Adjusting dimensioning results using augmented reality

Information

  • Patent Grant
  • 11029762
  • Patent Number
    11,029,762
  • Date Filed
    Friday, September 13, 2019
    5 years ago
  • Date Issued
    Tuesday, June 8, 2021
    3 years ago
Abstract
A system and method for using an augmented reality interface to adjust the results from a dimensioning system are disclosed. The augmented reality interface allows users to easily correct dimensioning errors, improve dimensioning results, and guide dimensioning analysis. In one embodiment, the user may adjust/select the results via hand gesturing/positioning within the system's field of view. In another embodiment, the user may use virtual tools, enabled by hand gesturing/positioning, to adjust the results. In still another embodiment, the user may shine a light into the system's field of view to adjust the results. The augmented reality interface embraced by the present invention provides the user with an easier, more-intuitive means for interacting with dimensioning system results.
Description
FIELD OF THE INVENTION

The present invention relates to dimensioning systems and more specifically, to a means for adjusting the results from dimensioning systems using augmented reality.


BACKGROUND

Many applications require non-contact, three-dimensional (3D) scanning of objects. An object may be scanned remotely without the need to touch the object. Active 3D scanners project radiation (e.g., light, ultrasound, X-ray, etc.) into a field of view and detect the radiation reflected from an object. A time-of-flight 3D scanner, for example, projects pulse of light onto an object and measures the time taken for the pulse of light to reflect from the object and return to the range finder. In another example, a structured light 3D scanner projects a light pattern (e.g., a dot pattern of light) onto an object, while a camera, offset from the projector, captures an image of the reflected pattern. The projector and camera may use triangulation to determine a range for each of the dots in the reflected dot pattern of light.


Dimensioning systems (i.e., dimensioners) may use 3D scanners (i.e., 3D sensors) to determine the dimensions (e.g., surface length, surface area, and object volume) of an object. These systems have found use in the transport and logistics industries. For example, dimensioning systems may facilitate the calculation of shipping cost based on package volume. In another example, dimensioning systems may help form packing strategies for transportation and/or storage.


During the dimensioning process, feedback may provide a user a way of verifying that the 3D scanner has scanned an object correctly. This feedback may include an image of the object overlaid with graphics showing the results of the 3D scan. For example, a package may have its edges highlighted by an overlaid wireframe graphic.


Dimensioning systems may return errors. For example, shading and/or glare could cause the dimensioning system to determine an edge of an object erroneously. In this case, the feedback would include a wireframe that did not align with the object's true edge. A human might easily see this misalignment in the feedback image and could help adjust the wireframe to fit the edges, thereby improving the results from the dimensioner.


Wireframe manipulation maybe difficult using traditional touch displays because using a 2D display to manipulate an object in three dimensions can easily result in errors. For example, an intended adjustment along one axis could cause an unwanted adjustment in another axis because it is difficult for a user to decouple height/width from depth using a 2D display.


Therefore, a need exists for an augmented reality interface to allow a user to (i) correct dimensioning errors, (ii) improve dimensioning results, and (iii) guide dimensioning analysis. The augmented reality interface embraced by the present invention provides the user with an easier, more-intuitive means for interacting with a dimensioning system.


SUMMARY

Accordingly, in one aspect, the present invention embraces a dimensioning system. The dimensioning system includes a three-dimensional (3D) sensor for measuring the dimensions of objects (i.e., dimensioning) in a field of view. The dimensioning system also includes a camera for capturing real-time images of the objects. The dimensioning system further includes a processor that is communicatively coupled to the 3D Sensor, the camera, and a display. The processor is configured to create augmented-reality feedback that is displayed, in real-time, to a user via the display. The augmented-reality feedback includes the real-time images captured by the camera and graphic elements that are overlaid on the real-time images. Gestures in the real-time images are recognized by the processor and the graphic elements are adjusted in response.


In an exemplary embodiment of the dimensioning system, the gestures include a hand gesture.


In another exemplary embodiment of the dimensioning system, the gestures include the position and/or motion of a point of light projected into the field of view and reflected from the objects in the field of view.


In another exemplary embodiment of the dimensioning system, the graphic elements include wireframes that correspond to the edges of the objects in the field of view.


In another exemplary embodiment of the dimensioning system, the graphic elements include wireframes and virtual tools for adjusting and/or selecting the wireframes.


In another exemplary embodiment of the dimensioning system, the graphic elements include wireframes and virtual tools. The virtual tools include a tweezer for grabbing an edge of the wireframes, a pointer for selecting a face of the wireframes, and/or a virtual hand for grabbing the wireframes.


In another exemplary embodiment of the dimensioning system, the graphic elements include wireframes and the adjustment of the graphic elements includes selecting a portion of the wireframes for dimensioning.


In another exemplary embodiment of the dimensioning system, the graphic elements include wireframes and the adjustment of the graphic elements includes rotating and/or translating the wireframes.


In another aspect, the present invention embraces an augmented reality interface for a dimensioning system. The interface includes a camera for capturing images of a field of view that is aligned with the dimensioning system's field of view. The interface also includes a display for displaying images and graphical information to a user. A processor is communicatively coupled to the camera, the display, and the dimensioning system. The processor is configured by software to receive images from the camera and to receive dimensioning information, corresponding to an object in the dimensioning system's field of view, from the dimensioner. Using the dimensioning information, the processor is configured to create wireframe graphics that correspond to the edges of the object. The images and the wireframe graphics are presented on the display, wherein the wireframe graphics overlay and are aligned with the object. The processor is further configured to recognize adjustment cues in the images and to adjust the wireframe graphics in response to the adjustment cues.


In an exemplary embodiment of the augmented reality interface, the processor is further configured to update the dimensioning information in response to the adjustment of the wireframe graphics. The processor is also configured to communicate this updated wireframe information to the dimensioning system.


In another exemplary embodiment of the augmented reality interface, the adjustment cues include a user's hand reaching into the field of view and virtually manipulating the wireframe graphics presented on the display.


In another exemplary embodiment of the augmented reality interface, the adjustment cures include a light spot projected into the field of view to select a surface indicated by the wireframe graphics presented on the display.


In another exemplary embodiment of the augmented reality interface, the adjustment to the wireframe graphics includes resizing the wireframe graphics.


In another exemplary embodiment of the augmented reality interface, the adjustment to the wireframe graphics includes rotating and/or translating the wireframe graphics.


In another exemplary embodiment of the augmented reality interface, the adjustment to the wireframe graphics includes deleting a portion of the wireframe graphics.


In another exemplary embodiment of the augmented reality interface, the adjustment to the wireframe graphics includes combining wireframe graphics.


In another aspect, the present invention embraces a method for correcting dimensioning errors using an augmented reality interface. The method begins with the step of observing the results from a dimensioning system, wherein the results are displayed as virtual wireframes overlaid on real-time images of objects in a field of view. The virtual wireframes correspond to the edges of one or more surfaces on one or more objects in the dimensioning system's field of view. Errors in the virtual wireframes are identified. A hand is then reached into the dimensioning system's field of view so that it is displayed with the objects and the virtual wireframes. One of the virtual wireframes is selected using a virtual tool enabled by the hand or by using the hand itself. The selected virtual wireframe is then adjusted by moving the hand or the virtual tool. The steps of (i) identifying errors in the virtual wireframes, (ii) reaching into the field of view, (iii) selecting one of the virtual wireframes, and (iv) adjusting the selected virtual wireframe is repeated until all of the errors in the virtual wireframes have been corrected.


In an exemplary method for correcting dimensioning errors using an augmented reality interface, the errors in the virtual wireframes include (i) virtual wireframes that overlap, (ii) virtual wireframes that cover more than one object, and/or (iii) virtual wireframes that do not cover an object completely.


In another exemplary method for correcting dimensioning errors using an augmented reality interface, the augmented reality interface is an optical head-mounted display worn by a user.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 graphically depicts a perspective view of a user adjusting the output of a dimensioning system using an augmented reality interface according to an exemplary embodiment of the present invention.



FIG. 2 graphically depicts an image from an augmented reality interface showing a user manipulating a virtual tool to interact with the results from a dimensioning system according to an exemplary embodiment of the present invention.



FIG. 3 graphically depicts an image from an augmented reality interface showing a user manipulating a projected laser beam to interact with the results from a dimensioning system according to an exemplary embodiment of the present invention.



FIG. 4 schematically depicts a block diagram of a dimensioning system according to an embodiment of the present invention.



FIG. 5 schematically depicts a block diagram of an augmented reality interface for a dimensioning system according to an embodiment of the present invention.



FIG. 6 depicts a flowchart of a method for correcting dimensioning errors using an augmented reality interface according to an embodiment of the present invention.





DETAILED DESCRIPTION

Dimensioning systems are convenient tools to obtain dimensional information (e.g., volume, area of a side, etc.) about an object automatically and remotely (i.e., non-contact). The output from these systems may include images of the object and its environment. These images may also include graphics that add context to dimensioning results. For example, wireframe graphics (i.e., wireframes, virtual wireframes, wireframe models, etc.) may be overlaid onto the image of the object so that a user can understand dimensioning results (e.g., what has been dimensioned, how an object has been dimensioned, etc.).


Wireframes provide important feedback, and often user interaction with the wireframes is necessary. This interaction can correct inaccurate results returned by the dimensioner.


