Adjusting entries in a forwarding information base in a content centric network

Information

  • Patent Grant
  • 10129368
  • Patent Number
    10,129,368
  • Date Filed
    Wednesday, October 11, 2017
    7 years ago
  • Date Issued
    Tuesday, November 13, 2018
    6 years ago
Abstract
One embodiment provides a system that facilitates dynamic adjustment of forwarding information in a CCN. During operation, the system receives, by forwarding circuitry, an interest with a name that is a hierarchically structured variable length identifier which comprises contiguous name components ordered from a most general level to a most specific level. The system identifies in a first data structure an entry for one or more name components of the name, wherein the entry includes a list of outgoing interfaces associated with the one or more name components. The system determines network properties in response to forwarding the interest to a first interface of the list. The system reorders the list in order of priority based on the network properties, thereby facilitating the forwarding circuitry to dynamically adjust a likelihood of using a respective interface for forwarding interests associated with the one or more name components.
Description
BACKGROUND
Field

This disclosure is generally related to distribution of digital content. More specifically, this disclosure is related to a method and system for adjusting entries in a forwarding information base in a content centric network.


Related Art

The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content-centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending interest packets for various content items and receiving content object packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level. A CCN forwarder (e.g., an intermediate node or a router) can receive and forward interests and content objects based on their names. The forwarder can implement a local forwarding strategy based on three data structures: a pending interest table (PIT), which records all interests that the router has forwarded but not yet satisfied; a forwarding information base (FIB), which is a routing table that maps name prefixes to outgoing interfaces; and a content store (CS), which is a temporary cache of data packets received by the forwarder.


The FIB can be populated by a name-prefix based routing protocol, and a FIB entry may include a list of multiple outgoing interfaces for a name prefix. Given an interest with a name prefix that has multiple outgoing interfaces in the corresponding FIB entry, the forwarder can determine how to forward the interest. For example, the forwarder may forward the interest to the interfaces in sequence, by forwarding the interest to the first listed interface and waiting for a response. If the forwarder receives an interest return message (indicating an upstream error or failure), or a timeout occurs, the forwarder may forward the interest to the next listed outgoing interface. However, this sequential or “serial” strategy (similar to a depth-first network traversal) may lead to inefficiencies in the network. The forwarder may instead forward the interest as a multicast message, by forwarding the interest in parallel to all listed interfaces. However, this may introduce additional and unnecessary traffic in the network, which may also lead to inefficiencies in the network.


While a CCN brings many desired features to a network, some issues remain unsolved for a forwarder in determining a forwarding strategy for forwarding interests with multiple outgoing interfaces listed in the FIB.


SUMMARY

One embodiment provides a system that facilitates dynamic adjustment of forwarding information in a CCN. During operation, the system receives, by forwarding circuitry, an interest with a name that is a hierarchically structured variable length identifier which comprises contiguous name components ordered from a most general level to a most specific level. The system identifies in a first data structure an entry for one or more name components of the name, wherein the entry includes a list of outgoing interfaces associated with the one or more name components. The system determines network properties in response to forwarding the interest to a first interface of the list of outgoing interfaces. The system reorders the list of outgoing interfaces in order of priority based on the network properties, thereby facilitating the forwarding circuitry to dynamically adjust a likelihood of using a respective interface for forwarding interests associated with the one or more name components.


In some embodiments, the system selects a second interface from the reordered list and forwards the interest to the second interface.


In some embodiments, the system records a round trip time that begins when the interest is forwarded to the first interface and ends when a responsive content object is received from the first interface. The system reorders the list to indicate that a higher priority is based on a shorter round trip time for a respective interface.


In some embodiments, the system receives from the first interface an interest return message which indicates an error condition. The system reorders the list to indicate that the first interface is of a lower priority than a second interface which has a recorded round trip time, wherein a round trip time begins when the interest is forwarded to the second interface and ends when a responsive content object is received from the second interface.


In some embodiments, the first data structure is a forwarding information base, and an entry in the forwarding information base further includes, for a respective interface of the list of outgoing interfaces, one or more of: an indicator of a round trip time that begins when the interest is forwarded to the first interface and ends when a responsive content object is received from the first interface; an indicator of receipt of an interest return message which indicates an error condition; and an indicator of a timeout of an entry in a pending interest table, wherein the timeout indicates that a responsive content object to the interest has not been received before an expiration of the entry.


