The subject matter of the instant Application is related to that of the following U.S. patents: (1) U.S. Pat. No. 5,587,620 by Ruby et al., entitled “Tunable Thin Film Acoustic Resonators and Method for Making the Same”, issued 24 Dec. 1996, and assigned to Agilent Technologies, Inc., (2) U.S. Pat. No. 5,873,153 by Ruby et al., entitled “Method of Making Tunable Thin Film Acoustic Resonators”, issued 23 Feb. 1999, and assigned to Agilent Technologies, Inc., and (3) U.S. Pat. No. 6,060,818 by Ruby et al., entitled “SBAR Structures and Method of Fabrication of SBAR.FBAR Film Processing Techniques for the Manufacturing of SBAR/BAR Filters”, issued 9 May 2000, and assigned to Agilent Technologies, Inc. These patents describe basic techniques for fabricating tunable thin film acoustic resonators, which techniques include components of the representative embodiments described below. Accordingly, each of the above-referenced U.S. patents is incorporated by reference in its entirety herein.
Numerous modern electronic devices from the simple wrist watch to the more sophisticated computer servers depend upon the generation of one or more clock or oscillator signals. To meet the needs of various applications, the signals generated must be accurate and stable. In addition, the operational frequencies of the generated signals must not significantly deviate with changes in temperature from the design frequency.
Essentially all cell phones, computers, microwave ovens, and numerous other electronic products use a quartz crystal resonator to generate a reference signal at a pre-selected frequency which is typically around 20 MHz. Such oscillators are referred to as crystal-controlled oscillators. The gates in these products are “clocked” or switched at the pre-selected frequency using the reference signal. Any and all “time references” are generated from this quartz resonator-oscillator. In cell phones, laptop computers, and other portable devices, the quartz resonator-circuit is larger than desirable. Typically, the oscillator needs to have an approximate +/−2 ppm frequency drift over the product's full operational temperature range. To achieve this level of frequency control the quartz resonator is usually found packaged in a hermetic ceramic package with a metal lid that is arc-welded around the perimeter. As such, the package is relatively expensive. An example is the Kyocera TCXO part number KT21. This product is provided in a ceramic package that is 3.2×2.5×1 mm3, has +/−2 ppm accuracy from −30° to 85° C., and draws 2 mA of current. As this crystal's resonant frequency is 20 MHz, the signal from an oscillator using this product must be multiplied upwards by other power consuming electronics. Further, the resultant harmonics are generally only suppressed by approximately 5 dB relative to the fundamental frequency.
Oscillators can also be constructed using other types of resonators, for example standard L-C (inductor-capacitive) resonators, thin film bulk acoustic resonators (FBARS), and the like. While such resonators are less expensive than quartz resonators their frequency drift characteristics are generally less than acceptable for the applications mentioned above.
In representative embodiments, a temperature compensated pair of resonators is disclosed. The temperature compensated pair of resonators comprises a first resonator and a second resonator. The first resonator is configured to resonate at a first frequency and has a first frequency temperature coefficient. The second resonator is configured to resonate at a second frequency and has a second frequency temperature coefficient. The second frequency is greater than the first frequency; the second frequency temperature coefficient is less than the first frequency temperature coefficient; and the first and second resonators are fabricated on a common substrate.
In another representative embodiment, a method for fabricating a first resonator and a second resonator on a substrate is disclosed. The method comprises creating a first bottom electrode and a second bottom electrode, creating a first bottom piezoelectric layer and a second bottom piezoelectric layer, creating an interstitial layer, creating a first top piezoelectric layer and a second top piezoelectric layer, and creating a first top electrode and a second top electrode. The first bottom electrode and the second bottom electrode partially overlay the substrate; the first bottom piezoelectric layer at least partially overlays the first bottom electrode; the second bottom piezoelectric layer at least partially overlays the second bottom electrode; the interstitial layer at least partially overlays the first bottom piezoelectric layer; the first top piezoelectric layer at least partially overlays the interstitial layer; the second top piezoelectric layer at least partially overlays the second bottom piezoelectric layer; the first top electrode is located over at least part of the first top piezoelectric layer; and the second top electrode at least partially overlays the second top piezoelectric layer.
In yet another representative embodiment, a method for fabricating a first resonator and a second resonator on a substrate is disclosed. The method comprises creating a first bottom electrode partially overlaying the substrate and a second bottom electrode partially overlaying the substrate, creating a first piezoelectric layer and a second piezoelectric layer, creating a first top electrode and a second top electrode, and creating a mass load layer. The first piezoelectric layer at least partially overlays the first bottom electrode; the second piezoelectric layer at least partially overlays the second bottom electrode; the second top electrode at least partially overlays the second piezoelectric layer; and the temperature coefficient of the stiffness of the mass load layer differs from that of the second top electrode. Either the first top electrode at least partially overlays the first piezoelectric layer and the mass load layer at least partially overlays the first top electrode or the mass load layer at least partially overlays the first piezoelectric layer and the first top electrode at least partially overlays the mass load layer.
In still another representative embodiment, a method for fabricating a first resonator and a second resonator on a substrate is disclosed. The method comprises creating a bottom mass load layer, creating a first bottom electrode and a second bottom electrode, creating a first piezoelectric layer and a second piezoelectric layer, and creating a first top electrode and a second top electrode. The second bottom electrode partially overlays the substrate; the temperature coefficient of the stiffness of the bottom mass load layer differs from that of the second bottom electrode; and the second piezoelectric layer at least partially overlays the second bottom electrode. Either the bottom mass load layer partially overlays the substrate, the first bottom electrode at least partially overlays the bottom mass load layer, and the first piezoelectric layer at least partially overlays the first bottom electrode or the first bottom electrode partially overlays the substrate, the bottom mass load layer at least partially overlays the first bottom electrode, and the first piezoelectric layer at least partially overlays the bottom mass load layer. The first top electrode is located over the first piezoelectric layer, and the second top electrode at least partially overlays the second piezoelectric layer.
Other aspects and advantages of the representative embodiments presented herein will become apparent from the following detailed description, taken in conjunction with the accompanying drawings.
The accompanying drawings provide visual representations which will be used to more fully describe various representative embodiments and can be used by those skilled in the art to better understand them and their inherent advantages. In these drawings, like reference numerals identify corresponding elements.
As shown in the drawings for purposes of illustration, novel resonators whose resonant frequencies and frequency drift characteristics can be appropriately adjusted to result in oscillatory circuits having very small frequency drift vs. temperature characteristics. Appropriate paired resonators can be fabricated using integrated circuit techniques with resultant advantages in cost and size over quartz crystals which have been used in the past to obtain comparable frequency drift characteristics. Previously, crystals of quartz have been carefully cut and tuned to provide a low frequency drift relative to temperature.