Inaccurate dimensioning may result from poor lighting (e.g., overly dark/bright lighting, inhomogeneous lighting, etc.) or poor object positioning (e.g., the object is too close/far, an insufficient number of surfaces are in view, etc.). Inaccurate dimensioning results may also occur when multiple objects are placed in front of (i.e., within the field of view) the dimensioner. Here, the overall dimensions of the multiple objects may be the desired output. Errors may result when the dimensioner only returns the dimension of a single object instead of the group of objects. On the other hand, errors can also result when the dimensioner combines objects that should otherwise be measured individually. Errors may also result when measuring irregularly shaped objects. For example, objects with high aspect ratios may be difficult for the dimensioning system to measure accurately.


Besides error correction, interaction with the wireframes may add functionality. For example, the side of a wireframe may be selected to highlight that portion of the object for additional operations (e.g., area analysis).


It is highly desirable to provide a user with a convenient and intuitive interface for adjusting or otherwise interacting with the results from the wireframes. Two-dimensional (2D) (e.g., touch screens), however, do not provide the most intuitive interface for interaction with 3D models. Augmented reality is better suited for these purposes.


Augmented reality (AR) provides a direct (i.e., via one's eye) or indirect (i.e., via a screen) view of a physical object along with sound, text, video, and/or graphics to supplement (i.e., augment) this view of reality. As the view of a real object is changed (e.g., by a user moving the AR interface) the supplemental information displayed is changed accordingly and in real-time. The result is an effective means for interacting with 3D objects.


The AR interface may be embodied in a variety of ways. Some possible embodiments include (but are not limited to) a handheld camera/display (e.g., smartphone, tablet, dimensioner, mobile computing device, imaging barcode reader, etc.), a fixed position camera/display (e.g., a fixed position dimensioner), and a head-mounted display (e.g., optical head-mounted display). Optical head-mounted displays are convenient interfaces because, in some embodiments, they may be worn like glasses and allow the user to look through a transparent plate at the object.



FIG. 1 illustrates a user adjusting the output of a dimensioning system using an exemplary augmented reality interface. Here, the augmented reality interface 1 is configured with a rear facing camera (i.e., opposite of display facing) for capturing digital images and a display 2 for rendering a real-time video stream of these captured digital images.


The augmented reality interface shown in FIG. 1 is positioned so that the object 3 is displayed on the display 2. In addition, the display 2 shows the object's dimensioning results displayed as wireframe graphics 4. These results are transmitted to the AR interface via a wired or wireless data link. This data link may be a one-way or two-way communication channel between the AR interface and the dimensioning system and may convey information such as augmented reality results and AR interface positioning.


While not shown in FIG. 1, other feedback information, besides wireframe graphics, may be displayed with the images. For example controls, data, and/or tools may displayed in the form of text (e.g., dimensions), images (e.g., range images from a range camera), and/or graphics (e.g., tools). Further, multiple wireframes may be displayed for embodiments where the dimensioning system measures multiple objects simultaneously.


A user may interact with the feedback information (e.g., wireframes) in a variety of ways. A user may move the AR interface (e.g., redirect the AR interface's field of view) to change the perspective view of the object 3 and wireframe 4 accordingly. A user may also reach into the field of view and interact virtually the feedback information.


Virtual interaction may use the recognition of the user's hand, hand-position, and/or gestures in the images captured by the AR interface to affect changes to the dimensioner's output. Virtual interaction may also recognize other cues to affect changes. For example, light from a laser (e.g., laser pointer) may be projected into the field of view to select an object or a portion of the object.


The virtual interaction may affect many possible operations. These operations may include (but are not limited to) selecting an object, selecting an object side, selecting a wireframe, selecting a portion of a wireframe, adjusting the wireframe position, combining wireframes, deleting wireframes, adding/subtracting wireframe elements, and/or resizing wireframes.


A user may also use virtual tools to interact with the results from the dimensioner. Virtual tools are graphics that may be enabled via hand movements in the captured images. Exemplary virtual tools may include (but are not limited to) (i) tools to grab an edge or face of a wireframe (e.g., tweezers), (ii) tools to select an edge/face for subsequent operations (e.g., fine movement), or (iii) tools to grab the entire wireframe for translation/rotation (e.g., an augmented hand).


An exemplary embodiment of an AR image that illustrates a user's interaction with a wireframe using a virtual tool is shown in FIG. 2. Here, the user hand 5 is enabling a virtual tweezer 6 to grab a wireframe 4 surrounding an object 3. The user may adjust the wireframe 4 with the tweezer 6 so that it better fits the object 4.


A user may also use a light beam projected into the field of view to interact with the results from the dimensioner. FIG. 3 depicts an image from an augmented reality interface showing a user interacting with the results of a dimensioning system using a beam of light. Here, a light beam 15 from a laser 16 (e.g., laser pointer) is directed at an object 3 to select the corresponding side 17 of the wireframe 4.


A block diagram of an exemplary dimensioning system 20 enabled for augmented reality interaction is shown in FIG. 4. An object 3 positioned within the dimensioning system's field of view (FOV) 7 can be sensed by the dimensioning system's 3D sensor 8. The 3D sensor is typically an active optical sensor that has a transmitter and receiver. The 3D sensor typically transmits optical radiation (e.g., infrared light) that strikes items in the FOV 7. The optical radiation is reflected from the items and returned to the receiver, where it is gathered and converted into electrical signals.


A processor 9, running software algorithms, may receive/interpret/analyze the electrical signals from the 3D sensor. The algorithms detect changes between the transmitted light and the received light in order to determine the range of the items in the FOV. This range information may be used to determine the dimensions of the items in the FOV.


The processor 9 may be embodied in a variety of ways. Exemplary processors suitable for the present invention include (but are not limited to) microprocessors, application-specific integrated circuits (ASIC), graphics processing units (GPU), digital signal processors (DSP), image processors, and multi-core processors. It is possible that the dimensioning system uses one or more of these processors types to facilitate dimensioning and AR interface operations.


The 3D sensor 8 may use a variety of sensing techniques to gather the information necessary for dimensioning. Some sensing techniques include (but are not limited to) sensing the timing of the transmitted light (e.g., time-of-flight) and sensing the apparent position of the transmitted light (e.g., triangulation, structured light, etc.).


The dimensioning system's augmented reality interface is enabled by a camera 10 and a display 11 that are communicatively coupled to the processor and the 3D sensor. The camera captures digital images of the camera's field of view 12, which corresponds to the 3D sensor's field of view 13. The camera 10 includes the necessary optics and electronics to convert images into electrical signals. Possible cameras for the augmented reality interface include a charge-couple device (CCD) or a complementary metal oxide semiconductor (CMOS) sensor.


The dimensioning system 20 is configured by software (executed by the processor) to recognize adjustment cues in the images. Two exemplary adjustment cues shown in FIG. 3 are a hand 5 and a beam of light 15 projected by a laser 16.


The display 11 presents the dimensioning results and images from the camera to a user. Exemplary displays suitable for the dimensioning system include (but are not limited to) a heads-up display (HUD) and a liquid crystal display (LCD) (e.g., a touch display).


A block diagram of an augmented reality interface 21 enabled is shown in FIG. 5. In this embodiment, the AR interface 21 is not integrated with the dimensioning system 22. Rather, the AR interface is communicatively coupled to the dimensioning system. Typically, communication is accomplished through a wireless data link 23 (e.g., Wi-Fi, Bluetooth, etc.).


An exemplary method correcting dimensioning errors using an augmented reality interface according to an embodiment of the present invention is shown in FIG. 6. A dimensioner returns results 30 that are observed 31 by a user with an augmented reality interface as described previously. The user is able to identify errors visually in the returned results 32 (i.e., errors in the virtual wireframes). If errors are found, then the user may reach into the field of view of the AR interface 33, which may or may not correspond to the field of view of the dimensioner. The user may then select 34 and adjust 35 a virtual wireframe using a hand or a hand-enabled virtual tool. The user then checks whether all errors have been corrected 36. If all errors have been corrected, then the results (e.g., the updated virtual wireframes) may be returned 38, otherwise the user may repeat the aforementioned steps to correct additional errors 37. Once complete, the corrected wireframes are returned 38 (e.g., displayed). In a possible embodiment, the corrected wireframes are returned to the dimensioner for further analysis (e.g., volume calculation, area calculation, etc.).