In some embodiments, the one or more name components comprise a name prefix, and the one or more name components are contiguous name components beginning from the most general level.


In some embodiments, the system, in response to detecting in a second data structure a timeout of an entry for the interest after forwarding the interest to the first interface, removes the first interface from the list or reorders the first interface to a lowest priority in the list.


In some embodiments, the second data structure is a pending interest table, and an entry in the pending interest table includes the interest name, a list of incoming interfaces from which the interest is received, a list of outgoing interfaces to which the interest is forwarded, and an expiry time which indicates a lifetime for the entry in the pending interest table.


In some embodiments, the system calculates a weight for each outgoing interface based on the network properties. The system reorders the list to indicate that a higher priority is based on a greater calculated weight for a respective interface.


In some embodiments, the system performs a function based on network properties determined over a period of time, wherein the period of time is a predetermined value or a user-defined value.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates an exemplary computing network that facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention.



FIG. 1B illustrates an exemplary computing network that facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention.



FIG. 2 illustrates an exemplary table of communication in a system which facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention.



FIG. 3 presents a flow chart illustrating a method performed by a forwarding device for dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention.



FIG. 4 presents a flow chart illustrating a method performed by a forwarding device for determining network properties and dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention.



FIG. 5 illustrates an exemplary computer and communication system that facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview

Embodiments of the present invention solve the problem of determining an efficient forwarding strategy by providing a system that allows a forwarder to dynamically adjust FIB entries based on network feedback. A FIB entry corresponds to a name prefix of an interest name, and can include a list of one or more outgoing interfaces which specify a next hop neighbor through which the forwarder can forward the interest to a destination node that can return responsive content. In the case of multiple outgoing interfaces, the forwarder can determine how to forward the interest. For example, the forwarder can use a sequential forwarding method by forwarding the interest to the first listed interface and waiting for a response. If the forwarder receives an error message, or a timeout occurs, the forwarder can forward the interest to the next listed interface. However, this sequential or serial method (which is similar to a depth-first traversal of the network) may lead to network inefficiencies. In another example, the forwarder may forward the interest simultaneously to all listed outgoing interfaces. However, this multicast or parallel method may also lead to network inefficiencies.


Embodiments of the present invention address these inefficiencies by allowing the forwarder to observe network properties in response to sending an interest via a given outgoing interface, and to use the network properties to adjust the order or priority of the list of outgoing interfaces. The forwarder can observe network properties such as a round trip time to transmit the interest and receive a corresponding content object via the given interface. The forwarder can also observe network properties such as receiving an interest return message that indicates an error condition (e.g., at an upstream node). The forwarder can also determine a timeout of a PIT entry based on an interest sent to the given outgoing interface.


The forwarder can record these network properties in the FIB entry, and reorder the list of outgoing interfaces based on the priorities. For example, given a sequential processing of ports numbered Pi-P1, if a first interest sent to port Pi returns an interest return message, and a second interest sent to port P2 returns a responsive content object with a round trip time of 10 milliseconds, the forwarder can reorder the list so that P2 has a higher priority than Pi. If a third interest sent to port P3 returns a responsive content object with a round trip time of 5 milliseconds, the forwarder can reorder the list so that P3 has a higher priority than both Pi and P2. If a fourth interest sent to port P4 results in a timeout of a corresponding PIT entry, the forwarder can either remove P4 from the list or move P4 to the end of the list. Thus, the forwarder can dynamically adjust forwarding information included in a FIB entry by using observed network properties to prioritize and reorder the list of outgoing interfaces. The system facilitates the forwarder to dynamically adjust a likelihood of using a respective interface for forwarding interests associated with a given name prefix as listed in the FIB. The forwarder can also adjust a FIB entry based on a hop count to the nearest anchor (e.g., a node that can satisfy the interest) for a respective outgoing interface, which eliminates undetected interest looping, as described in U.S. patent application Ser. No. 14/864,571.