In representative embodiments, two resonators that drift with temperature at different rates are used in oscillator circuits to create a “beat” frequency whose net temperature drift is very small, if not zero, over the full temperature range standard for cell phones, portable computers, and other comparable devices. The resonators can be fabricated as thin film bulk acoustic resonators (FBARS) and combined with other integrated circuit circuitry to result in a silicon chip that could be approximately 0.2 millimeters (mm) thick and less than 1×1 mm2 in area. In addition, the output signal can be at a much higher frequency than that of a quartz resonator and, thus, can be relatively free of spurious modes. As a result, less power is consumed in making the needed “clean” high frequency tones.
In the following detailed description and in the several figures of the drawings, like elements are identified with like reference numerals.
The output of the first amplifier 112 is fed back to the input of the first amplifier 112 via the first resonator 111 which results in the first oscillator 110 generating a first oscillating signal 115 at a first frequency f01 with the first frequency f01 being the resonant frequency of the first resonator 111.
The output of the second amplifier 122 is fed back to the input of the second amplifier 122 via the second resonator 121 which results in the second oscillator 120 generating a second oscillating signal 125 at a second frequency f02 with the second frequency f02 being the resonant frequency of the second resonator 121.
In the representative embodiment of
The mixer circuit 130 receives the first oscillating signal 115 at first frequency f01 from the first oscillator 110 and receives the second oscillating signal 125 at second frequency f02 from the second oscillator 120. The first oscillating signal 115 and the second oscillating signal 125 are mixed by the mixer circuit 130 to generate a mixer signal 135. The mixer signal 135 comprises a signal component 136 (see
The filter 140 receives the mixer signal 135 from the mixer circuit 130, passes the signal components 136 of the mixer signal 135 at beat frequency fB, and inhibits other signal components 137 of the mixer signal 135 at sum frequency fS with resultant filter signal 145, also referred to herein as output signal 145, as its output. As a result, the filter signal 145 comprises primarily a signal at the beat frequency fB which was transformed by the transfer function of the filter 140. Typically, any component of the filter signal 145 at the sum frequency fS will be significantly reduced by the transfer function of the filter 140.
The beat frequency fB of the oscillatory circuit 100 then has a circuit frequency temperature coefficient TCC equal to the second frequency f02 multiplied by the second frequency temperature coefficient TC2 subtracted from the first frequency f01 multiplied by the first frequency temperature coefficient TC1 (i.e., TCC=[f02×TC2]−[f01×TC1]). Thus, the first frequency f01, the first frequency temperature coefficient TC1, the second frequency f02, and the second frequency temperature coefficient TC2 can be chosen to appropriately meet the needs of a particular application. Careful adjustment of these parameters can result in the circuit frequency temperature coefficient TCC being comparable to or better than that obtainable by the use of quartz crystals. In fact, it is possible to obtain a zero circuit frequency temperature coefficient TCC by the careful choice and adjustment of these parameters.
The first resonator 111 is fabricated above and bridges the first cavity 311. The first resonator 111 includes a first bottom electrode 321, a first top electrode 331, and a first piezoelectric structure 341 sandwiched between the first bottom electrode 321 and the first top electrode 331. The first piezoelectric structure 341 includes a first bottom piezoelectric layer 351 on top of the first bottom electrode 321, an interstitial layer 361 on top of the first bottom piezoelectric layer 351, and a first top piezoelectric layer 371 on top of the interstitial layer 361. On top of the first top piezoelectric layer 371 is the first top electrode 331. Also shown in
The second resonator 121 is fabricated above and bridges the second cavity 312. The second resonator 121 includes a second bottom electrode 322, a second top electrode 332, and a second piezoelectric structure 342 sandwiched between the second bottom electrode 322 and the second top electrode 332. The second piezoelectric structure 342 includes a second bottom piezoelectric layer 352 on top of the second bottom electrode 322 and a second top piezoelectric layer 372 on top of the second bottom piezoelectric layer 352. On top of the second top piezoelectric layer 372 is the second top electrode 332.
The piezoelectric layers 351,352,371,372 could be fabricated using aluminum nitride (AlN) or any suitable piezoelectric material. In the case of aluminum nitride, the piezoelectric layers 351,352,371,372 could be created by vapor deposition at an appropriate processing step. The electrodes 321,322,331,332 could be, for example, molybdenum or any other suitable conductor. Ideally, the interstitial layer 361 has a stiffness coefficient vs. temperature that is greater than that of the piezoelectric layers 351,352,371,372. In such case, the larger stiffness coefficient vs. temperature for the interstitial layer 361 will result in a greater first frequency temperature coefficient TC1 than in the second frequency temperature coefficient TC2. As molybdenum has a stiffness coefficient vs. temperature that is greater than the stiffness coefficient vs. temperature for aluminum nitride, molybdenum could be used for the interstitial layer 361.
Due to the mass load layer 381 and other design considerations which include the thickness of the interstitial layer 361, as well as the relative thicknesses of the various piezoelectric layers 351,352,371,372, the first resonator 111 can be fabricated with first resonant frequency f01 (i.e., first frequency) that is lower than the second resonant frequency f02 (i.e., second frequency) of the second resonator 121. In general, the greater the weight of the mass load layer 381, the lower will be the resonant frequency of the resonator. Also, the thicker the piezoelectric layer(s), the lower will be the resonant frequency of the resonator.
In general, adding weight to the mass load layer 381 will not appreciably change the frequency temperature coefficient as the mass load layer 381 acts mostly as “dead weight” which does not change with a change in temperature. However, adding more mass loading decreases the first resonant frequency f01 which may or may not be desirable in a given application. The greater the mass loading, the higher the beat frequency fB will be.
The first resonator 111 is fabricated above the single cavity 313. The first resonator 111 includes the first bottom electrode 321, the first top electrode 331, and the first piezoelectric structure 341 sandwiched between the first bottom electrode 321 and the first top electrode 331. The first piezoelectric structure 341 includes the first bottom piezoelectric layer 351 on top of the first bottom electrode 321, the interstitial layer 361 on top of the first bottom piezoelectric layer 351, and the first top piezoelectric layer 371 on top of the interstitial layer 361. On top of the first top piezoelectric layer 371 is the first top electrode 331. Also shown in
The second resonator 121 is also fabricated above the single cavity 313. The second resonator 121 includes the first bottom electrode 321 in common with the first resonator 111, the second top electrode 332, and the second piezoelectric structure 342 sandwiched between the first bottom electrode 321 and the second top electrode 332. The second piezoelectric structure 342 includes the second bottom piezoelectric layer 352 on top of the first bottom electrode 321 and the second top piezoelectric layer 372 on top of the second bottom piezoelectric layer 352. On top of the second top piezoelectric layer 372 is the second top electrode 332. For structural purposes,
As in
Due to the mass load layer 381 and other design considerations which include the thickness of the interstitial layer 361, as well as the relative thicknesses of the various piezoelectric layers 351,352,371,372, the first resonator 111 can be fabricated with first resonant frequency f01 (i.e., first frequency) that is lower than the second resonant frequency f02 (i.e., second frequency) of the second resonator 121.
