The invention relates to an adjusting device for adjusting valve clearance for a charge-cycle valve of an internal combustion machine with a pivoted rocker lever, at the one end of which an actuation element is positioned that can be used to transfer a force to the charge-cycle valve. Furthermore, the invention relates to a method for adjusting valve clearance of a charge-cycle valve of an internal combustion machine using an adjusting device including a pivoted rocker lever, to the one end of which an actuation element is attached that can be used to transfer an actuation force to the charge-cycle valve.
For example, such an adjusting device for a charge-cycle valve is already described in DE 10 2009 018 963 A1 and thus is already known. The adjusting device described therein is designed as a valve clearance adjusting element and is positioned at a valve drive device for actuating at least one axially movable charge-cycle valve with an actuation unit that can be tilted by an actuation axis. The actuation unit includes a valve actuation element for coupling with the charge-cycle valve, as well as the valve clearance adjusting element for axial adjustment of the valve actuation element, and a ball joint positioned between the valve actuation element and the valve clearance adjusting element. The ball joint positioned there is oriented in a defined manner using a reset device once the ball joint has adopted a non-actuated operating condition. The reset element positioned there includes a spring element at least partially positioned within the ball joint. The spring element positioned there is designed as a so-called bending pin and is subject to particularly frequent alternating loads during motor operation, i.e., when actuating the valve for charge changing of a combustion chamber of the internal combustion machine. Therefore, there is the risk of a fatigue fracture or a misalignment of the valve clearance due to the frequently alternating loads of the reset device.
In order to adjust the valve clearance regarding rocker lever valve drives (without hydraulic clearance balancing elements such as hydraulic plungers), an adjusting screw or adjusting nut is used in most cases, with this screw or nut being equipped with a locking element in order to hold its position (for instance, nut or setscrew). These adjusting screws and nuts, respectively, of the locking element are usually tightened applying a high torque upon successful adjustment and fine adjustment, respectively, with this tightening occasionally mostly resulting in the previously set clearance value being misaligned. Furthermore, at least two tools are necessary requiring a corresponding clearance at the valve drive and simultaneous meshing. The locking torque introduced with the help of the tools is absorbed via the respective component bearing points and must be taken into account when designing the clearance value, i.e., the bearing clearance, due to possible component deformations caused by introducing the torque.
The purpose of the present invention is to create an adjusting device as well as a method for adjusting a valve clearance of a charge-cycle valve of an internal combustion machine using an adjusting device of the above-mentioned type that can be used to particularly accurately adjust a valve clearance with little effort and to simultaneously permanently eliminate deviations from the preset valve clearance during motor operation.
In order to create an adjusting device of the above-mentioned type, which can be used to permanently and accurately adjust a valve clearance using simple means, it is provided according to the invention that a transmission element is attached to the actuation element, at the end opposite of the charge-cycle valve of which a sleeve area is positioned supporting the transmission element regarding the actuation element. Due to the transmission element being supported regarding the actuation element by means of its sleeve area, it is possible to efficiently prevent any tilting of the transmission element in relation to the actuation element and to thus comply with more accurate position tolerances the longer the sleeve area. In this, the transmission element serves as a clearance balancing element and automatically maintains a preset position, with the transmission element not requiring any additional attachment and locking, respectively, within the framework of an additional installation step. As a consequence, the valve clearance adjustment of the charge-cycle valve can be performed particularly easily and quickly by the technician. In so doing, particularly misalignments and damages to the individual components of the adjusting device are avoided and possible maintenance times are shortened. Furthermore, the installation space and free tool access, respectively, required for installation is reduced.
In an advantageous embodiment of the invention, the transmission element has an internal area and an external area. For example, the internal area and the external area may have a cylindrical contour each and be thus positioned concentrically to one another. By positioning the internal area, in relation to the external area, in a concentric manner, it is, for instance, possible to initially create the internal area, for example in the form of a drilled hole, with this drilled hole then serving as the bearing point when creating and processing, respectively, the external area. As a consequence, the internal area and the external area can be aligned in relation to one another with a particular level of accuracy and using particularly simple means and thus the transmission element can be designed particularly accurately with particularly low manufacturing effort.
It has further been shown to be advantageous if the internal area has a female thread and the external area has a male thread for supporting the transmission element regarding the actuation element. The female thread and the male thread can be aligned particularly accurately to one another in the case of a respective concentric position to one another. Furthermore, the two threads can each be characterized by a particularly low pitch, inhibiting any misalignment of the valve clearance during the alternating load caused by operating the charge-cycle valve (self-inhibition), since it is possible to particularly efficiently prevent a relative rotation between the transmission element and the actuation element in the event of a low pitch of the respective threads.