In CCN and in examples described in this disclosure, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an Interest that indicates the unique name, and can obtain the data independent from the data's storage location, network location, application, and means of transportation. The following terms are used to describe the CCN architecture:


Content Object or “content object”: A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document. In some embodiments, the name can include a non-hierarchical identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest or “interest”: A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


Face or “face”: In CCN, the term face is a generalization of the concept of an interface. A face may be a connection to a network or directly to an application party. A face may be configured to send and receive broadcast or multicast packets on a particular network interface, or to send and receive packets using point-to-point addressing in the underlying transport, or using a tunnel (for example a TCP tunnel). A face may also be the connection to a single application process running on the same machine, via an encapsulation like UDP or an OS-specific inter-process communication path. All messages arrive through a face and are sent out through a face. In this disclosure, the terms “neighbor” and “interface” are interchangeable with the term “face,” referring to an incoming or outgoing interface of an Interest.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175 which is herein incorporated by reference.


Exemplary Computing Network


FIG. 1A illustrates an exemplary computing network 100 that facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention. A network 100 can include a consumer or client computing device 116, a producer or content producing device 118, and a router or other forwarding device at nodes 102, 104, 106, 108, 110, 112, and 114. Content requesting device 116 can include a smartphone 116.1, a tablet computer 116.2, and/or a personal computing device 116.p (e.g., a laptop). A node can be a computer system, an end-point representing users, and/or a device that can generate interests or originate content. A node can also be an edge router (e.g., CCN nodes 102, 104, 112, and 114) or a core router (e.g., intermediate CCN routers 106, 108, and 110). Network 100 can be a content centric network. A router can maintain a forwarding information base (FIB) and a pending interest table (PIT).


During operation, consumer or client computing device 116 can generate an interest 130 with a name 130.1 of “/a/b/c/d.” Interest 130 can travel through network 100 via nodes 102, 110, and 112 before reaching producer or content producing device 118. Node 110 can be a router or a forwarding device, and can maintain a FIB 140 with entries that include a name prefix 142 and a list of outgoing faces 144. For example, FIB 140 can include an entry for name prefix “/a” with a list of outgoing faces that includes information corresponding to each of nodes 112, 106, 108, and 114 (e.g., respectively, P4_112, P1_106, P2_108, and P3_114). The information included in the list of outgoing faces can also correspond to a port on node 110 through which an interest can be forwarded to a next hop neighbor. FIB 140 can also include an entry for name prefix “La/c” with a list of outgoing faces that includes information corresponding to each of nodes 114 and 112 (e.g., P3_114 and P4_112). As mentioned above, the FIB can be populated by a name-prefix based routing protocol, and the forwarder may use a sequential (serial) or a simultaneous multicast (parallel) method to forward an interest based on the list of outgoing faces in the corresponding FIB entry. Based on the sequential method, node 110 can forward interest 130 to node 112 via the corresponding face (e.g., P4_112). Interest 130 can reach device 118 via node 112, and device 118 can return a responsive content object 132 with a matching name 132.1 of “La/b/c/d” and a payload 132.2 of “<data>,” which travels back to device 116 on a reverse path as interest 130. Node 110 can observe various network properties based on sending interest 130 and receiving content object 132 via the P4_112 face, and node 110 can subsequently reorder the list of outgoing faces for the FIB entry corresponding to name prefix “La.”



FIG. 1B illustrates an exemplary computing network 150 that facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention. FIG. 1B corresponds to FIG. 1A and lists additional elements that illustrate embodiments of the present invention. In network 150 of FIG. 1B, node 110 is the intermediate node, router, or forwarding device that receives interest 130 from a downstream node. Node 110 maintains FIB 140 and a pending interest table (PIT) 170. FIB 140 includes entries that include a name prefix 142 and a list of outgoing faces 144. An entry for the name prefix “La” can include a list of outgoing faces Po-P, which correspond to the ports or faces depicted in FIG. 1B. For example, Po 150 is the port or face that corresponds to next hop neighbor node 106, P1 152 corresponds to node 108, P2 154 corresponds to node 114, P3 156 corresponds to node 112, and P, 158 corresponds to node 116 (not depicted in FIG. 1A).


