The present disclosure generally relates to metamaterials, and particularly, to epsilon-and-mu-near-zero (EMNZ) metamaterials with guided structure.
Metamaterials are artificial composites with physical characteristics that are not naturally available. Among physical characteristics, refractive index near-zero (INZ) characteristic is attractive to researchers and engineers because INZ metamaterials may transmit waves without altering phase of waves. As a result, a transient wave phase may remain constant when the transient wave travels in an INZ metamaterial. In other words, wavelengths of propagating waves in INZ metamaterials may tend to be infinite, making wave phase independent of waveguide dimensions and shape.
INZ metamaterials are divided into three categories: epsilon-near-zero (ENZ) metamaterials with near-zero permittivity coefficient, mu-near-zero (MNZ) metamaterials with near-zero permeability coefficient, and epsilon-and-mu-near-zero (EMNZ) metamaterials with near-zero permittivity and permeability coefficients. An application of ENZ or EMNZ metamaterials may include antenna design, where ENZ or EMNZ metamaterials are utilized for tailoring antenna radiation patterns, that is, to attain highly directive radiation patterns or enhancing a radiation efficiency. Metamaterials with near-zero parameters are also utilized for tunneling of electromagnetic energy within ultra-thin sub-wavelength ENZ channels or bends (a phenomenon referred to as super-coupling), tunneling through large volumes using MNZ structures, and to overcome weak coupling between different electromagnetic components that are conventionally not well matched, for example, for transition from a coaxial cable to a waveguide.
A permittivity and a permeability of a material may vary in different frequencies. As a result, an EMNZ metamaterial may exhibit near-zero characteristics, that is, near-zero permittivity and near-zero permeability, only in a specific frequency range. In contrast to appealing characteristics for use in microwave and antenna engineering, EMNZ metamaterials may suffer from very limited bandwidth, that is, near-zero characteristics may be attainable only in a limited frequency range, which may limit applications of EMNZ metamaterials with regards to microwave and antenna engineering. Moreover, for an EMNZ metamaterial, a frequency range with near-zero characteristics may not be adjustable, that is, a cutoff frequency of the EMNZ metamaterial may be constant. As a result, applications of the EMNZ metamaterial may be confined to a specific frequency range.
There is, therefore, a need for an EMNZ metamaterial exhibiting near-zero characteristics in a wide frequency range. There is also a need for an EMNZ metamaterial with an adjustable cutoff frequency.
This summary is intended to provide an overview of the subject matter of the present disclosure, and is not intended to identify essential elements or key elements of the subject matter, nor is it intended to be used to determine the scope of the claimed implementations. The proper scope of the present disclosure may be ascertained from the claims set forth below in view of the detailed description below and the drawings.
In one general aspect, the present disclosure describes an exemplary epsilon-and-mu-near-zero (EMNZ) metamaterial. An exemplary EMNZ metamaterial may include a waveguide. In an exemplary embodiment, a length l of the waveguide may satisfy a length condition according to l≤0.1λ, where λ is an operating wavelength of the EMNZ metamaterial.
An exemplary waveguide may include one of a rectangular waveguide and a parallel-plate waveguide. An exemplary EMNZ metamaterial may further include a magneto-dielectric material. In an exemplary embodiment, the magneto-dielectric material may be deposited on a lower wall of the waveguide.
An exemplary waveguide may further include an impedance surface. An exemplary impedance surface may be placed on the magneto-dielectric material. In an exemplary embodiment, the impedance surface may include a tunable impedance surface. An exemplary tunable impedance surface may include a tunable conductivity.
An exemplary tunable impedance surface may include a monolayer graphene. In an exemplary embodiment, the dielectric spacer may be coated on the monolayer graphene and attached to an upper wall of the waveguide. In an exemplary embodiment, a thickness h of the dielectric spacer may satisfy a thickness condition according to
In an exemplary embodiment, a permittivity of the dielectric spacer may be equal to a permittivity E of the magneto-dielectric material. In an exemplary embodiment, a permeability of the dielectric spacer may be equal to a permeability μ of the magneto-dielectric material. An exemplary monolayer graphene may be attached to a left sidewall of the rectangular waveguide and a right sidewall of the rectangular waveguide.
An exemplary cutoff frequency fc may be configured to be adjusted by adjusting a chemical potential μc of the monolayer graphene. In an exemplary embodiment, cutoff frequency fc may be configured to be adjusted based on a distance between the upper wall and a lower wall of the waveguide in meter and an effective permittivity of the magneto-dielectric material and the monolayer graphene.
Other exemplary systems, methods, features and advantages of the implementations will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the implementations, and be protected by the claims herein.