Furthermore, it is particularly advantageous if the transmission element is supported at the actuation element via its female thread using a pre-stressed bolt. In so doing, the pre-stressed bolt is screwed into the transmission element and is supported using a contact face of the pre-stressed bolt's head at the actuation element. As a consequence, an internal force fit between the pre-stressed bolt, the transmission element and the actuation element is provided for, locally limiting possible component warpage due to the mutual bracing to a special degree, which is accordingly low.
In a preferred embodiment, the transmission element is supported at a thread of the actuation element using its external thread. As a matter of principle, threads are characterized by a certain clearance, which, as a consequence of the mutual bracing, is minimized particularly by the fact that both the internal thread and the external thread are loaded. Hence, the transmission element is not only screwed to the actuation element via its external thread, but is also screwed to the pre-stressed bolt via its internal thread, and accordingly both threads, i.e., both the internal and the external thread of the transmission element, are meshed with a load and braced in relation to one another under opposite-directional force effect. As a consequence, the transmission element is fixed in a particularly stationary manner, it being understood that a torque required for rotating the transmission element, with the torque being applied by using a tool, for example, is higher the higher the clamping force between the internal thread and the external thread, since an increased clamping force also entails an increased friction torque between the respective turns to be applied during rotation.
Ultimately, it has proved advantageous when the internal thread and the external thread of the transmission element are characterized by the same pitch. If the pitches of the internal thread and the external thread are identical, each of the load-bearing thread flanks is loaded particularly uniformly, allowing for the implementation of all the more high tightening torques. The application of high tightening torques guarantees a particularly high level of safety regarding any misalignment of the transmission element during alternating loads due to valve actuation during motor operation.
Within the framework of the method for adjusting a valve clearance of a charge-cycle valve of an internal combustion machine according to the invention, a transmission element is attached to the actuation element by compensating an external area of the transmission element, a clamping element is attached to an internal area of the transmission element, the transmission element is braced with the actuation element by applying a torque to the clamping element, as well as the clamping element is connected to the actuation element by means of a firm bond.
If, advantageously, a so-called pre-stressed bolt is used as the clamping element, the valve clearance can be secured against misalignment particularly permanently. By firmly bonding, i.e., through gluing, soldering, or welding, for example, the clamping element to the actuation element, the safety regarding a misalignment of the valve clearance is further increased.
The advantages and embodiments described for the adjusting device according to the invention are also applicable to the method according to the invention and vice versa.
The features and combinations of features mentioned within the framework of the above description, as well as the features and combinations of features mentioned in the below description of the figures and/or illustrated alone in the figures may not only be used within the framework of the combination specified in each case, but also within the framework of other combinations or alone, without exceeding the scope of the invention in so doing.
Further advantages, features, and details of the invention can be derived from the following description of preferred embodiments, as well as based on the drawings.
As opposed to
As shown in
In summary, the transmission element 50 has a sleeve area 54 with the internal area 56 and the external area 60, with the internal area 56 having the female thread 58 and the external area 60 having the male thread 62 for supporting the transmission element 50 regarding the actuation element 40. The sleeve area 54 is positioned at an end 52 of the transmission element 50 that is opposed to a charge-cycle valve 20, with the transmission element 50 having a contact face 64 at an end of the transmission element 50 opposed to the end 52 that contacts a valve shaft 22 of the present charge-cycle valve 20 illustrated in part only herein. When operating the internal combustion machine, a corresponding force is transferred to the charge-cycle valve 20 by swiveling the rocker lever 24 compensating the contact face 64, with the valve being opened against a spring force of a spring 32, designed as a valve spring. The contact face 64 has a curved surface so that, when swiveling the rocker lever 24, the contact face 64 can slide on the valve shaft 22 of the charge-cycle valve 20 by means of a line contact.