A partial FIB entry 141 for name prefix “La” can correspond to one outgoing face from the list of outgoing faces and can include the following: an outgoing face 146.1; a round trip time (RTT) 146.2 that indicates an amount of time that begins when the interest is forwarded to outgoing face 146.1 and ends when a responsive content object is received from outgoing face 146.1; an interest return 146.3 indicator which indicates an error condition or a failure at an upstream node; and a PIT timeout 146.4 indicator which indicates that a responsive content object to the interest has not been received before an expiration of the corresponding PIT entry. For example, partial FIB entry 141 indicates, for name prefix “La,” information for a face of the list of outgoing faces, including: the outgoing face Po; an RTT with a default value of “null”; an interest return (IR) indicator with a default value of “0”; and a PIT entry timeout (PT) indicator with a default value of “0.” Default values indicate that no network properties have been determined for the respective face. In some embodiments, the interest return message can indicate additional network information, such as congestion, jitter, and a packet loss rate associated with upstream routers.


PIT 170 can include entries with an interest name 172, a list of incoming faces 174, a list of outgoing faces 176, and an expiry time 178. For example, an entry for the interest name “La/b/c/d” can include: an incoming face Pic (e.g., Pic 160), which corresponds to a previous hop neighbor from which interest 130 is received (e.g., node 102 as shown in FIG. 1A); outgoing faces P0 and Pi, which correspond to the next hop neighbors to which interest 130 is forwarded; and an expiry time with a value of “8 seconds.” The expiry time may be expressed in a relative time (such as 8 seconds) or an absolute time (such as 9:10:00:00:08 p.m. GMT). Note that the dashed lines appearing between nodes 112 and 116 indicate additional nodes (not pictured) which may be other next hop neighbors of node 110 and whose corresponding faces may also be included in the list of outgoing faces 144.


Exemplary Communication


FIG. 2 illustrates an exemplary table of communication in a system which facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention. The communication depicted in table 200 corresponds to the system of FIG. 1B. Table 200 includes entries with the following fields: a time 202; an action 204; a partial FIB entry 206 which corresponds to the outgoing face or port to which an interest is sent; and a list of faces 208 which includes the list of outgoing faces for the FIB entry, including the face corresponding to partial FIB entry 206. The list of faces 208 may be dynamically adjusted based on action 204 and changes to partial FIB entry 206.


During operation, at time T1, node 110 sends interest 130 via Po to node 106, where the fields of the partial FIB entry for Po include default values, and the list of faces is ordered as: {P0, Pi, P2, P3, . . . , P1). At time T2, node 110 receives an interest return message via Po and sets the interest return indicator to a value of “1” to indicate the receipt of the interest return message. At time T3, node 110 reorders the list of faces and moves Po to the end of the list: {P1, P2, P3, . . . , Pi, Pd. Next, at time T4, node 110 sends interest 130 via Pi to node 108, where the fields of the partial FIB entry for Pi include default values, and the list of faces remains as reordered at time T3. At time T5, node 110 receives a content object via Pi, and determines and sets the RTT to a value of 10 milliseconds. At time T6, node 110 determines whether it needs to reorder the list, and makes no change to the list. The list of faces remains as reordered at time T3.


At time T7, node 110 sends interest 130 via P2 to node 114, where the fields of the partial FIB entry for P2 include default values, and the list of faces remains as reordered at time T3. At time T8, node 110 receives a content object via P2, and determines and sets the RTT to a value of 5 milliseconds. At time T9, node 110 reorders the list of faces and moves P2 before Pi in the list: {P2, Pi, P3, . . . , Pi, Pol. At time T10, node 110 sends interest 130 via P3 to node 112, where the fields of the partial FIB entry for P3 include default values, and the list of faces remains as reordered at time T9. At time T11, node 110 detects a timeout of the corresponding PIT entry for interest 130 forwarded via P3, and sets the PIT timeout (“PT”) indicator to a value of “1” to indicate a timeout of the corresponding PIT entry. At time T12, node 110 reorders the list of faces and moves P3 to the end of the list: {P2, Pi, . . . Pi, Po, P3}. Node 110 can also remove P3 from the list: {P2, Pi, . . . , Pi, Po} (not shown in FIG. 2).


Thus, a forwarding device (e.g., a router or other intermediate node) can observe network properties and make adjustments to the priority of outgoing faces listed in the FIB. As depicted above, a PIT timeout will result in the lowest priority (or removal from the list), an interest return message will result in a lower priority than a responsive content object with a RTT, and a longer RTT will result in a lower priority than a shorter RTT. The forwarding device can also use additional network properties included in the interest return message to adjust the priority of the outgoing faces listed in the FIB.