The first resonator 111 is fabricated above and bridges the first cavity 311. The first resonator 111 comprises the first bottom electrode 321, first piezoelectric layer 351 (first bottom piezoelectric layer 351), first top electrode 331, and mass load layer 381. The first piezoelectric layer 351 lies on top of the first bottom electrode 321; the first top electrode 331 lies on top of the first piezoelectric layer 351; and the mass load layer 381 lies on top of the first top electrode 331.
The second resonator 121 is fabricated above and bridges the second cavity 312. The second resonator 121 comprises the second bottom electrode 322, second piezoelectric layer 352 (second bottom piezoelectric layer 352), and second top electrode 332. The second piezoelectric layer 352 lies on top of the second bottom electrode 322; and the second top electrode 332 lies on top of the second piezoelectric layer 352.
The piezoelectric layers 351,352 could be fabricated using aluminum nitride (AlN) or any suitable piezoelectric material. In the case of aluminum nitride, the piezoelectric layers 351,352 could be created by vapor deposition at an appropriate processing step. The electrodes 321,322,331,332 could be, for example, molybdenum or any other suitable conductor.
Preferably, the mass load layer 381 in the embodiment of
Due to the mass load layer 381, the first resonator 111 can be fabricated with first resonant frequency f01 (i.e., first frequency) that is lower than the second resonant frequency f02 (i.e., second frequency) of the second resonator 121. In general, the greater the weight of the mass load layer 381, the lower will be the resonant frequency of the resonator. Also, the thicker the piezoelectric layer(s), the lower will be the resonant frequency of the resonator.
For this representative embodiment wherein the material of the mass load layer 381 differs from the material of the first and second top electrodes 331,332, the thickness and material of the mass load layer 381 can appreciably change the frequency temperature coefficient as the stiffness of the mass load layer 381 changes with a change in temperature. The greater the mass loading, the higher the beat frequency fB will be.
In representative embodiments, the first and second resonators 111,121 could also be constructed over only a single cavity 313 similar to that of
The first resonator 111 is fabricated above and bridges the first cavity 311. The first resonator 111 comprises a bottom mass load layer 382, the first bottom electrode 321, first piezoelectric layer 351 (first bottom piezoelectric layer 351), first top electrode 331, and optional mass load layer 381. The first bottom electrode 321 lies on top of the bottom mass load layer 382; the first piezoelectric layer 351 lies on top of the first bottom electrode 321; the first top electrode 331 lies on top of the first piezoelectric layer 351; and the optional mass load layer 381 lies on top of the first top electrode 331.
Preferably, the bottom mass load layer 382 in the embodiment of
The second resonator 121 is fabricated above and bridges the second cavity 312. The second resonator 121 comprises the second bottom electrode 322, second piezoelectric layer 352 (second bottom piezoelectric layer 352), and second top electrode 332. The second piezoelectric layer 352 lies on top of the second bottom electrode 322; and the second top electrode 332 lies on top of the second piezoelectric layer 352.
The piezoelectric layers 351,352 could be fabricated using aluminum nitride (AlN) or any suitable piezoelectric material. In the case of aluminum nitride, the piezoelectric layers 351,352 could be created by vapor deposition at an appropriate processing step. The electrodes 321,322,331,332 could be, for example, molybdenum or any other suitable conductor. The mass load layer 381 could be, for example, molybdenum or any other suitable material.
Due to the bottom mass load layer 382, the first resonator 111 can be fabricated with first resonant frequency f01 (i.e., first frequency) that is lower than the second resonant frequency f02 (i.e., second frequency) of the second resonator 121. In general, the greater the weight of the bottom mass load layer 382 and the weight of the mass load layer 381, the lower will be the resonant frequency of the resonator. Also, the thicker the piezoelectric layer(s), the lower will be the resonant frequency of the resonator.
For this representative embodiment wherein the material of the bottom mass load layer 382 differs from the material of the second bottom electrode 322, the thickness and material of the bottom mass load layer 382 can appreciably change the frequency temperature coefficient as the stiffness of the bottom mass load layer 382 changes with a change in temperature. The greater the mass loading, the higher the beat frequency fB will be.
In representative embodiments, the first and second resonators 111,121 could also be constructed over only a single cavity 313 similar to that of
In block 420, for the resonator structure 300 of
In block 430, for the resonator structure 300 of
In block 440, the bottom piezoelectric layers 351,352 (which could be the same layer deposited at the same time and referred to herein collectively prior to patterning as the bottom wafer piezoelectric layer 350) are deposited above the bottom electrodes 321,322 for the resonator structure 300 of
In block 450, the interstitial layer 361 is added on top of the first bottom piezoelectric layer 351 of the first resonator 111. The interstitial layer 361 can be fabricated using well known technologies such as metal deposition and photolithography. As an example a layer of molybdenum could be deposited onto a wafer followed by the spinning of photoresist onto the substrate 305. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched. Block 450 then transfers control to block 460.
In block 460, the top piezoelectric layers 371,372 (which could be the same layer deposited at the same time and referred to herein collectively prior to patterning as the top wafer piezoelectric layer 370) are deposited above the interstitial layer 361 in the first resonator 111 and above the second bottom piezoelectric layer 352 in the second resonator 121. Again, well known photolithography steps are used to define and create the first and second top piezoelectric layers 371,372. As an example, a layer of aluminum nitride could be deposited onto the wafer followed by the spinning of photoresist onto the wafer, the photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the aluminum nitride could be etched. Block 460 then transfers control to block 470.
In block 470, the first and second top electrodes 331,332 are fabricated. The first and second top electrodes 371,372 can be fabricated using well known technologies such as metal deposition and photolithography. As an example a layer of molybdenum could be deposited onto the top piezoelectric layers 371,372 followed by the spinning of photoresist onto the deposited molybdenum. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched to create the first and second top electrodes 331,332. Block 470 then transfers control to block 480.