In order to attach the transmission element 50 to the actuation element 40, the transmission element 50 has a square 48 in the area of the contact face 64, with the help of which the transmission element 50 can be screwed to the actuation element 40 by applying a torque. Due to the already mentioned attachment of the clamping element, i.e., the pre-stressed bolt 68, to the internal area 56 of the transmission element 50, the transmission element 50 may then be attached particularly torque-proof inside the actuation element 40 using the pre-stressed bolt. Put another way, by bracing the transmission element 50 with the actuation element 40 by applying a torque to the clamping element designed as the pre-stressed bolt 68 when assembling the adjusting device 10, the transmission element 50 is protected against rotation in relation to the actuation element 40. As a consequence, this also provides for anti-misalignment protection and protection against misalignment of the valve clearance, respectively. Thus, it is possible to attach the transmission element 50 through the application of opposed torques in each case to the pre-stressed bolt and the actuation element 40 in a particularly misalignment-proof manner, with this requiring the simultaneous use of two tools, however. However, it is also possible to initially screw the transmission element 50 in the actuation element 40 and to then clamp the transmission element 50 with the actuation element 40 using the pre-stressed bolt 68 in a particularly torque-proof manner.
The female thread 58 and the male thread 62 of the transmission element 50 each have an identical low pitch, creating a particularly high self-inhibition and, as a consequence thereof, a high friction torque due to the pre-stressing force exerted by the pre-stressed bolt 68, with this pre-stressing force thus preventing the transmission element 50 from automatic misalignment and, depending on the friction conditions, as well as the selected pre-stressing force, allowing for a particularly operation-proof and permanent maintenance of a preset valve clearance. In this, the friction affects both the male thread 62 and the female thread 58 and is ensured over the service life of the internal combustion machine by a corresponding design of the surfaces and coatings, respectively, of the two threads 58, 62. In order to adjust the valve clearance nevertheless, this friction torque created must be overcome, which is possible by using a tool and/or applying a torque to a hexagonal head 44 of the actuation element 40 designed as tapped bushing. For this, a flat portion 66 is designed at the end 30 of rocker lever 24, with the flat portion 66 extending at least up to the square 48 of the transmission element 50 so that the square 48 overlaps the flat portion 66. The flat portion 66 is only designed to have a low clearance regarding one side of the square 48 so that the transmission element 50 can use the flat portion 66 as a support when adjusting the valve clearance using the hexagonal head 44 of the actuation element 40, while the actuation element 40 rotates inside the drilled hole 31, which only one tool is need for. Furthermore, the flat portion 66 prevents the adjusting device 10 from rotating so that the contact face 64 of the transmission element 50 cannot rotate in relation to the valve shaft 22. For the rest, the hexagonal head 44 simultaneously serves as a stop for the actuation element 40 inside the drilled hole 31 on the rocker lever 24.
When actuating the valve, the force application is introduced into the female thread 42 of the actuation element 40 using the transmission element 50 and the male thread 52 already present at the discharge side and transferred to the hexagonal head 44 on the rocker lever 24. Further, the pre-stressing force of the adjusting device 10 must be selected in such a way that a micro-movement inside the threads 42, 62 caused by overturning or bending moments, introduced by the valve shaft 22, can be prevented. The wear on the thread flanks of the threads 42, 62, created during adjustment or motor operation and causing a loss of pre-stressing force, must be compensated by the lowest possible rigidity of the adjusting device 10.
Furthermore, the particularly extensive maintenance of the preset valve clearance can be achieved by connecting the clamping element, i.e., the pre-stressed bolt 68, with the actuation element in a firmly bonded manner. In this, a weld point or a soldered connection is provided for at a firmly bonded area 92, corresponding to an externally accessible point of contact between the head 70 of the pre-stressed screw 68 and the actuation element 40, for example. Alternatively, the firmly bonded connection can be produced in the firmly bonded area 92, for example by gluing the pre-stressed screw 68 with the actuation element 40.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 021 566 | Dec 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/003277 | 12/6/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/090530 | 6/25/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2720874 | Brooks | Oct 1955 | A |
2752904 | Russell | Jul 1956 | A |
3024775 | Wuest | Mar 1962 | A |
4182289 | Nakajima et al. | Jan 1980 | A |
20110005484 | Yasui et al. | Jan 2011 | A1 |
20120227695 | Bokura et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
38 13 703 | Nov 1988 | DE |
10 2009 018 963 | Oct 2010 | DE |
173362 | Jan 1922 | GB |
2 203 811 | Oct 1988 | GB |
Entry |
---|
PCT/EP2014/003277, International Search Report dated Oct. 12, 2015 (Three (3) pages). |
German Search Report issued in German counterpart application No. 10 2013 021 566.8 dated Mar. 11, 2014, with Statement of Relevancy (Six (6) pages). |
Number | Date | Country | |
---|---|---|---|
20170009608 A1 | Jan 2017 | US |