Role of Forwarding Device in Facilitating Dynamic FIB Adjustments


FIG. 3 presents a flow chart 300 illustrating a method performed by a forwarding device for dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention. During operation, the system receives, by a forwarding device (or forwarding circuitry), an interest with a name that is an HSVLI which comprises contiguous name components ordered from a most general level to a most specific level (operation 302). The system identifies in a first data structure an entry for one or more name components of the name, wherein the entry includes a list of outgoing interfaces associated with the one or more name components (operation 304). The one or more name components can comprise a name prefix, and can be contiguous name components of the interest name beginning from the most general level, or can be any contiguous name components of the interest name. The first data structure can be a forwarding information base (FIB). The system forwards the interest to a first interface of the list of outgoing interfaces (operation 306). The system determines network properties in response to forwarding the interest to the first interface (operation 308). The system then reorders the list of outgoing interfaces in order of priority based on the network properties, thereby facilitating the forwarding device (or forwarding circuitry) to dynamically adjust a likelihood of using a respective interface for forwarding interests associated with the one or more name components (operation 310).


Subsequently, the system selects a second interface based on the reordered list of outgoing interfaces (operation 312), and forwards the interest to the second interface (operation 314). Given a list of outgoing interfaces, Po-P1, based on a serial or sequential method, the system can keep track of which interface is the current interface and which is the “next” interface. The system can resolve ambiguities in determining the next interface based on both the network properties previously collected for interfaces as well as the interfaces for which no network data has been collected. The system can also simultaneously send the interest to two or more interfaces of the list of interfaces based on the collected network properties, or use any method or strategy to forward the interest based on the collected network properties.



FIG. 4 presents a flow chart 400 illustrating a method performed by a forwarding device for determining network properties and dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention. During operation, the system forwards, by a forwarding device (or forwarding circuitry), an interest to a first interface of a list of outgoing interfaces corresponding to one or more name components of the interest name (operation 402). The system determines whether it receives a responsive content object (decision 404). If it does, the system records the round trip time of the interest/content object exchange in the FIB entry that corresponds to the first interface (operation 406). If the system does not receive a responsive content object (decision 404), the system determines whether it receives an interest return message (decision 408). If it does, the system records the interest return in the corresponding FIB entry for the first interface (operation 410). If the system does not receives an interest return message (decision 408), the system determines whether it detects a timeout of the PIT entry corresponding to the interest forwarded to the first interface (decision 412). If it does, the system records the PIT entry timeout in the corresponding FIB entry for the first interface (operation 414). If the system does not detect a PIT entry timeout, the operation returns to decision 404.


Upon recording the RTT, the interest return, or the PIT entry timeout in the corresponding FIB entry for the first interface, the system may optionally calculate a weight for the first interface based on the determined network properties (operation 416). The forwarding device may compute a weight for the first interface based on a window of past observations, i.e., based on network properties observed over a period of time. For example, the forwarding device may track and compute average RTTs for two outgoing interfaces, and assign a greater weight to the interface with the greater average RTT over a period which includes the past 5 minutes.


Subsequently, the system reorders the list of outgoing interfaces in order of priority based on the determined network properties (operation 418). For example, a PIT timeout will result in the lowest priority (or removal from the list), an interest return message will result in a lower priority than a responsive content object with a RTT, and a longer RTT will result in a lower priority than a shorter RTT.


Exemplary Computer and Communication System


FIG. 5 illustrates an exemplary computer and communication system that facilitates dynamically adjusting forwarding information in a content centric network, in accordance with an embodiment of the present invention. Computer and communication system 502 includes a processor 504, a memory 506, and a storage device 508. Memory 506 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer and communication system 502 can be coupled to a display device 510, a keyboard 512, and a pointing device 514. Storage device 508 can store an operating system 516, a content-processing system 518, and data 528.


Content-processing system 518 can include instructions, which when executed by computer and communication system 502, can cause computer and communication system 502 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 518 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 520). A data packet can include an interest packet or a content object packet with a name which is an HSVLI that includes contiguous name components ordered from a most general level to a most specific level. A data packet can also include an interest return message, which indicates an error condition.