In block 480, the mass load layer 381 is added on top of the first top electrode 331 of the first resonator 111. The mass load layer 381 can be fabricated using well known technologies such as metal deposition and photolithography. As an example, a layer of molybdenum or other material could be deposited onto a wafer followed by the spinning of photoresist onto the wafer. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched to leave the mass load layer 381 over the first top electrode 331. Block 480 then transfers control to block 485.
In block 485, a portion of the thickness of the first top electrode 331 and a portion of the thickness of the second top electrode 332 are removed or a portion of the thickness of the second top electrode 332 and a portion of the thickness of the mass load layer 381 are removed. As appropriate the actions of block 485 can instead occur prior to the actions of block 480. Block 485 then transfers control to block 490.
In block 490, a portion of the thickness of first piezoelectric layer 351 is removed while maintaining the thickness of the second piezoelectric layer 352, a portion of the thickness of second piezoelectric layer 352 is removed while maintaining the thickness of the first piezoelectric layer 351, a portion of the thickness of the first top electrode 331 is removed while maintaining the thickness of the second top electrode 332, a portion of the thickness of the second top electrode 332 is removed while maintaining the thickness of the first top electrode 331, a portion of the thickness of the mass load layer 381 is removed while maintaining the thickness of the second top electrode 332, or a portion of the thickness the second top electrode 332 is removed while maintaining the thickness of the mass load layer 381. As appropriate the actions of block 490 can instead occur prior to the actions of block 470 or prior to the actions of block 480. Block 490 then transfers control to block 495.
In block 495, for the resonator structure 300 of
As an example, first oscillator 110 can use first resonator 111 to generate first oscillating signal 115 at first frequency f01 of 2.3 GHz, and second oscillator 120 can use second resonator 121 to generate second oscillating signal 125 at second frequency f02 of 2.0 GHz. The beat frequency fB would then be at 300 MHz.
As will be known to one skilled in the art, in other representative embodiments, various changes can be made to the above described processes to effect similar structures to those just described. In particular, the above process could be modified such that only the first resonator 111 of
From
In a representative example, a beat frequency fB can be created at 165 MHz and approximately 0 ppm/C circuit frequency temperature coefficient TCC using 500 A of molybdenum in the center of the first piezoelectric structure 341. Representative values for the resonator structure 300 are as follows: (1) first bottom electrode 321, second bottom electrode 322, first top electrode 331, and second top electrode 332 at 1500 angstroms of molybdenum each, (2) first bottom piezoelectric layer 351, second bottom piezoelectric layer 352, first top piezoelectric layer 371, and second top piezoelectric layer 372 at 1.1 micron of aluminum nitride each, and (3) for the interstitial layer 361 and for the mass load layer 381 at 1,000 angstroms of molybdenum each.
In block 720, the cavities 311,312 or the single cavity 313 are filled with a sacrificial material. The sacrificial material can be removed later and could be a phosphorous silica glass material. Block 720 then transfers control to block 730.
In block 730, the first and second bottom electrodes 321,322 are fabricated. or a combined first bottom electrode 321 is fabricated. The first and second bottom electrodes 321,322 or the first bottom electrode 321 can be fabricated using well known technologies such as metal deposition and photolithography. As an example, a layer of molybdenum could be deposited onto a wafer followed by the spinning of photoresist onto the wafer, the photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched. Block 730 then transfers control to block 740.
In block 740, the first and second piezoelectric layers 351,352 (which could be the same layer deposited at the same time and referred to herein collectively prior to patterning as the bottom wafer piezoelectric layer 350) are deposited above the first and second electrodes 321,322 or above the combined bottom electrode 321. Again, well known photolithography steps are used to define and create the first and second piezoelectric layers 351,352. As an example, a layer of aluminum nitride could be deposited onto a wafer followed by the spinning of photoresist onto the wafer, the photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the aluminum nitride could be etched. Block 740 then transfers control to block 770.
In block 770, the first and second top electrodes 331,332 are fabricated. The first and second top electrodes 331,332 can be fabricated using well known technologies such as metal deposition and photolithography. As an example a layer of molybdenum could be deposited onto the first and second piezoelectric layers 351,352 followed by the spinning of photoresist onto the deposited molybdenum. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched to create the first and second top electrodes 331,332. Block 770 then transfers control to block 780.
In block 780, the mass load layer 381 is added on top of the first top electrode 331 of the first resonator 111. The mass load layer 381 can be fabricated using well known technologies such as deposition and photolithography. The temperature coefficient of the stiffness of the mass load layer 381 in this embodiment differs from that of the second top electrode 332. Various options exist for the mass load layer 381 as previously discussed. Should the mass load layer 381 be an organic material or a resin. The organic material or the resin could be deposited onto a wafer followed by the spinning of photoresist onto the wafer. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the material could be etched to leave the mass load layer 381 over the first top electrode 331. Block 780 then transfers control to block 785.
In block 785, a portion of the thickness of the first top electrode 331 and a portion of the thickness of the second top electrode 332 are removed or a portion of the thickness of the second top electrode 332 and a portion of the thickness of the mass load layer 381 are removed. As appropriate the actions of block 785 can instead occur prior to the actions of block 780. Block 785 then transfers control to block 790.
In block 790, a portion of the thickness of first piezoelectric layer 351 is removed while maintaining the thickness of the second piezoelectric layer 352, a portion of the thickness of second piezoelectric layer 352 is removed while maintaining the thickness of the first piezoelectric layer 351, a portion of the thickness of the first top electrode 331 is removed while maintaining the thickness of the second top electrode 332, a portion of the thickness of the second top electrode 332 is removed while maintaining the thickness of the first top electrode 331, a portion of the thickness of the mass load layer 381 is removed while maintaining the thickness of the second top electrode 332, or a portion of the thickness the second top electrode 332 is removed while maintaining the thickness of the mass load layer 381. As appropriate the actions of block 790 can instead occur prior to the actions of block 770 or prior to the actions of block 780 or prior to the actions of block 785. Block 790 then transfers control to block 795.
In block 795, the sacrificial material previously deposed in the cavities 311,312 or single cavity 313 is removed. Should the sacrificial material be a glass, hydrofluoric acid can be used to etch it from the cavities 311,312 or the single cavity 313 as appropriate. Block 795 then terminates the process.
In an alternative embodiment of the above method, the mass load layer 381 is added on top of the first piezoelectric layer 351 of the first resonator 111 prior to the step adding the first and the second top electrodes 331,332. In other words, the order of blocks 770 and 780 is reversed.