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:


U.S. Pat. Nos. 6,832,725; 7,128,266; 7,159,783; 7,413,127; 7,726,575; 8,294,969; 8,317,105; 8,322,622; 8,366,005; 8,371,507; 8,376,233; 8,381,979; 8,390,909; 8,408,464; 8,408,468; 8,408,469; 8,424,768; 8,448,863; 8,457,013; 8,459,557; 8,469,272; 8,474,712; 8,479,992; 8,490,877; 8,517,271; 8,523,076; 8,528,818; 8,544,737; 8,548,242; 8,548,420; 8,550,335; 8,550,354; 8,550,357; 8,556,174; 8,556,176; 8,556,177; 8,559,767; 8,599,957; 8,561,895; 8,561,903; 8,561,905; 8,565,107; 8,571,307; 8,579,200; 8,583,924; 8,584,945; 8,587,595; 8,587,697; 8,588,869; 8,590,789; 8,596,539; 8,596,542; 8,596,543; 8,599,271; 8,599,957; 8,600,158; 8,600,167; 8,602,309; 8,608,053; 8,608,071; 8,611,309; 8,615,487; 8,616,454; 8,621,123; 8,622,303; 8,628,013; 8,628,015; 8,628,016; 8,629,926; 8,630,491; 8,635,309; 8,636,200; 8,636,212; 8,636,215; 8,636,224; 8,638,806; 8,640,958; 8,640,960; 8,643,717; 8,646,692; 8,646,694; 8,657,200; 8,659,397; 8,668,149; 8,678,285; 8,678,286; 8,682,077; 8,687,282; 8,692,927; 8,695,880; 8,698,949; 8,717,494; 8,717,494; 8,720,783; 8,723,804; 8,723,904; 8,727,223; U.S. Pat. No. D702,237; U.S. Pat. Nos. 8,740,082; 8,740,085; 8,746,563; 8,750,445; 8,752,766; 8,756,059; 8,757,495; 8,760,563; 8,763,909; 8,777,108; 8,777,109; 8,779,898; 8,781,520; 8,783,573; 8,789,757; 8,789,758; 8,789,759; 8,794,520; 8,794,522; 8,794,526; 8,798,367; 8,807,431; 8,807,432; 8,820,630;

  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • International Publication No. 2014/019130;
  • International Publication No. 2014/110495;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0138685;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0056285;
  • U.S. Patent Application Publication No. 2013/0070322;
  • U.S. Patent Application Publication No. 2013/0075168;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0200158;
  • U.S. Patent Application Publication No. 2013/0256418;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0278425;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306730;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0341399;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0002828;
  • U.S. Patent Application Publication No. 2014/0008430;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0027518;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0042814;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061305;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0075846;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0078341;
  • U.S. Patent Application Publication No. 2014/0078342;
  • U.S. Patent Application Publication No. 2014/0078345;
  • U.S. Patent Application Publication No. 2014/0084068;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100774;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0104451;
  • U.S. Patent Application Publication No. 2014/0106594;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0108682;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0114530;
  • U.S. Patent Application Publication No. 2014/0124577;
  • U.S. Patent Application Publication No. 2014/0124579;
  • U.S. Patent Application Publication No. 2014/0125842;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. Patent Application Publication No. 2014/0131438;
  • U.S. Patent Application Publication No. 2014/0131441;
  • U.S. Patent Application Publication No. 2014/0131443;
  • U.S. Patent Application Publication No. 2014/0131444;
  • U.S. Patent Application Publication No. 2014/0131445;
  • U.S. Patent Application Publication No. 2014/0131448;
  • U.S. Patent Application Publication No. 2014/0133379;
  • U.S. Patent Application Publication No. 2014/0136208;
  • U.S. Patent Application Publication No. 2014/0140585;
  • U.S. Patent Application Publication No. 2014/0151453;
  • U.S. Patent Application Publication No. 2014/0152882;
  • U.S. Patent Application Publication No. 2014/0158770;
  • U.S. Patent Application Publication No. 2014/0159869;
  • U.S. Patent Application Publication No. 2014/0160329;
  • U.S. Patent Application Publication No. 2014/0166755;
  • U.S. Patent Application Publication No. 2014/0166757;
  • U.S. Patent Application Publication No. 2014/0166759;
  • U.S. Patent Application Publication No. 2014/0166760;
  • U.S. Patent Application Publication No. 2014/0166761;
  • U.S. Patent Application Publication No. 2014/0168787;
  • U.S. Patent Application Publication No. 2014/0175165;
  • U.S. Patent Application Publication No. 2014/0175169;
  • U.S. Patent Application Publication No. 2014/0175172;
  • U.S. Patent Application Publication No. 2014/0175174;
  • U.S. Patent Application Publication No. 2014/0191644;
  • U.S. Patent Application Publication No. 2014/0191913;
  • U.S. Patent Application Publication No. 2014/0197238;
  • U.S. Patent Application Publication No. 2014/0197239;
  • U.S. Patent Application Publication No. 2014/0197304;
  • U.S. Patent Application Publication No. 2014/0203087;
  • U.S. Patent Application Publication No. 2014/0204268;
  • U.S. Patent Application Publication No. 2014/0214631;
  • U.S. Patent Application Publication No. 2014/0217166;
  • U.S. Patent Application Publication No. 2014/0217180;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.);
  • U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson);
  • U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.);
  • U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield);
  • U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin);
  • U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.);
  • U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini);
  • U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.);
  • U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.);
  • U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.);
  • U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang);
  • U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.);
  • U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.);
  • U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini);
  • U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon);
  • U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher);
  • U.S. patent application Ser. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck);
  • U.S. patent application Ser. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.);
  • U.S. patent application Ser. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.);
  • U.S. patent application Ser. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl);
  • U.S. patent application Ser. No. 14/094,087 for Method and System for Communicating Information in an Digital Signal, filed Dec. 2, 2013 (Peake et al.);
  • U.S. patent application Ser. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian);
  • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.);
  • U.S. patent application Ser. No. 14/165,980 for System and Method for Measuring Irregular Objects with a Single Camera filed Jan. 28, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/250,923 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 11, 2014, (Deng et al.);
  • U.S. patent application Ser. No. 14/257,174 for Imaging Terminal Having Data Compression filed Apr. 21, 2014, (Barber et al.);
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/274,858 for Mobile Printer with Optional Battery Accessory filed May 12, 2014 (Marty et al.);
  • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/300,276 for METHOD AND SYSTEM FOR CONSIDERING INFORMATION ABOUT AN EXPECTED RESPONSE WHEN PERFORMING SPEECH RECOGNITION, filed Jun. 10, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/305,153 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 16, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/310,226 for AUTOFOCUSING OPTICAL IMAGING DEVICE filed Jun. 20, 2014 (Koziol et al.);
  • U.S. patent application Ser. No. 14/327,722 for CUSTOMER FACING IMAGING SYSTEMS AND METHODS FOR OBTAINING IMAGES filed Jul. 10, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/329,303 for CELL PHONE READING MODE USING IMAGE TIMER filed Jul. 11, 2014 (Coyle);
  • U.S. patent application Ser. No. 14/333,588 for SYMBOL READING SYSTEM WITH INTEGRATED SCALE BASE filed Jul. 17, 2014 (Barten);
  • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
  • U.S. patent application Ser. No. 14/340,716 for an OPTICAL IMAGER AND METHOD FOR CORRELATING A MEDICATION PACKAGE WITH A PATIENT, filed Jul. 25, 2014 (Ellis);
  • U.S. patent application Ser. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/355,613 for Optical Indicia Reading Terminal with Color Image Sensor filed May 1, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/370,237 for WEB-BASED SCAN-TASK ENABLED SYSTEM AND METHOD OF AND APPARATUS FOR DEVELOPING AND DEPLOYING THE SAME ON A CLIENT-SERVER NETWORK filed Jul. 2, 2014 (Chen et al.);
  • U.S. patent application Ser. No. 14/370,267 for INDUSTRIAL DESIGN FOR CONSUMER DEVICE BASED SCANNING AND MOBILITY, filed Jul. 2, 2014 (Ma et al.);
  • U.S. patent application Ser. No. 14/376,472, for an ENCODED INFORMATION READING TERMINAL INCLUDING HTTP SERVER, filed Aug. 4, 2014 (Lu);