Specifically, content-processing system 518 may include instructions for receiving an interest with a name that is an HSVLI (communication module 520). Content-processing system 518 may include instructions for identifying in a first data structure an entry for one or more name components of the name, wherein the entry includes a list of outgoing interfaces associated with the one or more name components (FIB lookup module 522). Content-processing system 518 may also include instructions for determining network properties in response to forwarding the interest to a first interface of the list of outgoing interfaces (network property-determining module 524 and communication module 520). Content-processing system 518 may include instructions for reordering the list of outgoing interfaces in order of priority based on the network properties (interface-list managing module 526). Content-processing system 518 can further include instructions for selecting a second interface from the reordered list (interface list-managing module 526) and forwarding the interest to the second interface (communication module 520).


Content-processing system 518 can additionally include instructions for recording a round trip time that begins when the interest is forwarded to the first interface and ends when a responsive content object is received from the first interface (network property-determining module 524) and for reordering the list to indicate that a higher priority is based on a shorter round trip time for a respective interface (interface list-managing module 526).


Content-processing system 518 can include instructions for receiving from the first interface an interest return message which indicates an error condition (communication module 520) and for reordering the list to indicate that the first interface is of a lower priority than a second interface which has a recorded round trip time (interface list-managing module 526).


Content-processing system 518 may include instructions for, in response to detecting in a second data structure a timeout of an entry for the interest after forwarding the interest to the first interface (network property-determining module 524 and communication module 520), removing the first interface from the list or reordering the first interface to a lowest priority in the list (interface list-managing module 526).


Content-processing system 518 may also include instructions for calculating a weight for each outgoing interface based on the network properties (network property-determining module 524) and reordering the list to indicate that a higher priority is based on a greater calculated weight for a respective interface (interface list-managing module 526). Content-processing system 518 may include instructions for performing a function based on network properties determined over a period of time, wherein the period of time is a predetermined value or a user-defined value (network property-determining module 524).