In block 820, the cavities 311,312 or the single cavity 313 are filled with a sacrificial material. The sacrificial material can be removed later and could be a phosphorous silica glass material. Block 820 then transfers control to block 825.
In block 825, the bottom mass load layer 382, is fabricated. The bottom mass load layer 382 can be fabricated using well known technologies such as deposition and photolithography. The temperature coefficient of the stiffness of the bottom mass load layer 382 in this embodiment differs from that of the second bottom electrode 322 or the combined bottom electrode 321 in the case of a single cavity 313. Various options exist for the bottom mass load layer 382 as previously discussed. Should the bottom mass load layer 382 be an organic material or a resin. The organic material or the resin could be deposited onto a wafer followed by the spinning of photoresist onto the wafer. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the material could be etched to leave the bottom mass load layer 382 over the first top electrode 331. Block 825 then transfers control to block 830.
In block 830, the first and second bottom electrodes 321,322 are fabricated. or a combined first bottom electrode 321 is fabricated. The first and second bottom electrodes 321,322 or the first bottom electrode 321 can be fabricated using well known technologies such as metal deposition and photolithography. As an example, a layer of molybdenum could be deposited onto a wafer followed by the spinning of photoresist onto the wafer, the photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched. Block 830 then transfers control to block 840.
In block 840, the first and second piezoelectric layers 351,352 (which could be the same layer deposited at the same time and referred to herein collectively prior to patterning as the bottom wafer piezoelectric layer 350) are deposited above the first and second electrodes 321,322 or the combined bottom electrode 321. Again, well known photolithography steps are used to define and create the first and second piezoelectric layers 351,352. As an example, a layer of aluminum nitride could be deposited onto a wafer followed by the spinning of photoresist onto the wafer, the photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the aluminum nitride could be etched. Block 840 then transfers control to block 870.
In block 870, the first and second top electrodes 331,332 are fabricated. The first and second top electrodes 331,332 can be fabricated using well known technologies such as metal deposition and photolithography. As an example a layer of molybdenum could be deposited onto the first and second piezoelectric layers 351,352 followed by the spinning of photoresist onto the deposited molybdenum. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched to create the first and second top electrodes 331,332. Block 870 then transfers control to block 880.
In block 880, the mass load layer 381 is added on top of the first top electrode 331 of the first resonator 111. The mass load layer 381 can be fabricated using well known technologies such as deposition and photolithography. Molybdenum, for example, could be deposited onto a wafer followed by the spinning of photoresist onto the wafer. The photoresist could be exposed to appropriately pattern the photoresist, the photoresist could be subsequently developed, and then the molybdenum could be etched to leave the mass load layer 381 over the first top electrode 331. Block 880 then transfers control to block 885.
In block 885, a portion of the thickness of the first top electrode 331 and a portion of the thickness of the second top electrode 332 are removed or a portion of the thickness of the second top electrode 332 and a portion of the thickness of the mass load layer 381 are removed. As appropriate the actions of block 885 can instead occur prior to the actions of block 880. Block 885 then transfers control to block 890.
In block 890, a portion of the thickness of first piezoelectric layer 351 is removed while maintaining the thickness of the second piezoelectric layer 352, a portion of the thickness of second piezoelectric layer 352 is removed while maintaining the thickness of the first piezoelectric layer 351, a portion of the thickness of the first top electrode 331 is removed while maintaining the thickness of the second top electrode 332, a portion of the thickness of the second top electrode 332 is removed while maintaining the thickness of the first top electrode 331, a portion of the thickness of the mass load layer 381 is removed while maintaining the thickness of the second top electrode 332, or a portion of the thickness the second top electrode 332 is removed while maintaining the thickness of the mass load layer 381. As appropriate the actions of block 890 can instead occur prior to the actions of block 870 or prior to the actions of block 880 or prior to the actions of block 885. Block 890 then transfers control to block 895.
In block 895, the sacrificial material previously deposed in the cavities 311,312 or single cavity 313 is removed. Should the sacrificial material be a glass, hydrofluoric acid can be used to etch it from the cavities 311,312 or the single cavity 313 as appropriate. Block 895 then terminates the process.
In an alternative embodiment of the above method, the bottom mass load layer 382 is added below the first piezoelectric layer 351 of the first resonator 111 after to the step adding the first and the second top electrodes 331,332. In other words, the order of blocks 825 and 830 is reversed.
In block 920, a second oscillator 120 configured to generate a second oscillating signal 125 at a second frequency f02 and having a second frequency temperature coefficient TC2, wherein the second frequency f02 is greater than the first frequency f01, wherein the second frequency temperature coefficient TC2 is less than the first frequency temperature coefficient TC1, and wherein the difference between the second frequency f02 multiplied by the second frequency temperature coefficient TC2 and the first frequency f01 multiplied by the first frequency temperature coefficient TC1 is equal to zero is fabricated. Block 920 then transfers control to block 930.
In block 930, the outputs of the first and the second oscillators 110,120 are connected together. Block 930 then terminates the process.
Various materials other than aluminum nitride can be used for the piezoelectric material in the first bottom piezoelectric layer 351 and in the second bottom piezoelectric layer 352. Also, materials other than molybdenum can be used for the bottom electrodes 321,322, for the interstitial layer 361, and for the top electrodes 331,332. In addition, various other structures are also possible.
In representative embodiments, oscillator circuits 110,120 using paired resonators 111,121 whose resonant frequencies f01,f02 and frequency drift characteristics TC1,TC2 can be appropriately adjusted to result in oscillatory circuits 100 having very small frequency drift vs. temperature characteristics (TC). Appropriate paired resonators 111,121 can be fabricated using integrated circuit techniques with resultant advantages in cost and size over quartz crystals which have been used in the past to obtain comparable frequency drift characteristics. In addition, individual resonators can also be constructed with targeted resonant frequency and frequency temperature coefficient.
In representative embodiments, two resonators 111,121 that drift with temperature at different rates are used in oscillator circuits 110,120 to create a beat frequency fB whose net temperature drift TCC is very small, if not zero, over the full temperature range standard for cell phones, laptop computers, and other comparable devices. The resonators can be fabricated as thin film bulk acoustic resonators (FBARS) and combined with other integrated circuitry to result in a silicon chip that could be approximately 0.2 millimeters (mm) thick and less than 1×1 mm2 in area. In addition, the output signal can be relatively free of spurious modes and can be at a much higher frequency than that of a quartz resonator. As a result, less power is consumed in making the needed “clean” high frequency tones.
