prevent the small-size hexangular head 60 from slipping out of the jaws 23, 30. In addition, the inner notch 33 and the rear notch 236 also can be used to accommodate passing of the corners of the small-size hexangular head 60 to avoid direct contact with the movable jaw 23 and the ratcheting jaw 30 when the small-size hexangular head 60 is rotated with jaws 23, 30, and this can prevent the corners of the small-size hexangular head 60 from wearing and tearing by the jaws 23, 30. After rotating the head 12 backwardly in a counterclockwise direction, the user can rotate the head 12 forwardly in a clockwise direction to enable the engaging protrusion 36 of the ratcheting jaw 30 and the engaging surface 231 of the movable jaw 23 to press the flats of the small-size hexangular head 60, and enable the front side of the ribbed slab 22 to press against a flat that is formed at a rear side of the small-size hexangular head 60 of the bolt. Then, the head 12 can be rotated again in a clockwise direction by the user to rotate the small-size hexangular head 60 of the bolt.
With further reference to
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and features of the invention, the disclosure is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the tee ins in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
103133492 | Sep 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4706528 | Inoue | Nov 1987 | A |
7827887 | Lee | Nov 2010 | B2 |
8408101 | Liu | Apr 2013 | B2 |
20030154830 | Wu | Aug 2003 | A1 |
20030183048 | Olsen | Oct 2003 | A1 |
20040031359 | Kady | Feb 2004 | A1 |
20090193941 | Chiu | Aug 2009 | A1 |
20100071516 | Wu | Mar 2010 | A1 |
20110146463 | Stanton | Jun 2011 | A1 |
20110277599 | Liu | Nov 2011 | A1 |
20110277600 | Liu | Nov 2011 | A1 |
20110308360 | Hu | Dec 2011 | A1 |
20130055859 | Wu | Mar 2013 | A1 |
20130068071 | Chen | Mar 2013 | A1 |
20130192428 | Chen | Aug 2013 | A1 |
20130239758 | Yang | Sep 2013 | A1 |
20130327187 | Hu | Dec 2013 | A1 |
20140007745 | Wu | Jan 2014 | A1 |
20140318326 | Lin | Oct 2014 | A1 |
20150059536 | Pahng | Mar 2015 | A1 |
20160059393 | Chern | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
3181599 | Feb 2013 | JP |
EP 2896483 | Jul 2015 | TW |
Number | Date | Country | |
---|---|---|---|
20160089770 A1 | Mar 2016 | US |