The drawing figures depict one or more implementations in accord with the present teachings, by way of example only, not by way of limitation. In the figures, like reference numerals refer to the same or similar elements.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
The following detailed description is presented to enable a person skilled in the art to make and use the methods and devices disclosed in exemplary embodiments of the present disclosure. For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present disclosure. However, it will be apparent to one skilled in the art that these specific details are not required to practice the disclosed exemplary embodiments. Descriptions of specific exemplary embodiments are provided only as representative examples. Various modifications to the exemplary implementations will be readily apparent to one skilled in the art, and the general principles defined herein may be applied to other implementations and applications without departing from the scope of the present disclosure. The present disclosure is not intended to be limited to the implementations shown, but is to be accorded the widest possible scope consistent with the principles and features disclosed herein.
Herein is disclosed an exemplary epsilon-and-mu-near-zero (EMNZ) metamaterial. Herein is also disclosed an exemplary method for adjusting a cutoff frequency of an exemplary EMNZ metamaterial. An exemplary EMNZ metamaterial may include a waveguide with a small length compared with an operating wavelength. At frequencies smaller than an exemplary cutoff frequency of the waveguide, an insertion loss of the waveguide may be negligible while the waveguide may exhibit near-zero characteristics. Some waveguide structures such as parallel-plate waveguides may not include a cutoff frequency, that is, a minimum frequency of an exemplary electromagnetic wave that may pass through a waveguide. As a result, parallel plate waveguides may not exhibit near-zero characteristics. In an exemplary embodiment, near-zero characteristics may refer to near-zero permittivity and near-zero permeability. Utilizing an impedance surface in a waveguide may change a propagation mode to a transverse magnetic (TM) propagation mode. As a result, a waveguide with an impedance surface may introduce a cutoff frequency. Therefore, utilizing an impedance surface, near-zero characteristics may be obtained in various waveguide structures.
A cutoff frequency may depend on a geometric properties of a waveguide. As a result, a cutoff frequency of an exemplary EMNZ metamaterial constructed by a waveguide may be constant. To make the cutoff frequency adjustable, a tunable impedance surface may be utilized instead of a simple impedance surface. An exemplary tunable impedance surface may include an adjustable conductivity. Therefore, a cutoff frequency of the EMNZ metamaterial may be adjusted by adjusting a conductivity of a tunable impedance surface. An exemplary monolayer graphene may exhibit an appreciable impedance at Terahertz, visible light, and GHz frequency ranges. As a result, an exemplary monolayer graphene may be utilized as a tunable impedance surface. However, to benefit from a monolayer graphene, the monolayer graphene may be separated from an upper wall of the waveguide by a dielectric spacer to avoid a short circuit.
In an exemplary embodiment, step 102 may include designing waveguide 202 by determining a length l of waveguide 202. In an exemplary embodiment, length l may be determined based on a length condition defined by l≤0.1λ, where λ is an operating wavelength of EMNZ metamaterial 200. In an exemplary embodiment, length l may refer to a length of a path that a wave may travel in waveguide 202, that is, a length of waveguide 202 along a z direction. In an exemplary embodiment, an ability of waveguide 202 for passing a wave may depend on a size of a cross-section of waveguide 202 and a wavelength of the wave. In an exemplary embodiment, when a wavelength of a wave is larger than a threshold, an insertion loss of waveguide 202 may be very large, that is, the wave may not pass waveguide 202. An exemplary threshold may refer to a cutoff wavelength (or consistently, a cutoff frequency) of waveguide 202. On the other hand, in an exemplary embodiment, an effective permittivity and an effective permeability of waveguide 202 may be near-zero in frequencies smaller than the cutoff frequency. As a result, waveguide 202 may act as an EMNZ metamaterial in frequencies smaller than the cutoff frequency. However, an energy of an exemplary wave with a frequency smaller than the cutoff frequency may be significantly decreased due to high insertion loss. An exemplary insertion loss of waveguide 202 for frequencies smaller than the cutoff frequency may depend on length l, that is, the insertion loss may be larger for larger values of length l. As a result, in an exemplary embodiment, when length l is very small compared with a wavelength of a passing wave, the insertion loss may become small and the passing wave may pass through waveguide 202 without a significant energy dissipation. As a result, in an exemplary embodiment, waveguide 202 with a small length, that is 1≤0.1λ, may act as an EMNZ metamaterial in frequencies smaller than the cutoff frequency.