  • U.S. patent application Ser. No. 14/379,057 for METHOD OF USING CAMERA SENSOR INTERFACE TO TRANSFER MULTIPLE CHANNELS OF SCAN DATA USING AN IMAGE FORMAT filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/460,387 for APPARATUS FOR DISPLAYING BAR CODES FROM LIGHT EMITTING DISPLAY SURFACES filed Aug. 15, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/460,829 for ENCODED INFORMATION READING TERMINAL WITH WIRELESS PATH SELECTION CAPABILITY, filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/446,387 for INDICIA READING TERMINAL PROCESSING PLURALITY OF FRAMES OF IMAGE DATA RESPONSIVELY TO TRIGGER SIGNAL ACTIVATION filed Jul. 30, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 29/492,903 for an INDICIA SCANNER, filed Jun. 4, 2014 (Zhou et al.); and
  • U.S. patent application Ser. No. 29/494,725 for an IN-COUNTER BARCODE SCANNER, filed Jun. 24, 2014 (Oberpriller et al.).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A dimensioning system, comprising: a three-dimensional (3D) sensor configured to capture dimensioning information of an object in a field of view;a camera for capturing real-time image of the 3D object in the field of view;a processor communicatively coupled to the 3D sensor and the camera, the processor configured to create augmented-reality feedback comprising (i) the real-time image captured by the camera, (ii) graphic elements comprising at least one wireframe that correspond to edges of the object in the field of view, the at least one wireframe corresponding to dimensioning information of the object, and (iii) a virtual tool for adjusting and/or selecting the at least one wireframe, the virtual tool comprising a tweezer for grabbing an edge of the at least one wireframe, wherein the at least one wireframe associated with the object is overlaid on the real-time image of the object using the virtual tool, so as to align the at least one wireframe with the real-time image of the object such that any deviation in an alignment of the at least one wireframe from the real-time image of the object indicates a dimensioning error;in response to the indication of the dimensioning error, the processor is further configured to (i) recognize gestures of a user in the real-time images captured by the camera, wherein the gestures correspond to manipulation of the at least one wireframe in the created augmented-reality feedback (ii) adjust at least one axis of the at least one wireframe based on the recognized gestures of the user, and (iii) update the dimensioning information of the at least one wireframe based at least in part on the adjusted at least one axis; anda display communicatively coupled to the processor for displaying the augmented-reality feedback to a user in real time.
  • 2. The dimensioning system according to claim 1, wherein the gestures comprise a hand gesture.
  • 3. The dimensioning system according to claim 1, wherein the gestures comprise a position and/or motion of a point of light projected into the field of view and reflected from the object in the field of view.
  • 4. The dimensioning system according to claim 1, wherein the virtual tool further comprises (i) a pointer for selecting a face of the at least one wireframe and/or (ii) a virtual hand for grabbing the at least one wireframe.
  • 5. The dimensioning system according to claim 1, wherein the adjustment of the graphic elements comprises changing the shape of the at least one wireframe.
  • 6. The dimensioning system according to claim 1, wherein the adjustment of the graphic elements comprises selecting a portion of the at least one wireframe for dimensioning.
  • 7. The dimensioning system according to claim 1, wherein the adjustment of the graphic elements comprises rotating, and/or translating the at least one wireframe.
  • 8. The dimensioning system according to claim 1, further comprising an augmented reality interface enabled by the camera and the display communicatively coupled to the 3D sensor and the processor.
  • 9. The dimensioning system according to claim 8, wherein a change in the augmented reality interface changes views of the 3D object and corresponding displayed supplemental information in real-time.
  • 10. An augmented reality interface for a dimensioning system, comprising: a camera for capturing an image of a field of view that is aligned with the dimensioning system's field of view;a display for displaying the image and graphical information to a user; anda processor communicatively coupled to the camera, the display, and the dimensioning system, wherein the processor is configured by software to: (i) receive the image from the camera,(ii) receive 3D dimensioning information from the dimensioning system, the 3D dimensioning information corresponding to an object in the dimensioning system's field of view,(iii) create, using the 3D dimensioning information, a wireframe graphic that corresponds to edges of the object,(iv) present the image and the wireframe graphic on the display, wherein the wireframe graphic associated with the object is overlaid on the image of the object using a virtual tool, the virtual tool comprising a tweezer for grabbing an edge of the wireframe graphic, so as to align the wireframe graphic with the object in the image such that any deviation in an alignment of the wireframe graphic from the object in the image indicates a dimensioning error,(v) in response to the indication of the dimensioning error, recognize adjustment cues from a user in the image,(vi) adjust the overlay and/or alignment of the wireframe graphic with the object in the image in response to the adjustment cues, wherein the adjustment of the overlay and/or alignment of the wireframe graphic comprises adjusting at least one axis of the wireframe graphic based on the adjustment cues, and(vii) update the 3D dimensioning information of the created wireframe graphic based at least in part on the adjusted at least one axis.
  • 11. The augmented reality interface for a dimensioning system according to claim 10, wherein the processor is further configured to: (i) update the 3D dimensioning information in response to the adjustment to the wireframe graphic, and(ii) communicate the updated wireframe graphic information to the dimensioning system.
  • 12. The augmented reality interface for a dimensioning system according to claim 10, wherein the adjustment cues comprise a user's hand reaching into the field of view and virtually manipulating the wireframe graphic presented on the display.
  • 13. The augmented reality interface for a dimensioning system according to claim 10, wherein the adjustment cues comprise a light spot projected into the field of view to select a surface indicated by the wireframe graphic presented on the display.
  • 14. The augmented reality interface for a dimensioning system according to claim 10, wherein the adjustment to the wireframe graphic comprises rotating and/or translating the wireframe graphic.
  • 15. The augmented reality interface for a dimensioning system according to claim 10, wherein the adjustment to the wireframe graphic comprises deleting a portion of the wireframe graphic.
  • 16. The augmented reality interface for a dimensioning system according to claim 10, wherein the adjustment to the wireframe graphic comprises combining wireframe graphics.
  • 17. A method for correcting dimensioning errors using an augmented reality interface, the method comprising: observing results from a dimensioning system displayed as a virtual wireframe overlaid on a real-time image of a three-dimensional (3D) object in a field of view, the virtual wireframe corresponding to edges of one or more surfaces of one or more objects in the dimensioning system's field of view, wherein the virtual wireframe associated with the object is overlaid on the real-time image of the 3D object using a virtual tool, the virtual tool comprising a tweezer for grabbing an edge of the virtual wireframe, so as to align the virtual wireframe with the real-time image of the 3D object such that any deviation in an alignment of the virtual wireframe from the real-time image indicates one or more errors;identifying the one or more errors in the virtual wireframe based on determining misalignment of the virtual wireframe and the real-time image of the 3D object;reaching a hand into the dimensioning system's field of view so that it is displayed with the 3D object and the virtual wireframe;selecting the virtual wireframe using the hand or a virtual tool enabled by the hand;adjusting at least one axis of the virtual wireframe by moving the hand or the virtual tool along the axis; andupdating the results from the dimensioning system based at least in part on the adjusted at least one axis.
  • 18. The method for correcting dimensioning errors using an augmented reality interface according to claim 17, wherein the one or more errors in the virtual wireframe comprise (i) a plurality of virtual wireframes that overlap, (ii) the virtual wireframe that cover more than one object, and/or (iii) the virtual wireframe that do not cover the object completely.
  • 19. The method for correcting dimensioning errors using an augmented reality interface according to claim 17, wherein the augmented reality interface is an optical head-mounted display worn by a user.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation of U.S. patent application Ser. No. 14/801,023, filed on Jul. 16, 2015 and entitled “Adjusting Dimensioning Results Using Augmented Reality,” which is incorporated herein by reference in its entirety.