The representative embodiments, which have been described in detail herein, have been presented by way of example and not by way of limitation. It will be understood by those skilled in the art that various changes may be made in the form and details of the described embodiments resulting in equivalent embodiments that remain within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3174122 | Fowler et al. | Mar 1965 | A |
3189851 | Fowler | Jun 1965 | A |
3321648 | Kolm | May 1967 | A |
3422371 | Poirier et al. | Jan 1969 | A |
3568108 | Poirier et al. | Mar 1971 | A |
3582839 | Pim et al. | Jun 1971 | A |
3590287 | Berlincourt et al. | Jun 1971 | A |
3610969 | Clawson et al. | Oct 1971 | A |
3826931 | Hammond | Jul 1974 | A |
3845402 | Nupp | Oct 1974 | A |
4084217 | Brandis et al. | Apr 1978 | A |
4172277 | Pinson | Oct 1979 | A |
4272742 | Lewis | Jun 1981 | A |
4281299 | Newbold | Jul 1981 | A |
4320365 | Black et al. | Mar 1982 | A |
4355408 | Scarrott | Oct 1982 | A |
4456850 | Inoue et al. | Jun 1984 | A |
4529904 | Hattersley | Jul 1985 | A |
4608541 | Moriwaki et al. | Aug 1986 | A |
4625138 | Ballato | Nov 1986 | A |
4640756 | Wang et al. | Feb 1987 | A |
4719383 | Wang et al. | Jan 1988 | A |
4798990 | Henoch | Jan 1989 | A |
4819215 | Yokoyama et al. | Apr 1989 | A |
4836882 | Ballato | Jun 1989 | A |
4841429 | Mcclanahan et al. | Jun 1989 | A |
4906840 | Zdeblick et al. | Mar 1990 | A |
5048036 | Scifres et al. | Sep 1991 | A |
5048038 | Brennan et al. | Sep 1991 | A |
5066925 | Freitag | Nov 1991 | A |
5075641 | Weber et al. | Dec 1991 | A |
5111157 | Komiak | May 1992 | A |
5118982 | Inoue et al. | Jun 1992 | A |
5129132 | Zdeblick et al. | Jul 1992 | A |
5162691 | Mariani et al. | Nov 1992 | A |
5214392 | Kobayashi et al. | May 1993 | A |
5233259 | Krishnaswamy et al. | Aug 1993 | A |
5241209 | Sasaki | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5270492 | Fukui | Dec 1993 | A |
5294898 | Dworsky et al. | Mar 1994 | A |
5361077 | Weber | Nov 1994 | A |
5382930 | Stokes et al. | Jan 1995 | A |
5384808 | Van Brunt et al. | Jan 1995 | A |
5448014 | Kong et al. | Sep 1995 | A |
5465725 | Seyed-Bolorforosh | Nov 1995 | A |
5475351 | Uematsu et al. | Dec 1995 | A |
5548189 | Williams | Aug 1996 | A |
5587620 | Ruby et al. | Dec 1996 | A |
5589858 | Kadowaki et al. | Dec 1996 | A |
5594705 | Connor et al. | Jan 1997 | A |
5633574 | Sage | May 1997 | A |
5671242 | Takiguchi et al. | Sep 1997 | A |
5692279 | Mang et al. | Dec 1997 | A |
5705877 | Shimada | Jan 1998 | A |
5714917 | Ella | Feb 1998 | A |
5789845 | Wadaka et al. | Aug 1998 | A |
5853601 | Krishaswamy et al. | Dec 1998 | A |
5864261 | Weber | Jan 1999 | A |
5866969 | Shimada et al. | Feb 1999 | A |
5872493 | Ella | Feb 1999 | A |
5873153 | Ruby et al. | Feb 1999 | A |
5873154 | Ylilammi et al. | Feb 1999 | A |
5894184 | Furuhashi et al. | Apr 1999 | A |
5910756 | Ella | Jun 1999 | A |
5932953 | Drees et al. | Aug 1999 | A |
5936150 | Kobrin et al. | Aug 1999 | A |
5953479 | Zhou et al. | Sep 1999 | A |
5955926 | Uda et al. | Sep 1999 | A |
5969463 | Tomita | Oct 1999 | A |
5982297 | Welle | Nov 1999 | A |
6001664 | Swirhun et al. | Dec 1999 | A |
6016052 | Vaughn | Jan 2000 | A |
6040962 | Kanazawa et al. | Mar 2000 | A |
6060818 | Ruby et al. | May 2000 | A |
6087198 | Panasik | Jul 2000 | A |
6107721 | Lakin | Aug 2000 | A |
6111341 | Hirama | Aug 2000 | A |
6111480 | Iyama et al. | Aug 2000 | A |
6124678 | Bishop et al. | Sep 2000 | A |
6124756 | Yaklin et al. | Sep 2000 | A |
6131256 | Dydyk et al. | Oct 2000 | A |
6150703 | Cushman et al. | Nov 2000 | A |
6187513 | Katakura | Feb 2001 | B1 |
6215375 | Larson, III et al. | Apr 2001 | B1 |
6219263 | Wuidart | Apr 2001 | B1 |
6228675 | Ruby et al. | May 2001 | B1 |
6229247 | Bishop | May 2001 | B1 |
6252229 | Hays et al. | Jun 2001 | B1 |
6262600 | Haigh et al. | Jul 2001 | B1 |
6262637 | Bradley et al. | Jul 2001 | B1 |
6265246 | Ruby et al. | Jul 2001 | B1 |
6278342 | Ella | Aug 2001 | B1 |
6292336 | Horng et al. | Sep 2001 | B1 |
6307447 | Barber et al. | Oct 2001 | B1 |
6307761 | Nakagawa | Oct 2001 | B1 |
6335548 | Roberts et al. | Jan 2002 | B1 |
6355498 | Chan et al. | Mar 2002 | B1 |
6366006 | Boyd | Apr 2002 | B1 |
6376280 | Ruby et al. | Apr 2002 | B1 |
6377137 | Ruby | Apr 2002 | B1 |
6384697 | Ruby | May 2002 | B1 |
6396200 | Misu et al. | May 2002 | B2 |
6407649 | Tikka et al. | Jun 2002 | B1 |
6414569 | Nakafuku | Jul 2002 | B1 |
6420820 | Larson, III | Jul 2002 | B1 |
6424237 | Ruby et al. | Jul 2002 | B1 |
6429511 | Ruby et al. | Aug 2002 | B2 |