Data 528 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 528 can store at least: an interest; a name for an interest that is an HSVLI which comprises contiguous name components ordered from a most general level to a most specific level; a name prefix which comprises one or more name contiguous name components from the most general level; a name prefix which comprises one or more name contiguous name components; a first data structure; a forwarding information base (FIB); an entry in the FIB; a FIB entry for a name prefix with a list of corresponding outgoing interfaces; an indicator of a round trip time that begins when the interest is forwarded to the first interface and ends when a responsive content object is received from the first interface; an indicator of receipt of an interest return message which indicates an error condition; an indicator of a timeout of an entry in a pending interest table, wherein the timeout indicates that a responsive content object to the interest has not been received before an expiration of the entry; a second data structure; a pending interest table (PIT); an entry in the PIT; a PIT entry for an interest name; a list of incoming interfaces from which the interest is received; a list of outgoing interfaces to which the interest is forwarded; an absolute or relative expiry time which indicates a lifetime for the entry in the pending interest table; a weight for a respective interface; network properties; and a relative or absolute priority for an interface on the list of outgoing interfaces.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules or apparatus. The hardware modules or apparatus can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), dedicated or shared processors that execute a particular software module or a piece of code at a particular time, and other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A system comprising: forwarding circuitry;a processor coupled to the forwarding circuitry;a storage device coupled to the processor and storing instructions that when executed by a computer cause the computer to perform a method, the method comprising: receiving, by forwarding circuitry, an interest with a name that is an identifier comprising contiguous name components;identifying in a first data structure an entry for one or more name components of the name, wherein the entry includes a list of outgoing interfaces associated with the one or more name components;determining network properties when forwarding the interest to a first interface of the list of outgoing interfaces; andreordering the list of outgoing interfaces in order of priority based on the network properties, thereby changing a likelihood of the forwarding circuitry using a respective interface for forwarding interests associated with the one or more name components.
  • 2. The system of claim 1, wherein the contiguous name components are ordered from a most general level to a most specific level.
  • 3. The system of claim 1, wherein the method further comprises: selecting a second interface from the reordered list; andforwarding the interest to the second interface.
  • 4. The system of claim 1, wherein determining the network properties further comprises: recording a round trip time that begins when the interest is forwarded to the first interface and ends when a responsive content object is received from the first interface; andwherein the method further comprises reordering the list to indicate that a higher priority is based on a shorter round trip time for a respective interface.
  • 5. The system of claim 1, wherein determining the network properties further comprises: receiving from the first interface an interest return message which indicates an error condition; andwherein the method further comprises reordering the list to indicate that the first interface is of a lower priority than a second interface which has a recorded round trip time,wherein a round trip time begins when the interest is forwarded to the second interface and ends when a responsive content object is received from the second interface.
  • 6. The computer system of claim 1, wherein the first data structure is a forwarding information base, and wherein an entry in the forwarding information base further includes, for a respective interface of the list of outgoing interfaces, one or more of: an indicator of a round trip time that begins when the interest is forwarded to the first interface and ends when a responsive content object is received from the first interface;an indicator of receipt of an interest return message which indicates an error condition; andan indicator of a timeout of an entry in a pending interest table, wherein the timeout indicates that a responsive content object to the interest has not been received before an expiration of the entry.
  • 7. The computer system of claim 1, wherein the one or more name components comprise a name prefix, and wherein the one or more name components are contiguous name components beginning from the most general level.
  • 8. The computer system of claim 1, wherein determining the network properties further comprises: in response to detecting in a second data structure a timeout of an entry for the interest after forwarding the interest to the first interface: removing the first interface from the list; orreordering the first interface to a lowest priority in the list.
  • 9. The computer system of claim 8, wherein the second data structure is a pending interest table, and wherein an entry in the pending interest table includes the interest name, a list of incoming interfaces from which the interest is received, a list of outgoing interfaces to which the interest is forwarded, and an expiry time which indicates a lifetime for the entry in the pending interest table.
  • 10. A computer-implemented method comprising: receiving, by forwarding circuitry, an interest with a name that is an identifier comprising contiguous name components;identifying in a first data structure an entry for one or more name components of the name, wherein the entry includes a list of outgoing interfaces associated with the one or more name components;determining network properties when forwarding the interest to a first interface of the list of outgoing interfaces; andreordering the list of outgoing interfaces in order of priority based on the network properties, thereby changing a likelihood of the forwarding circuitry using a respective interface for forwarding interests associated with the one or more name components.
  • 11. The method of claim 10, wherein the contiguous name components are ordered from a most general level to a most specific level.
  • 12. The method of claim 10, further comprising: selecting a second interface from the reordered list; andforwarding the interest to the second interface.
  • 13. The method of claim 10, wherein determining the network properties further comprises: recording a round trip time that begins when the interest is forwarded to the first interface and ends when a responsive content object is received from the first interface; andwherein the method further comprises reordering the list to indicate that a higher priority is based on a shorter round trip time for a respective interface.
  • 14. The method of claim 10, wherein determining the network properties further comprises: receiving from the first interface an interest return message which indicates an error condition; andwherein the method further comprises reordering the list to indicate that the first interface is of a lower priority than a second interface which has a recorded round trip time,wherein a round trip time begins when the interest is forwarded to the second interface and ends when a responsive content object is received from the second interface.
  • 15. The method of claim 10, wherein determining the network properties further comprises: in response to detecting in a second data structure a timeout of an entry for the interest after forwarding the interest to the first interface: removing the first interface from the list; orreordering the first interface to a lowest priority in the list.
  • 16. The method of claim 15, wherein the second data structure is a pending interest table, and wherein an entry in the pending interest table includes the interest name, a list of incoming interfaces from which the interest is received, a list of outgoing interfaces to which the interest is forwarded, and an expiry time which indicates a lifetime for the entry in the pending interest table.
  • 17. A non-transitory computer readable storage medium encoded with instructions that, when executed by a processor, cause the processor to perform a method comprising: receiving, by forwarding circuitry, an interest with a name that is an identifier comprising contiguous name components;identifying in a first data structure an entry for one or more name components of the name, wherein the entry includes a list of outgoing interfaces associated with the one or more name components;determining network properties when forwarding the interest to a first interface of the list of outgoing interfaces; andreordering the list of outgoing interfaces in order of priority based on the network properties, thereby changing a likelihood of the forwarding circuitry using a respective interface for forwarding interests associated with the one or more name components.
  • 18. The non-transitory computer readable storage medium of claim 17, wherein the contiguous name components are ordered from a most general level to a most specific level.
  • 19. The non-transitory computer readable storage medium of claim 17, further comprising instructions that cause the processor to perform: selecting a second interface from the reordered list; andforwarding the interest to the second interface.
  • 20. The non-transitory computer readable storage medium of claim 17, wherein the instructions for determining the network properties further comprises instructions that cause the processor to perform: in response to detecting in a second data structure a timeout of an entry for the interest after forwarding the interest to the first interface: removing the first interface from the list; orreordering the first interface to a lowest priority in the list.
RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 15/069,628, entitled “Adjusting Entries in a Forwarding Information Base in a Content Centric Network”, filed on Mar. 14, 2016. The above application is hereby incorporated by reference herein in their entireties. The subject matter of this application is related to the subject matter in the following applications: U.S. patent application Ser. No. 13/847,814, entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013 (hereinafter “U.S. patent application Ser. No. 13/847,814”);U.S. patent application Ser. No. 12/338,175, entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008 (hereinafter “U.S. patent application Ser. No. 12/338,175”); andU.S. patent application Ser. No. 14/864,571, entitled “SYSTEM AND METHOD FOR ELIMINATING UNDETECTED INTEREST LOOPING IN INFORMATION-CENTRIC NETWORKS,” by inventor Jose J. Garcia-Luna-Aceves, filed 24 Sep. 2015 (hereinafter “U.S. patent application Ser. No. 14/864,571”); the disclosures of which are herein incorporated by reference in their entirety.