US Referenced Citations (941)
Number Name Date Kind
3971065 Bayer Jul 1976 A
4026031 Siddall et al. May 1977 A
4279328 Ahlbom Jul 1981 A
4398811 Nishioka et al. Aug 1983 A
4495559 Gelatt et al. Jan 1985 A
4634278 Ross et al. Jan 1987 A
4730190 Win et al. Mar 1988 A
4803639 Steele et al. Feb 1989 A
4914460 Caimi et al. Apr 1990 A
4974919 Muraki et al. Dec 1990 A
5111325 Dejager May 1992 A
5175601 Fitts Dec 1992 A
5184733 Arnarson et al. Feb 1993 A
5198648 Hibbard Mar 1993 A
5220536 Stringer et al. Jun 1993 A
5243619 Albers et al. Sep 1993 A
5331118 Jensen Jul 1994 A
5359185 Hanson Oct 1994 A
5384901 Glassner et al. Jan 1995 A
5477622 Skalnik Dec 1995 A
5548707 Lonegro et al. Aug 1996 A
5555090 Schmutz Sep 1996 A
5561526 Huber et al. Oct 1996 A
5590060 Granville et al. Dec 1996 A
5592333 Lewis Jan 1997 A
5606534 Stringer et al. Feb 1997 A
5619245 Kessler et al. Apr 1997 A
5655095 Lonegro et al. Aug 1997 A
5661561 Wurz et al. Aug 1997 A
5699161 Woodworth Dec 1997 A
5729750 Ishida Mar 1998 A
5730252 Herbinet Mar 1998 A
5732147 Tao Mar 1998 A
5734476 Dlugos Mar 1998 A
5737074 Haga et al. Apr 1998 A
5748199 Palm May 1998 A
5767962 Suzuki et al. Jun 1998 A
5802092 Endriz Sep 1998 A
5808657 Kurtz et al. Sep 1998 A
5831737 Stringer et al. Nov 1998 A
5850370 Stringer et al. Dec 1998 A
5850490 Johnson Dec 1998 A
5869827 Rando Feb 1999 A
5870220 Migdal et al. Feb 1999 A
5900611 Hecht May 1999 A
5923428 Woodworth Jul 1999 A
5929856 Lonegro et al. Jul 1999 A
5938710 Lanza et al. Aug 1999 A
5959568 Woolley Sep 1999 A
5960098 Tao Sep 1999 A
5969823 Wurz et al. Oct 1999 A
5978512 Kim Nov 1999 A
5979760 Freyman et al. Nov 1999 A
5988862 Kacyra et al. Nov 1999 A
5991041 Woodworth Nov 1999 A
6009189 Schaack Dec 1999 A
6025847 Marks Feb 2000 A
6035067 Ponticos Mar 2000 A
6049386 Stringer et al. Apr 2000 A
6053409 Brobst et al. Apr 2000 A
6064759 Buckley et al. May 2000 A
6067110 Nonaka et al. May 2000 A
6069696 McQueen et al. May 2000 A
6115114 Berg et al. Sep 2000 A
6137577 Woodworth Oct 2000 A
6177999 Wurz et al. Jan 2001 B1
6189223 Haug Feb 2001 B1
6232597 Kley May 2001 B1
6236403 Chaki et al. May 2001 B1
6246468 Dimsdale Jun 2001 B1
6333749 Reinhardt et al. Dec 2001 B1
6336587 He et al. Jan 2002 B1
6369401 Lee Apr 2002 B1
6373579 Ober et al. Apr 2002 B1
6429803 Kumar Aug 2002 B1
6457642 Good et al. Oct 2002 B1
6507406 Yagi et al. Jan 2003 B1
6517004 Good et al. Feb 2003 B2
6519550 D et al. Feb 2003 B1
6535776 Tobin et al. Mar 2003 B1
6661521 Stern Dec 2003 B1
6674904 McQueen Jan 2004 B1
6705526 Zhu et al. Mar 2004 B1
6773142 Rekow Aug 2004 B2
6781621 Gobush et al. Aug 2004 B1
6824058 Patel et al. Nov 2004 B2
6832725 Gardiner et al. Dec 2004 B2
6912293 Korobkin Jun 2005 B1
6922632 Foxlin Jul 2005 B2
6995762 Pavlidis et al. Feb 2006 B1
7057632 Yamawaki et al. Jun 2006 B2
7085409 Sawhney et al. Aug 2006 B2
7086162 Tyroler Aug 2006 B2
7104453 Zhu et al. Sep 2006 B1
7128266 Zhu et al. Oct 2006 B2
7137556 Bonner et al. Nov 2006 B1
7159783 Walczyk et al. Jan 2007 B2
7161688 Bonner et al. Jan 2007 B1
7205529 Andersen et al. Apr 2007 B2
7233682 Levine Jun 2007 B2
7277187 Smith et al. Oct 2007 B2
7307653 Dutta Dec 2007 B2
7313264 Crampton Dec 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7509529 Colucci et al. Mar 2009 B2
7602404 Reinhardt et al. Oct 2009 B1
7614563 Nunnink et al. Nov 2009 B1
7639722 Paxton et al. Dec 2009 B1
7726206 Terrafranca et al. Jun 2010 B2
7726575 Wang et al. Jun 2010 B2
7780084 Zhang et al. Aug 2010 B2
7912320 Minor Mar 2011 B1
7974025 Topliss Jul 2011 B2
8009358 Zalevsky et al. Aug 2011 B2
8027096 Feng et al. Sep 2011 B2
8028501 Buckley et al. Oct 2011 B2
8050461 Shpunt et al. Nov 2011 B2
8055061 Katano Nov 2011 B2
8061610 Nunnink Nov 2011 B2
8072581 Breiholz Dec 2011 B1
8102395 Kondo et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8149224 Kuo et al. Apr 2012 B1
8194097 Xiao et al. Jun 2012 B2
8201737 Palacios et al. Jun 2012 B1
8212889 Chanas et al. Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8230367 Bell et al. Jul 2012 B2
8294969 Plesko Oct 2012 B2
8301027 Shaw et al. Oct 2012 B2
8305458 Hara Nov 2012 B2
8310656 Zalewski Nov 2012 B2
8313380 Zalewski et al. Nov 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8320621 McEldowney Nov 2012 B2
8322622 Liu Dec 2012 B2
8339462 Stec et al. Dec 2012 B2
8350959 Topliss et al. Jan 2013 B2
8351670 Ijiri et al. Jan 2013 B2
8366005 Kotlarsky et al. Feb 2013 B2
8368762 Chen Feb 2013 B1
8371507 Haggerty et al. Feb 2013 B2
8374498 Pastore Feb 2013 B2
8376233 Horn et al. Feb 2013 B2
8381976 Mohideen et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Van et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8437539 Komatsu et al. May 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8490877 Kearney Jul 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein, Jr. Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8576390 Nunnink Nov 2013 B1
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8594425 Gurman et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre, Jr. Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8736909 Sato et al. May 2014 B2
8740082 Wilz, Sr. Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8792688 Unsworth Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van et al. Aug 2014 B2
8810779 Hilde Aug 2014 B1
8820630 Qu et al. Sep 2014 B2
8822806 Cockerell et al. Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein, Jr. Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8890803 Oks Nov 2014 B2
8897596 Passmore et al. Nov 2014 B1
8910870 Li et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8928896 Kennington et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8971346 Sevier Mar 2015 B2
8976368 El et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8993974 Goodwin Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
9007368 Laffargue Apr 2015 B2
9014441 Truyen et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9030964 Essinger et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066087 Shpunt Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082195 Holeva et al. Jul 2015 B2
9123171 Chavez Sep 2015 B1
9142035 Rotman et al. Sep 2015 B1
9171278 Kong et al. Oct 2015 B1
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9233470 Bradski et al. Jan 2016 B1
9235899 Kirmani et al. Jan 2016 B1
9250712 Todeschini Feb 2016 B1
9262633 Todeschini et al. Feb 2016 B1
9273846 Rossi et al. Mar 2016 B1
9299013 Curlander et al. Mar 2016 B1
D757009 Oberpriller et al. May 2016 S
9342724 McCloskey et al. May 2016 B2
9366861 Johnson Jun 2016 B1
9375945 Bowles Jun 2016 B1
D760719 Zhou et al. Jul 2016 S
9390596 Todeschini Jul 2016 B1
9399557 Mishra et al. Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9412242 Van et al. Aug 2016 B2
9424749 Reed et al. Aug 2016 B1
D766244 Zhou et al. Sep 2016 S
9443222 Singel et al. Sep 2016 B2
9478113 Xie et al. Oct 2016 B2
9486921 Straszheim et al. Nov 2016 B1
9595038 Cavalcanti et al. Mar 2017 B1
9709387 Fujita et al. Jul 2017 B2
9736459 Mor et al. Aug 2017 B2
20010027995 Patel et al. Oct 2001 A1
20010032879 He et al. Oct 2001 A1
20020036765 McCaffrey et al. Mar 2002 A1
20020054289 Thibault et al. May 2002 A1
20020067855 Chiu et al. Jun 2002 A1
20020105639 Roelke Aug 2002 A1
20020109835 Goetz Aug 2002 A1
20020113946 Kitaguchi et al. Aug 2002 A1
20020118874 Chung et al. Aug 2002 A1
20020158873 Williamson Oct 2002 A1
20020167677 Okada et al. Nov 2002 A1
20020179708 Zhu et al. Dec 2002 A1
20020186897 Kim et al. Dec 2002 A1
20020196534 Lizotte et al. Dec 2002 A1
20030038179 Tsikos et al. Feb 2003 A1
20030053513 Vatan et al. Mar 2003 A1
20030063086 Baumberg Apr 2003 A1
20030078755 Leutz et al. Apr 2003 A1
20030091227 Chang et al. May 2003 A1
20030156756 Gokturk et al. Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20030197138 Pease et al. Oct 2003 A1
20030225712 Cooper et al. Dec 2003 A1
20030235331 Kawaike et al. Dec 2003 A1
20040008259 Gokturk et al. Jan 2004 A1
20040019274 Galloway et al. Jan 2004 A1
20040024754 Mane et al. Feb 2004 A1
20040066329 Zeitfuss et al. Apr 2004 A1
20040073359 Ichijo et al. Apr 2004 A1
20040083025 Yamanouchi et al. Apr 2004 A1
20040089482 Ramsden et al. May 2004 A1
20040098146 Katae et al. May 2004 A1
20040105580 Hager et al. Jun 2004 A1
20040118928 Patel et al. Jun 2004 A1
20040122779 Stickler et al. Jun 2004 A1
20040132297 Baba et al. Jul 2004 A1
20040155975 Hart et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040184041 Schopp Sep 2004 A1
20040211836 Patel et al. Oct 2004 A1
20040214623 Takahashi et al. Oct 2004 A1
20040233461 Armstrong et al. Nov 2004 A1
20040258353 Gluckstad et al. Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050117215 Lange Jun 2005 A1
20050128193 Lueder Jun 2005 A1
20050128196 Popescu et al. Jun 2005 A1
20050168488 Montague Aug 2005 A1
20050187887 Nicolas et al. Aug 2005 A1
20050211782 Martin et al. Sep 2005 A1
20050240317 Kienzle-Lietl Oct 2005 A1
20050257748 Kriesel et al. Nov 2005 A1
20050264867 Cho et al. Dec 2005 A1
20060036556 Knispel Feb 2006 A1
20060047704 Gopalakrishnan Mar 2006 A1
20060078226 Zhou Apr 2006 A1
20060108266 Bowers et al. May 2006 A1
20060109105 Varner May 2006 A1
20060112023 Horhann et al. May 2006 A1
20060151604 Zhu et al. Jul 2006 A1
20060159307 Anderson et al. Jul 2006 A1
20060159344 Shao et al. Jul 2006 A1
20060213999 Wang et al. Sep 2006 A1
20060232681 Okada Oct 2006 A1
20060255150 Longacre, Jr. Nov 2006 A1
20060269165 Viswanathan Nov 2006 A1
20060276709 Khamene et al. Dec 2006 A1
20060291719 Ikeda et al. Dec 2006 A1
20070003154 Sun et al. Jan 2007 A1
20070025612 Iwasaki et al. Feb 2007 A1
20070031064 Zhao et al. Feb 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070116357 Dewaele May 2007 A1
20070127022 Cohen et al. Jun 2007 A1
20070143082 Degnan Jun 2007 A1
20070153293 Gruhlke et al. Jul 2007 A1
20070165013 Goulanian et al. Jul 2007 A1
20070171220 Kriveshko Jul 2007 A1
20070177011 Lewin et al. Aug 2007 A1
20070181685 Zhu et al. Aug 2007 A1
20070237356 Dwinell et al. Oct 2007 A1
20070291031 Konev et al. Dec 2007 A1
20070299338 Stevick et al. Dec 2007 A1
20080013793 Hillis et al. Jan 2008 A1
20080035390 Wurz Feb 2008 A1
20080047760 Georgitsis Feb 2008 A1
20080050042 Zhang et al. Feb 2008 A1
20080054062 Gunning et al. Mar 2008 A1