6434030 | Rehm et al. | Aug 2002 | B1 |
6437482 | Shibata | Aug 2002 | B1 |
6441539 | Kitamura et al. | Aug 2002 | B1 |
6441702 | Ella et al. | Aug 2002 | B1 |
6462631 | Bradley et al. | Oct 2002 | B2 |
6466105 | Lobl et al. | Oct 2002 | B1 |
6466418 | Horng et al. | Oct 2002 | B1 |
6469597 | Ruby et al. | Oct 2002 | B2 |
6472954 | Ruby et al. | Oct 2002 | B1 |
6476536 | Pensala | Nov 2002 | B1 |
6479320 | Gooch | Nov 2002 | B1 |
6483229 | Larson et al. | Nov 2002 | B2 |
6486751 | Barber et al. | Nov 2002 | B1 |
6489688 | Baumann et al. | Dec 2002 | B1 |
6492883 | Liang et al. | Dec 2002 | B2 |
6507983 | Ruby et al. | Jan 2003 | B1 |
6515558 | Ylilammi | Feb 2003 | B1 |
6518860 | Ella et al. | Feb 2003 | B2 |
6525996 | Miyazawa | Feb 2003 | B1 |
6530515 | Glenn et al. | Mar 2003 | B1 |
6534900 | Aigner et al. | Mar 2003 | B2 |
6542055 | Frank et al. | Apr 2003 | B1 |
6548942 | Panasik | Apr 2003 | B1 |
6548943 | Kaitila et al. | Apr 2003 | B2 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6559487 | Kang et al. | May 2003 | B1 |
6564448 | Oura et al. | May 2003 | B1 |
6566956 | Ohnishi et al. | May 2003 | B2 |
6566979 | Larson et al. | May 2003 | B2 |
6583374 | Knieser et al. | Jun 2003 | B2 |
6583688 | Klee et al. | Jun 2003 | B2 |
6593870 | Dummermuth et al. | Jul 2003 | B2 |
6594165 | Duerbaum et al. | Jul 2003 | B2 |
6600390 | Frank | Jul 2003 | B2 |
6601276 | Barber | Aug 2003 | B2 |
6617249 | Ruby et al. | Sep 2003 | B2 |
6617750 | Dummermuth et al. | Sep 2003 | B2 |
6630753 | Malik et al. | Oct 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6639872 | Rein | Oct 2003 | B1 |
6651488 | Larson et al. | Nov 2003 | B2 |
6657363 | Aigner | Dec 2003 | B1 |
6668618 | Larson et al. | Dec 2003 | B2 |
6670866 | Ella et al. | Dec 2003 | B2 |
6693500 | Yang et al. | Feb 2004 | B2 |
6710508 | Ruby et al. | Mar 2004 | B2 |
6710681 | Figueredo et al. | Mar 2004 | B2 |
6714102 | Ruby et al. | Mar 2004 | B2 |
6720844 | Lakin | Apr 2004 | B1 |
6720846 | Iwashita et al. | Apr 2004 | B2 |
6724266 | Piazza et al. | Apr 2004 | B2 |
6738267 | Navas Sabater et al. | May 2004 | B1 |
6774746 | Whatmore et al. | Aug 2004 | B2 |
6777263 | Gan et al. | Aug 2004 | B1 |
6787048 | Bradley et al. | Sep 2004 | B2 |
6788170 | Kaitila et al. | Sep 2004 | B1 |
6803835 | Frank | Oct 2004 | B2 |
6812619 | Kaitila et al. | Nov 2004 | B1 |
6828713 | Bradley et al. | Dec 2004 | B2 |
6842088 | Yamada et al. | Jan 2005 | B2 |
6842089 | Lee | Jan 2005 | B2 |
6873065 | Haigh et al. | Mar 2005 | B2 |
6873529 | Ikuta et al. | Mar 2005 | B2 |
6874211 | Bradley et al. | Apr 2005 | B2 |
6874212 | Larson, III | Apr 2005 | B2 |
6888424 | Takeuchi et al. | May 2005 | B2 |
6900705 | Nakamura et al. | May 2005 | B2 |
6903452 | Ma et al. | Jun 2005 | B2 |
6906451 | Yamada et al. | Jun 2005 | B2 |
6911708 | Park | Jun 2005 | B2 |
6917261 | Unterberger | Jul 2005 | B2 |
6924583 | Lin et al. | Aug 2005 | B2 |
6924717 | Ginsburg et al. | Aug 2005 | B2 |
6927651 | Larson, III et al. | Aug 2005 | B2 |
6936928 | Hedler et al. | Aug 2005 | B2 |
6936954 | Peczalski | Aug 2005 | B2 |
6943648 | Maiz et al. | Sep 2005 | B2 |
6946928 | Larson et al. | Sep 2005 | B2 |
6954121 | Bradley et al. | Oct 2005 | B2 |
6963257 | Ella et al. | Nov 2005 | B2 |
6970365 | Turchi | Nov 2005 | B2 |
6975183 | Aigner et al. | Dec 2005 | B2 |
6977563 | Komuro et al. | Dec 2005 | B2 |
6985052 | Tikka | Jan 2006 | B2 |
6987433 | Larson et al. | Jan 2006 | B2 |
6989723 | Komuro et al. | Jan 2006 | B2 |
6998940 | Metzger | Feb 2006 | B2 |
7019604 | Gotoh et al. | Mar 2006 | B2 |
7019605 | Larson | Mar 2006 | B2 |
7026876 | Esfandiari et al. | Apr 2006 | B1 |
7057476 | Hwu | Jun 2006 | B2 |
7064606 | Louis | Jun 2006 | B2 |
7084553 | Ludwiczak | Aug 2006 | B2 |
7091649 | Larson | Aug 2006 | B2 |
7098758 | Wang et al. | Aug 2006 | B2 |
7128941 | Lee | Oct 2006 | B2 |
7161448 | Feng et al. | Jan 2007 | B2 |
7170215 | Namba et al. | Jan 2007 | B2 |
7173504 | Larson | Feb 2007 | B2 |
7187254 | Su et al. | Mar 2007 | B2 |
7209374 | Noro | Apr 2007 | B2 |
7230509 | Stoemmer | Jun 2007 | B2 |
7230511 | Onishi et al. | Jun 2007 | B2 |
7259498 | Nakatsuka et al. | Aug 2007 | B2 |
7281304 | Kim et al. | Oct 2007 | B2 |
7310861 | Aigner et al. | Dec 2007 | B2 |
7332985 | Laqrson et al. | Feb 2008 | B2 |
7367095 | Larson, III et al. | May 2008 | B2 |
7369013 | Fazzio et al. | May 2008 | B2 |
7388318 | Yamada et al. | Jun 2008 | B2 |
7388455 | Larson, III | Jun 2008 | B2 |
7408428 | Larson, III | Aug 2008 | B2 |
7414349 | Sasaki | Aug 2008 | B2 |
7425787 | Larson, III | Sep 2008 | B2 |