In an exemplary embodiment, step 104 may include depositing magneto-dielectric material 204. In an exemplary embodiment, magneto-dielectric material 204 may be deposited on a lower wall 206 of waveguide 202 by deposition techniques such as chemical deposition and physical deposition. In an exemplary embodiment, chemical deposition may cause a chemical change in a fluid on a solid surface, resulting in a solid layer. In an exemplary embodiment, physical deposition may utilize mechanical, electromechanical or thermodynamic means to produce a solid layer. In an exemplary embodiment, waveguide 202 may be filled by depositing magneto-dielectric material 204. In an exemplary embodiment, a cutoff frequency of waveguide 202 may depend on a permittivity and a permeability of magneto-dielectric material 204. In an exemplary embodiment, a cutoff frequency of rectangular waveguide 202A may be given according to an operation defined by:
where d=max {a, b}, a is a height of rectangular waveguide 202A, b is a width of rectangular waveguide 202A, μ0 is a permeability of free space, and E is a permittivity of magneto-dielectric material 204.
In an exemplary embodiment, step 106 may include placing impedance surface 208 on magneto-dielectric material 204. In an exemplary embodiment, impedance surface 208 may operate as an upper wall of impedance surface waveguide 202C. In an exemplary embodiment, placing impedance surface 208 may change a transverse electric (TE) propagation mode in waveguide 202 to a TM propagation mode in impedance surface waveguide 202C.
In an exemplary embodiment, placing impedance surface 208 in step 106 may include placing a tunable impedance surface. An exemplary tunable impedance surface may include a tunable conductivity. An exemplary tunable impedance surface may include an artificial structure imposing an impedance boundary condition on a passing wave. Moreover, a tunable impedance surface may be electrically tuned to exhibit different values of surface impedances. An exemplary tunable impedance surface may be tuned by applying an electric potential to the tunable impedance surface. In an exemplary embodiment, a desired surface impedance of the tunable impedance surface may be obtained by applying an electric potential related to the desired surface impedance. In an exemplary embodiment, a relation between different electric potential values and resulting surface impedances of the tunable impedance surface may be obtained empirically. In an exemplary embodiment, by tuning the tunable impedance surface to each value of surface impedance a respective cutoff frequency of EMNZ metamaterial 200 may be obtained. As a result, in an exemplary embodiment, a cutoff frequency of EMNZ metamaterial 200 may be adjusted by tuning the tunable impedance surface to exhibit a respective surface impedance to the cutoff frequency. In an exemplary embodiment, a relation between different values of surface impedances and respective cutoff frequencies for each surface impedance may be obtained empirically.
Referring again to
In an exemplary embodiment, when thickness h is large compared with operating wavelength λ, a combination of monolayer graphene 210 and dielectric spacer 212 may not impose an impedance surface boundary condition, and consequently, a propagation mode may not change to TM mode. As a result, in an exemplary embodiment, graphene-loaded waveguide 202E may not exhibit EMNZ characteristics.
In an exemplary embodiment, step 112 may include directly attaching dielectric spacer 212 to an upper wall 214 of graphene-loaded waveguide 202D. As a result, in an exemplary embodiment, dielectric spacer 212 may be positioned between upper wall 214 and monolayer graphene 210. Otherwise, in an exemplary embodiment, monolayer graphene 210 may be short-circuited with upper wall 214. As a result, monolayer graphene 210 may not impose an impedance surface boundary condition on a passing wave in graphene-loaded waveguide 202E. In an exemplary embodiment, dielectric spacer 212 may avoid monolayer graphene 210 to be short-circuited with upper wall 214.
Referring again to
In an exemplary embodiment, step 108 may include adjusting cutoff frequency fc. In an exemplary embodiment, the cutoff frequency may be adjusted by adjusting a chemical potential μc of monolayer graphene 210. An exemplary chemical potential may be adjusted according to an operation defined by:
where α is a distance between upper wall 214 and lower wall 206 and ∈eff is an effective permittivity of magneto-dielectric material 204 and monolayer graphene 210, where ∈eff=∈(1−165√{square root over (α)}μc). In an exemplary embodiment, chemical potential μc of monolayer graphene 210 may be adjusted by applying a respective DC electric potential to monolayer graphene 210. In an exemplary embodiment, a relation between chemical potential μc of monolayer graphene 210 and a respective DC electric potential may be obtained empirically.