20080056536 Hildreth et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080065509 Williams Mar 2008 A1
20080077265 Boyden et al. Mar 2008 A1
20080079955 Storm Apr 2008 A1
20080156619 Patel et al. Jul 2008 A1
20080164074 Wurz Jul 2008 A1
20080185432 Caballero et al. Aug 2008 A1
20080204476 Montague Aug 2008 A1
20080212168 Olmstead et al. Sep 2008 A1
20080247635 Davis et al. Oct 2008 A1
20080273191 Kim et al. Nov 2008 A1
20080273210 Hilde Nov 2008 A1
20080278790 Boesser et al. Nov 2008 A1
20090046296 Kilpatrick et al. Feb 2009 A1
20090059004 Bochicchio Mar 2009 A1
20090081008 Somin et al. Mar 2009 A1
20090095047 Patel et al. Apr 2009 A1
20090114818 Casares et al. May 2009 A1
20090134221 Zhu et al. May 2009 A1
20090161090 Campbell et al. Jun 2009 A1
20090189858 Lev et al. Jul 2009 A1
20090195790 Zhu et al. Aug 2009 A1
20090225333 Bendall et al. Sep 2009 A1
20090237411 Gossweiler et al. Sep 2009 A1
20090268023 Hsieh Oct 2009 A1
20090272724 Gubler et al. Nov 2009 A1
20090273770 Bauhahn et al. Nov 2009 A1
20090313948 Buckley et al. Dec 2009 A1
20090318815 Barnes et al. Dec 2009 A1
20090323084 Dunn et al. Dec 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100035637 Varanasi et al. Feb 2010 A1
20100060604 Zwart et al. Mar 2010 A1
20100091104 Sprigle et al. Apr 2010 A1
20100113153 Yen et al. May 2010 A1
20100118200 Gelman et al. May 2010 A1
20100128109 Banks May 2010 A1
20100161170 Siris Jun 2010 A1
20100171740 Andersen et al. Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100194709 Tamaki et al. Aug 2010 A1
20100202702 Benos et al. Aug 2010 A1
20100208039 Stettner Aug 2010 A1
20100211355 Horst et al. Aug 2010 A1
20100217678 Goncalves Aug 2010 A1
20100220849 Colbert et al. Sep 2010 A1
20100220894 Ackley et al. Sep 2010 A1
20100223276 Al-Shameri et al. Sep 2010 A1
20100245850 Lee et al. Sep 2010 A1
20100254611 Arnz Oct 2010 A1
20100274728 Kugelman Oct 2010 A1
20100303336 Abraham et al. Dec 2010 A1
20100315413 Izadi Dec 2010 A1
20100321482 Cleveland Dec 2010 A1
20110019155 Daniel et al. Jan 2011 A1
20110040192 Brenner et al. Feb 2011 A1
20110040407 Lim et al. Feb 2011 A1
20110043609 Choi et al. Feb 2011 A1
20110075936 Deaver Mar 2011 A1
20110081044 Peeper et al. Apr 2011 A1
20110099474 Grossman et al. Apr 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110180695 Li et al. Jul 2011 A1
20110188054 Petronius et al. Aug 2011 A1
20110188741 Sones et al. Aug 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110234389 Mellin Sep 2011 A1
20110235854 Berger et al. Sep 2011 A1
20110243432 Hirsch, Jr. Oct 2011 A1
20110249864 Venkatesan et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110260965 Kim et al. Oct 2011 A1
20110279916 Brown et al. Nov 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110286628 Goncalves et al. Nov 2011 A1
20110288818 Thierman et al. Nov 2011 A1
20110297590 Ackley et al. Dec 2011 A1
20110301994 Tieman Dec 2011 A1
20110303748 Lemma et al. Dec 2011 A1
20110310227 Konertz et al. Dec 2011 A1
20110310256 Shishido Dec 2011 A1
20120014572 Wong et al. Jan 2012 A1
20120024952 Chen Feb 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057345 Kuchibhotla Mar 2012 A1
20120067955 Rowe Mar 2012 A1
20120074227 Ferren et al. Mar 2012 A1
20120081714 Pangrazio et al. Apr 2012 A1
20120082383 Kruglick Apr 2012 A1
20120111946 Golant May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120113250 Farlotti et al. May 2012 A1
20120126000 Kunzig et al. May 2012 A1
20120138685 Qu et al. Jun 2012 A1
20120140300 Freeman Jun 2012 A1
20120168509 Nunnink et al. Jul 2012 A1
20120168511 Kotlarsky et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120179665 Baarman et al. Jul 2012 A1
20120185094 Rosenstein et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120218436 Rhoads et al. Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120224026 Bayer et al. Sep 2012 A1
20120224060 Gurevich et al. Sep 2012 A1
20120228382 Havens et al. Sep 2012 A1
20120236212 Itoh et al. Sep 2012 A1
20120236288 Stanley Sep 2012 A1
20120242852 Hayward et al. Sep 2012 A1
20120248188 Kearney Oct 2012 A1
20120256901 Bendall Oct 2012 A1
20120261474 Kawashime et al. Oct 2012 A1
20120262558 Boger et al. Oct 2012 A1
20120280908 Rhoads et al. Nov 2012 A1
20120282905 Owen Nov 2012 A1
20120282911 Davis et al. Nov 2012 A1
20120284012 Rodriguez et al. Nov 2012 A1
20120284122 Brandis Nov 2012 A1
20120284339 Rodriguez Nov 2012 A1
20120284593 Rodriguez Nov 2012 A1
20120293610 Doepke et al. Nov 2012 A1
20120293625 Schneider et al. Nov 2012 A1
20120294478 Publicover et al. Nov 2012 A1
20120294549 Doepke Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120300991 Free Nov 2012 A1
20120313848 Galor et al. Dec 2012 A1
20120314030 Datta et al. Dec 2012 A1
20120314058 Bendall et al. Dec 2012 A1
20120314258 Moriya Dec 2012 A1
20120316820 Nakazato et al. Dec 2012 A1
20130019278 Sun et al. Jan 2013 A1
20130038881 Pesach et al. Feb 2013 A1
20130038941 Pesach et al. Feb 2013 A1
20130043312 Van Horn Feb 2013 A1
20130050426 Sarmast et al. Feb 2013 A1
20130056285 Meagher Mar 2013 A1
20130070322 Fritz et al. Mar 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130076857 Kurashige et al. Mar 2013 A1
20130082104 Kearney et al. Apr 2013 A1
20130093895 Palmer et al. Apr 2013 A1
20130094069 Lee et al. Apr 2013 A1
20130101158 Lloyd et al. Apr 2013 A1
20130156267 Muraoka et al. Jun 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200150 Reynolds et al. Aug 2013 A1
20130200158 Feng et al. Aug 2013 A1
20130201288 Billerbeck et al. Aug 2013 A1
20130208164 Cazier et al. Aug 2013 A1
20130211790 Loveland et al. Aug 2013 A1
20130222592 Gieseke Aug 2013 A1
20130223673 Davis et al. Aug 2013 A1
20130256418 Havens et al. Oct 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130278425 Cunningham et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130291998 Konnerth Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306730 Brady et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308013 Li et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130317642 Asaria et al. Nov 2013 A1
20130326425 Forstall et al. Dec 2013 A1
20130329012 Bartos et al. Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341399 Xian et al. Dec 2013 A1
20130342342 Sabre et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001258 Chan et al. Jan 2014 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008430 Soule et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140019005 Lee et al. Jan 2014 A1
20140021259 Moed et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140027518 Edmonds et al. Jan 2014 A1
20140031665 Pinto et al. Jan 2014 A1
20140034731 Gao et al. Feb 2014 A1
20140034734 Sauerwein, Jr. Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039674 Motoyama et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140058612 Wong et al. Feb 2014 A1
20140061305 Nahill et al. Mar 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140062709 Hyer et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140064624 Kim et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067104 Osterhout Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071430 Hansen et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140075846 Woodburn Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140079297 Tadayon et al. Mar 2014 A1
20140084068 Gillet et al. Mar 2014 A1
20140091147 Evans et al. Apr 2014 A1
20140097238 Ghazizadeh Apr 2014 A1
20140097249 Gomez et al. Apr 2014 A1
20140097252 He et al. Apr 2014 A1
20140098091 Hori Apr 2014 A1
20140098243 Ghazizadeh Apr 2014 A1
20140098244 Ghazizadeh Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140104664 Lee et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein, Jr. Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Long et al. May 2014 A1
20140121445 Fontenot et al. May 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125577 Hoang et al. May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140135984 Hirata May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140139654 Takahashi May 2014 A1
20140140585 Wang May 2014 A1
20140142398 Patil et al. May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140152975 Ko Jun 2014 A1
20140157861 Jonas et al. Jun 2014 A1
20140158468 Adami Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140160329 Ren et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140166760 Meier et al. Jun 2014 A1
20140166761 Todeschini et al. Jun 2014 A1
20140168380 Heidemann et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175169 Kosecki et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140175174 Barber et al. Jun 2014 A1
20140177931 Kocherscheidt et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140192187 Atwell et al. Jul 2014 A1
20140192551 Masaki Jul 2014 A1
20140197238 Liu et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140201126 Zadeh et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140205150 Ogawa Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140225918 Mittal et al. Aug 2014 A1
20140225922 Sbardella Aug 2014 A1
20140225985 Klusza et al. Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140240454 Hirata et al. Aug 2014 A1
20140247279 Nicholas et al. Sep 2014 A1
20140247280 Nicholas et al. Sep 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140267609 Laffargue Sep 2014 A1
20140268093 Tohme et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140270361 Amma et al. Sep 2014 A1
20140278387 Digregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140306833 Ricci Oct 2014 A1
20140307855 Withagen et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140313527 Askan Oct 2014 A1
20140319219 Liu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140320408 Zagorsek et al. Oct 2014 A1
20140320605 Johnson Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140333775 Naikal et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140347533 Toyoda Nov 2014 A1
20140350710 Gopalakrishnan et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van et al. Dec 2014 A1
20140361073 Du et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20140379613 Nishitani et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009100 Haneda et al. Jan 2015 A1