7439824 | Aigner | Oct 2008 | B2 |
20010054941 | Shibata et al. | Dec 2001 | A1 |
20020000646 | Gooch et al. | Jan 2002 | A1 |
20020030424 | Iwata | Mar 2002 | A1 |
20020063497 | Panasik | May 2002 | A1 |
20020121944 | Larson, III et al. | Sep 2002 | A1 |
20020121945 | Ruby et al. | Sep 2002 | A1 |
20020152803 | Larson, III et al. | Oct 2002 | A1 |
20020190814 | Yamada et al. | Dec 2002 | A1 |
20030001251 | Cheever et al. | Jan 2003 | A1 |
20030006502 | Karpman | Jan 2003 | A1 |
20030051550 | Nguyen et al. | Mar 2003 | A1 |
20030087469 | Ma | May 2003 | A1 |
20030102776 | Takeda et al. | Jun 2003 | A1 |
20030111439 | Fetter et al. | Jun 2003 | A1 |
20030128081 | Ella et al. | Jul 2003 | A1 |
20030132493 | Kang et al. | Jul 2003 | A1 |
20030141946 | Ruby et al. | Jul 2003 | A1 |
20030179053 | Aigner et al. | Sep 2003 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040092234 | Pohjonen | May 2004 | A1 |
20040113720 | Komuro et al. | Jun 2004 | A1 |
20040124952 | Tikka | Jul 2004 | A1 |
20040150293 | Unterberger | Aug 2004 | A1 |
20040150296 | Park et al. | Aug 2004 | A1 |
20040195937 | Matsubara et al. | Oct 2004 | A1 |
20040212458 | Lee | Oct 2004 | A1 |
20040257171 | Park et al. | Dec 2004 | A1 |
20040257172 | Schmidhammer et al. | Dec 2004 | A1 |
20040263287 | Ginsburg et al. | Dec 2004 | A1 |
20050012570 | Korden et al. | Jan 2005 | A1 |
20050023931 | Bouche et al. | Feb 2005 | A1 |
20050030126 | Inoue et al. | Feb 2005 | A1 |
20050036604 | Scott et al. | Feb 2005 | A1 |
20050057117 | Nakatsuka et al. | Mar 2005 | A1 |
20050057324 | Onishi et al. | Mar 2005 | A1 |
20050068124 | Stoemmer | Mar 2005 | A1 |
20050093396 | Larson et al. | May 2005 | A1 |
20050093653 | Larson, III | May 2005 | A1 |
20050093654 | Larson et al. | May 2005 | A1 |
20050093655 | Larson et al. | May 2005 | A1 |
20050093657 | Larson et al. | May 2005 | A1 |
20050093658 | Larson et al. | May 2005 | A1 |
20050093659 | Larson et al. | May 2005 | A1 |
20050104690 | Larson | May 2005 | A1 |
20050110598 | Larson, III | May 2005 | A1 |
20050128030 | Larson et al. | Jun 2005 | A1 |
20050140466 | Larson, III et al. | Jun 2005 | A1 |
20050167795 | Higashi | Aug 2005 | A1 |
20050193507 | Ludwiczak | Sep 2005 | A1 |
20050206271 | Higuchi et al. | Sep 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20060087199 | Larson et al. | Apr 2006 | A1 |
20060103492 | Feng et al. | May 2006 | A1 |
20060125489 | Feucht et al. | Jun 2006 | A1 |
20060132262 | Fazzlo et al. | Jun 2006 | A1 |
20060164183 | Tikka et al. | Jul 2006 | A1 |
20060185139 | Larson, III et al. | Aug 2006 | A1 |
20060197411 | Hoen et al. | Sep 2006 | A1 |
20060238070 | Costa et al. | Oct 2006 | A1 |
20070084964 | Sternberger | Apr 2007 | A1 |
20070085447 | Larson | Apr 2007 | A1 |
20070085631 | Larson et al. | Apr 2007 | A1 |
20070085632 | Larson et al. | Apr 2007 | A1 |
20070086080 | Larson et al. | Apr 2007 | A1 |
20070086274 | Nishimura et al. | Apr 2007 | A1 |
20070090892 | Larson | Apr 2007 | A1 |
20070170815 | Unkrich | Jul 2007 | A1 |
20070171002 | Unkrich | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
10160617 | Jun 2003 | DE |
0231892 | Aug 1987 | EP |
0637875 | Feb 1995 | EP |
0689254 | Jun 1995 | EP |
0865157 | Sep 1998 | EP |
0880227 | Nov 1998 | EP |
0973256 | Jan 2000 | EP |
1047189 | Oct 2000 | EP |
1100196 | Nov 2000 | EP |
1096259 | May 2001 | EP |
1100196 | May 2001 | EP |
1258990 | Nov 2002 | EP |
1180494 | Mar 2003 | EP |
1542362 | Jun 2003 | EP |
1258989 | Jan 2004 | EP |
1528674 | Jun 2004 | EP |
1528675 | Jun 2004 | EP |
1528677 | Jul 2004 | EP |
1249932 | Mar 2005 | EP |
1517443 | Mar 2005 | EP |
1517444 | Mar 2005 | EP |
1528676 | May 2005 | EP |
1557945 | Jul 2005 | EP |
1575165 | Sep 2005 | EP |
1207974 | Nov 1967 | GB |
2013343 | Aug 1979 | GB |
2411239 | Aug 2005 | GB |
2418791 | Apr 2006 | GB |
2427773 | Jan 2007 | GB |
59-160308 | Sep 1984 | JP |
60-16010 | Jan 1985 | JP |
61054686 | Mar 1986 | JP |
61-57108 | Jun 1994 | JP |
2001-203558 | Jul 2001 | JP |
2002217676 | Aug 2002 | JP |
WO-9816957 | Apr 1998 | WO |
WO-0106647 | Jan 2001 | WO |
WO-0199276 | Dec 2001 | WO |
WO-02103900 | Dec 2002 | WO |
WO-03030358 | Apr 2003 | WO |
WO-03043188 | May 2003 | WO |
WO-03050950 | Jun 2003 | WO |
WO-03058809 | Jul 2003 | WO |
WO-2004034579 | Apr 2004 | WO |
WO-2004051744 | Jun 2004 | WO |
WO-2004102688 | Nov 2004 | WO |
WO-2005043752 | May 2005 | WO |
WO-2005043753 | May 2005 | WO |
WO 2005043756 | May 2005 | WO |
WO-2003018788 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070063622 A1 | Mar 2007 | US |