In this example, a performance of a method (similar to method 100) for adjusting a cutoff frequency of an EMNZ metamaterial (similar to EMNZ metamaterial 200) in terahertz frequency range is demonstrated. Different steps of the method are implemented utilizing an EMNZ metamaterial similar to EMNZ metamaterial 200. The EMNZ metamaterial includes a graphene-loaded waveguide (similar to graphene-loaded waveguide 202E). The EMNZ metamaterial includes a magneto-dielectric material (similar to magneto-dielectric material 204) with a permittivity about ∈=2. A length l of the graphene-loaded waveguide (similar to length l) is about l=0.1 μm. A height of the graphene-loaded waveguide (similar to distance α) is about α=2 μm. A width of the graphene-loaded waveguide (similar to a distance b in
In this example, a performance of a method (similar to method 100) for adjusting a cutoff frequency of an EMNZ metamaterial (similar to EMNZ metamaterial 200) in terahertz frequency range is demonstrated. Different steps of the method are implemented utilizing an EMNZ metamaterial similar to EMNZ metamaterial 200. The EMNZ metamaterial includes a graphene-loaded waveguide (similar to graphene-loaded waveguide 202E). The EMNZ metamaterial includes a magneto-dielectric material (similar to magneto-dielectric material 204) with a permittivity about ∈=2. A length l of the graphene-loaded waveguide (similar to length l) is about l=1 nm. A height of the graphene-loaded waveguide (similar to distance α) is about α=40 nm. A chemical potential (similar to chemical potential μc) of a monolayer graphene (similar to monolayer graphene 210) is about κ electron-volt (eV).
In this example, a performance of a method (similar to method 100) for adjusting a cutoff frequency of an EMNZ metamaterial (similar to EMNZ metamaterial 200) in gigahertz frequency range is demonstrated. Different steps of the method are implemented utilizing an EMNZ metamaterial similar to EMNZ metamaterial 200. The EMNZ metamaterial includes a graphene-loaded waveguide (similar to graphene-loaded waveguide 202E). The EMNZ metamaterial includes a magneto-dielectric material (similar to magneto-dielectric material 204) with a permittivity about ∈=2. A length l of the graphene-loaded waveguide (similar to length l) is about l=0.2 mm. A height of the graphene-loaded waveguide (similar to distance α) is about α=16 mm. A chemical potential (similar to chemical potential μc) of a monolayer graphene (similar to monolayer graphene 210) is about 0.6 eV.
In this example, a performance of a method (similar to method 100) for adjusting a cutoff frequency of an EMNZ metamaterial (similar to EMNZ metamaterial 200) is demonstrated. Different steps of the method are implemented utilizing an EMNZ metamaterial similar to EMNZ metamaterial 200. The EMNZ metamaterial includes a graphene-loaded waveguide (similar to graphene-loaded waveguide 202E). The EMNZ metamaterial includes a magneto-dielectric material (similar to magneto-dielectric material 204) with a permittivity about ∈=2. A length l of the graphene-loaded waveguide (similar to length l) is about 1=0.1 μm. A height of the graphene-loaded waveguide (similar to distance α) is about α=4 μm. An insertion loss, an effective permittivity, and an effective permeability of the EMNZ metamaterial is obtained for different values of a chemical potential (similar to chemical potential μc) of a monolayer graphene (similar to monolayer graphene 210). The chemical potential is set to about 0 eV and 0.6 eV.
While the foregoing has described what may be considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings.
Unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. They are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain.
The scope of protection is limited solely by the claims that now follow. That scope is intended and should be interpreted to be as broad as is consistent with the ordinary meaning of the language that is used in the claims when interpreted in light of this specification and the prosecution history that follows and to encompass all structural and functional equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirement of Sections 101, 102, or 103 of the Patent Act, nor should they be interpreted in such a way. Any unintended embracement of such subject matter is hereby disclaimed.
Except as stated immediately above, nothing that has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.
It will be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein. Relational terms such as first and second and the like may be used solely to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “a” or “an” does not, without further constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various implementations. This is for purposes of streamlining the disclosure, and is not to be interpreted as reflecting an intention that the claimed implementations require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed implementation. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
While various implementations have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more implementations and implementations are possible that are within the scope of the implementations. Although many possible combinations of features are shown in the accompanying figures and discussed in this detailed description, many other combinations of the disclosed features are possible. Any feature of any implementation may be used in combination with or substituted for any other feature or element in any other implementation unless specifically restricted. Therefore, it will be understood that any of the features shown and/or discussed in the present disclosure may be implemented together in any suitable combination. Accordingly, the implementations are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.
This application claims the benefit of priority from pending U.S. Provisional Patent Application Ser. No. 62/934,012, filed on Nov. 12, 2019, and entitled “BROADBAND GUIDED STRUCTURE WITH NEAR-ZERO PERMITTIVITY, PERMEABILITY, AND REFRACTIVE INDEX,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62934012 | Nov 2019 | US |