20150009301 Ribnick et al. Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150016712 Rhoads et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150036876 Marrion et al. Feb 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150042791 Metois et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150062369 Gehring et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150070158 Hayasaka Mar 2015 A1
20150070489 Rudman et al. Mar 2015 A1
20150071818 Scheuren et al. Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150116498 Vartiainen et al. Apr 2015 A1
20150117749 Smith et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150130928 Maynard et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos May 2015 A1
20150161429 Xian Jun 2015 A1
20150163474 You et al. Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150178900 Kim et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150201181 Moore et al. Jul 2015 A1
20150204662 Kobayashi et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150213590 Brown et al. Jul 2015 A1
20150213647 Laffargue et al. Jul 2015 A1
20150219748 Hyatt et al. Aug 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150229838 Hakim et al. Aug 2015 A1
20150243030 Pfeiffer Aug 2015 A1
20150248578 Utsumi Sep 2015 A1
20150253469 Le et al. Sep 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150260830 Ghosh et al. Sep 2015 A1
20150269403 Lei Sep 2015 A1
20150276379 Ni et al. Oct 2015 A1
20150308816 Laffargue Oct 2015 A1
20150316368 Moench et al. Nov 2015 A1
20150325036 Lee Nov 2015 A1
20150327012 Bian et al. Nov 2015 A1
20150332075 Burch Nov 2015 A1
20150332463 Galera et al. Nov 2015 A1
20150355470 Herschbach Dec 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160048725 Holz et al. Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160063429 Varley et al. Mar 2016 A1
20160065912 Peterson Mar 2016 A1
20160070982 Jachalsky et al. Mar 2016 A1
20160088287 Sadi et al. Mar 2016 A1
20160090283 Svensson et al. Mar 2016 A1
20160090284 Svensson et al. Mar 2016 A1
20160094016 Beach et al. Mar 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 McCloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue et al. Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160117631 McCloskey et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160125873 Braho et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160138247 Conway et al. May 2016 A1
20160138248 Conway et al. May 2016 A1
20160138249 Conway et al. May 2016 A1
20160147408 Bevis et al. May 2016 A1
20160164261 Warren Jun 2016 A1
20160169665 Deschenes et al. Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178915 Mor et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160187186 Coleman et al. Jun 2016 A1
20160187187 Coleman et al. Jun 2016 A1
20160187210 Coleman et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160191801 Sivan Jun 2016 A1
20160202478 Masson et al. Jul 2016 A1
20160203641 Bostick et al. Jul 2016 A1
20160210780 Paulovich et al. Jul 2016 A1
20160223474 Tang et al. Aug 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Wilz et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160328854 Kimura Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20170103545 Holz Apr 2017 A1
20170115490 Hsieh et al. Apr 2017 A1
20170115497 Chen et al. Apr 2017 A1
20170116462 Ogasawara Apr 2017 A1
20170121158 Wong et al. May 2017 A1
20170132806 Balachandreswaran May 2017 A1
20170139213 Schmidtlin May 2017 A1
20170148250 Angermayer et al. May 2017 A1
20170182942 Hardy et al. Jun 2017 A1
20170200296 Jones et al. Jul 2017 A1
20170304950 Moore Oct 2017 A1
20170309108 Sadovsky et al. Oct 2017 A1
20170336870 Everett et al. Nov 2017 A1
20180018627 Ross et al. Jan 2018 A1
20190139300 Kirchberg May 2019 A1
Foreign Referenced Citations (64)
Number Date Country
2004212587 Apr 2005 AU
201139117 Oct 2008 CN
3335760 Apr 1985 DE
10210813 Oct 2003 DE
102007037282 Mar 2008 DE
1111435 Jun 2001 EP
1443312 Aug 2004 EP
1112483 May 2006 EP
1232480 May 2006 EP
2013117 Jan 2009 EP
2216634 Aug 2010 EP
2286932 Feb 2011 EP
2372648 Oct 2011 EP
2381421 Oct 2011 EP
2533009 Dec 2012 EP
2562715 Feb 2013 EP
2722656 Apr 2014 EP
2779027 Sep 2014 EP
2833323 Feb 2015 EP
2843590 Mar 2015 EP
2845170 Mar 2015 EP
2966595 Jan 2016 EP
3006893 Apr 2016 EP
3007096 Apr 2016 EP
3012601 Apr 2016 EP
3270342 Jan 2018 EP
2503978 Jan 2014 GB
2525053 Oct 2015 GB
2531928 May 2016 GB
04-129902 Apr 1992 JP
2006-096457 Apr 2006 JP
2007-084162 Apr 2007 JP
2008-210276 Sep 2008 JP
2014-210646 Nov 2014 JP
2015-174705 Oct 2015 JP
10-2010-0020115 Feb 2010 KR
10-2011-0013200 Feb 2011 KR
10-2011-0117020 Oct 2011 KR
10-2012-0028109 Mar 2012 KR
9640452 Dec 1996 WO
0077726 Dec 2000 WO
0114836 Mar 2001 WO
2006095110 Sep 2006 WO
2007012554 Feb 2007 WO
2007015059 Feb 2007 WO
2007125554 Nov 2007 WO
2011017241 Feb 2011 WO
2012175731 Dec 2012 WO
2013021157 Feb 2013 WO
2013033442 Mar 2013 WO
2013163789 Nov 2013 WO
2013166368 Nov 2013 WO
2013173985 Nov 2013 WO
2013184340 Dec 2013 WO
2014019130 Feb 2014 WO
2014023697 Feb 2014 WO
2014102341 Jul 2014 WO
2014110495 Jul 2014 WO
2014149702 Sep 2014 WO
2014151746 Sep 2014 WO
2015006865 Jan 2015 WO
2016020038 Feb 2016 WO
2016061699 Apr 2016 WO
2016085682 Jun 2016 WO
Non-Patent Literature Citations (168)
Entry
Search Report and Opinion in Related EP Application 15176943.7, dated Jan. 8, 2016, 8 pages.
Search Report and Opinion in related GB Application No. 1517112.7, dated Feb. 19, 2016, 6 Pages.
Search Report in counterpart European Application No. 15182675.7, dated Dec. 4, 2015, 10 pages.
Second Chinese Office Action in related CN Application No. 201520810313.3, dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
Second Chinese Office Action in related CN Application No. 201520810685.6, dated Mar. 22, 2016, 5 pages, no references.
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
Sill Optics, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-theta-lenses/,4 pages.
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages.
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gesture” dated Aug. 25, 2014, 34 pages.
Thorlabs, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6430, 4 pages.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Patent Application entitled “Imaging Terminal Having Data Compression,” U.S. Appl. No. 14/250,923, filed Apr. 11, 2014, (Deng et al.) now abandoned.
U.S. Patent Application entitled “System and Method for Measuring Irregular Objects with a Single Camera,” U.S. Appl. No. 14/165,980, filed Jan. 28, 2014 (Li et al.), now abandoned.
U.S. Patent Application for a System and Method for Indicia Verification, filed Jul. 18, 2014 (Hejl), U.S. Appl. No. 14/334,934.
U.S. Patent Application for an Axially Reinforced Flexible Scan Element, filed Jul. 25, 2014 (Reublinger et al.); 41 pages, U.S. Appl. No. 14/340,627.
U.S. Patent Application for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.), U.S. Appl. No. 14/264,173.
U.S. Patent Application for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering), U.S. Appl. No. 14/257,364.
U.S. Patent Application for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.), U.S. Appl. No. 14/231,898.
U.S. Patent Application for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.), U.S. Appl. No. 14/446,391.
U.S. Patent Application for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned., U.S. Appl. No. 14/277,337.
U.S. Appl. No. for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.), U.S. Appl. No. 14/283,282.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/702,979 for Tracking Batiery Conditions filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Filch et al.); 44 pages.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Barndringa); 38 pages.
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages.
U.S. Appl. No. 14/747,197 for Optical Patie RN Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages.
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages.
U.S. Appl. No. 14/800,757, Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages.
U.S. Appl. No. 14/801,023, Tyler Doornenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages.
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages (only new art cited herein).
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages [Cited in EP Extended search report dated Apr. 10, 2017].
Ulusoy, Ali Osman et al.; “One-Shot Scanning using De Bruijn Spaced Grids”, Brown University; 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1786-1792 [Cited in EPO Search Report dated Dec. 5, 2017].
United Kingdom Combined Search and Examination Report dated Mar. 21, 2018, 5 pages (Art has been previously cited).
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages [References have been previously cited; WO2014/151746, WO2012/175731, US 2014/0313527, GB2503978].
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, dated Oct. 19, 2016, 7 pages.
Examination Report in related EP Application No. 13193181.8 dated Mar. 20, 2019, pp. 1-4.
Examination Report in related EP Application No. 13785171.3 dated Apr. 2, 2019, pp. 1-5.
Examination Report in related EP Application No. 15190315, dated Jan. 26, 2018, 6 pages [Only new art cited herein].
Examination Report in related GB Application No. GB1517843.7, dated Jan. 19, 2018, 4 pages [Only new art cited herein].
Examination Report in related UK Application No. GB1517842.9 dated Dec. 21, 2018, pp. 1-7 [All references previously cited.].
Examination Report in related UK Application No. GB1517842.9 dated Mar. 8, 2019, pp. 1-4.
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages.
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages.
Extended European Search report in related EP Application No. 17189496.7 dated Dec. 5, 2017; 9 pages.
Extended European Search report in related EP Application No. 17190323.0 dated Jan. 19, 2018; 6 pages [Only new art cited herein].
First Office Action in related CN Application No. 201510860188.1 dated Jan. 18, 2019, pp. 1-14 [All references previously cited].
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6,n.6. {Feb. 9, 2017 Final Office Action in related matter: downloaded Mar. 2, 2017 from http://iopscience.iop.org}.
Gabriel Theodoropoulos, Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe and Tap Gestures, Aug. 25, 2014.
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011, 6 pages, [Office Action dated Jan. 20, 2017 in related Application].
Great Britain Combined Search and Examination Report in related Application GB1517842.9, dated Apr. 8, 2016, 8 pages.
Great Britain Search Report for related Application On. GB1517843.7, dated Feb. 23, 2016; 8 pages.
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis_reports/736, Accessed May 31, 2015, 157 pages.
H. Sprague Ackley, “Automatic Mode Switching in a Volume Dimensioner”, U.S. Appl. No. 15/182,636, filed Jun. 15, 2016, 53 pages, Not yet published.
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2001 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001 Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3.
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages.
Houle et al., “Vehical Positioning and Object Avoidance”, U.S. Appl. No. 15/007,522 [not yet published], filed Jan. 27, 2016, 59 pages.
Intention to Grant for British Application No. 1607394.2, dated Oct. 1, 2019, 2 pages.
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8.
International Search Report for PCT/US2013/039438 (WO2013166368), dated Oct. 12, 2013, 7 pages.
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; Rose 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages.
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages.
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages.
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published.
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winier Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, (retrieved on Jun. 16, 2014), Authors are employees of common Applicant.
Lowe David G., “Fitting Parameterized Three-Dimensional Models to Images”, IEEE Transaction on Pattern Analysis and Machine Intelligence, IEEE Computer Society, USA, vol. 13, No. 5, May 1, 1991, pp. 441-450.
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134.
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/928,032, filed Oct. 30, 2015, 48 pages, not yet published.
Mike Stensvold, “get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016].
Mouaddib E. et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages.
Notification of Grant for British Application No. 1607394.2, dated Nov. 12, 2019, 2 pages.
Office Action for U.S. Appl. No. 14/801,023, dated Apr. 4, 2018, 52 pages.
Office Action for U.S. Appl. No. 14/801,023, dated Dec. 13, 2018, 39 pages.
Office Action for U.S. Appl. No. 14/801,023, dated Jan. 20, 2017, 35 pages.
Office Action for U.S. Appl. No. 14/801,023, dated Jun. 13, 2019, 39 pages.
Office Action for U.S. Appl. No. 14/801,023, dated May 2, 2017, 56 pages.
Office Action for U.S. Appl. No. 14/801,023, dated Oct. 25, 2017, 58 pages.
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7.
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages [Office Action dated Jan. 20, 2017 in related Application].
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011.
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages.
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, Non Final Office Action dated May 19, 2017; 6 pages.
Reisner-Kollmann,Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG ″10, 8 pages.
Ron Padzensky, Gesture Control, 2014.
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Received Mar. 6, 2003; Accepted Oct. 2, 2003; 23 pages.
Santolaria et al. “A one-step intrinsic and extrinsic calibration method for laster line scanner operation in coordinate measuring machines”, dated Apr. 1, 2009, Measurement Science and Technology, IOP, Bristol, GB, vol. 20, No. 4; 12 pages.
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages.
Boavida et al., “Dam monitoring using combined terrestrial imaging systems”, 2009 Civil Engineering Survey De/Jan. 2009, pp. 33-38 {Cited in Notice of Allowance dated Sep. 15, 2017 in related matter}.
Bosch Tool Corporation, “Operating/Safety Instruction for DLR 130”, Dated Feb. 2, 2009, 36 pages.
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages.
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages [No new art cited].
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119.
Combined Search and Examination Report in related UK Application No. GB1817189.2 dated Nov. 14, 2018, pp. 1-4 [Reference previously cited.].
Combined Search and Examination Report in related UK Application No. GB1900752.5 dated Feb. 1, 2019, pp. 1-5.
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2.
Dimensional Weight-Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional_weight, download date Aug. 1, 2008, 2 pages.
Dimensioning Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download dale Aug. 1, 2008, 1 page.
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages.
EKSMA Optics, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages.
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry_E1 -Hakim/publicalion/44075058_A_Knowledge_Based_EdgeObject_Measurement_Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages.
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages.
EP Extended Search Report in related EP Applicaton No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art ited herein}.
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, dated Mar. 26, 2015, 7 pages.
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages {Only new art cited herein}.
European Exam Report in related EP Applciation 16172995.9, dated Jul. 6, 2017, 9 pages [No new art to be cited].
European Exam Report in related EP Application 16172995.9, dated Mar. 15, 2018, 7 pages (Only new art cited herein).
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages [Art previously cited in this matter].
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages [No new art to cite].
European Exam Report in related EP Application No. 16152477.2, dated Jun. 20, 2017, 4 pages [No art to be cited].
European Exam Report in related, EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages, [References have been previously cited; WO20111017241 and US 2014/0104413].
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages [References have been previously cited].
European extended Search Report in related Application No. 17207882.6 dated Apr. 26, 2018, 10 pages.
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages.
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages [only new art has been cited; US Publication 2014/0034731 was previously cited].
European Extended Search Report in related EP Application 17205030.4, dated Mar. 22, 2018, 8 pages.
European Extended Search Report in related EP application 18184864.9, dated Oct. 30, 2018, 7 pages.
European Extended search report in related EP Application No. 15190306.9, dated Sep. 9, 2016, 15 pages.
European Extended Search Report in Related EP Application No. 16172995.9, dated Aug. 22, 2016, 11 pages.
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages [Only new references cited: US 2013/0038881 was previously cited].
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages.
European Extended Search Report in related EP Application No. 17201794.9, dated Mar. 16, 2018, 10 pages [Only new art cited herein].
European Office Action for application EP 13186043, dated Jun. 12, 2014 (now EP2722656 (Apr. 23, 2014)), Total of 6 pages.
European Patent Office Action for Application No. 14157971.4-1906, dated Jul. 16, 2014, 5 pages,
European Patent Search Report for Application No. 14157971.4-1906, dated Jun. 30, 2014, 6 pages.
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Apr. 23, 2014)): Total pages 7.
European Search Report for related Application EP 15190249.1, dated Mar. 22, 2016, 7 pages.
European Search Report for related EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages.
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages.
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages.
European Search Report from related EP Application No. 16168216.6, dated Oct. 20, 2016, 8 pages.
European Search Report in related EP Application No. 15190315.0, dated Apr. 1, 2016, 7 pages.
European Search Report in related EP Application No. 17175357.7, dated Aug. 17, 2017, pp. 1-7 [No new art to be cited].
Examination Report in European Application No. 16152477.2 dated Jun. 18, 2019, pp. 1-6.
Examination Report in European Application No. 17175357.7 dated Jun. 26, 2019, pp. 1-5 [All references previously cited.].
Examination Report in European Application No. 19171976.4 dated Jun. 19 2019, pp. 1-8.
Examination Report in GB Application No. 1607394.2 dated Jul. 5 2019, pp. 1-4.
United Kingdom Further Exam Report in related application GB1607394.2 dated Oct. 5, 2018; 5 pages [Only new art cited here in].
United Kingdom Further Examination Report in related GB Patent Application No. 1517112.7 dated Jul. 17, 2018; 4 pages [No art cited].
United Kingdom Further Examination Report in related GB Patent Application No. 1517842.9 dated Jul. 26, 2018; 5 pages [Cited art has been previously cited in this matter].
United Kingdom Further Examination Report in related GB Patent Application No. 1620676.5 dated Jul. 17, 2018; 4 pages [No art cited].
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages.
United Kingdom Search Report in related Application No. GB1700338.5, dated Jun. 30, 2017, 5 pages.
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages.
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages.
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3. (Feb. 9, 2017 Final Office Action in related matter).
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages.
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages.
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages.
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages.
Advisory Action (PTOL-303) dated Aug. 28, 2017 for U.S. Appl. No. 14/801,023.
Advisory Action (PTOL-303) dated Jul. 11, 2018 for U.S. Appl. No. 14/801,023.
Examiner initiated interview summary (PTOL-413B) dated Aug. 28, 2017 for U.S. Appl. No. 14/801,023.
Examiner initiated interview summary (PTOL-413B) dated Jul. 11, 2018 for U.S. Appl. No. 14/801,023.
U.S. Appl. No. 14/801,023, filed Jul. 16, 2015, 2017-0017301 A1, Abandoned.
Related Publications (1)
Number Date Country
20200004343 A1 Jan 2020 US
Continuations (1)
Number Date Country
Parent 14801023 Jul 2015 US
Child 16570768 US