US Referenced Citations (513)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6173364 Zenchelsky Jan 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6332158 Risley Dec 2001 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7061877 Gummalla Jun 2006 B1
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7908337 Garcia-Luna-Aceyes Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8271578 Sheffi Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9280610 Gruber Mar 2016 B2
9832116 Wood Nov 2017 B2
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040252683 Kennedy Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100322249 Thathapudi Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219427 Hito Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120106339 Mishra May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130132719 Kobayashi May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong et al. Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140237095 Bevilacqua-Linn Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150113163 Jacobson et al. Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150279348 Cao Oct 2015 A1
20150372903 Hui Dec 2015 A1
20160021172 Mahadevan et al. Jan 2016 A1
20160044126 Mahadevan et al. Feb 2016 A1
20160072715 Mahadevan et al. Mar 2016 A1
Foreign Referenced Citations (18)
Number Date Country
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1384729 Jan 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2007113180 Oct 2007 WO
200714438 Dec 2007 WO
2011049890 Apr 2011 WO
2013123410 Aug 2013 WO
Non-Patent Literature Citations (154)
Entry
International Search Report and Written Opinion in corresponding International Application No. PCT/US2017/021648, dated May 17, 2017, 10 pages.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07; Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Ao-Jan Su, David R, Chottnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Interring Network Conditions Based on CDN Rediretons, IEEE/ACM Transactions on Networking (Feb. 2009).
“PBC Library-Pairing-Based Cryptography-About,” http://crypto.stanford.edu/pbc. downlowaded Apr. 27, 2015.
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digit.
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
L. Wang et al., ‘OSPEN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 37, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
Garcia-Luna-Aceves et al, “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommuniation Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptlogy—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
Xiong et al., “CloudSeal: End-to-End Content Protectioon in Cloud-based Storage and Deliver Servies”, 2012.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network and Computer Applications 35 (2012) 221-229.
Lui et al. (A TLV-Structured Data Naming Scheme for Content Oriented Networking, pp. 5622-5627. International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of the 20th International Conferene on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks on Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Sciencevol. 5443 (2009).
R. H. Deng. J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairing. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
RTMP (2009). Available online at http://wwwimage.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
S. Chow, J. Weng. Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010).
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Reprot 1H 2012.pdf.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. K. Adhikari, S. Jain, Y. Chen, and Z.L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocol”, Apr. 2010, pp. 1-117.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy tor Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 4, Jun. 1, 2008, pp 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.orgi. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug/ 31, 2009 at http://web.archive.org/web/2009083117021/http://en.wikipedia.org/wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/, downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder. and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking, ACM, 2011.
A. Wolman, M. Voelker. N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale performance of copperative web proxy caching,” ACM SIGHOPS Operating Systems Review. vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
B. Ahlgren et al., ‘Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Poceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,”PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 15, No. 6, 1983.
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. (Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 (2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Green and G. Ateniese, “Identify-based-proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE-A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. Inc 14 New York, NY, USA: ACM, 2014, pp. 97-106 [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “EASIER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI, 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B. G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 (2014): 66-73.
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,”IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
https://code.google.com/p/ccnx-trace/.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Related Publications (1)
Number Date Country
20180041608 A1 Feb 2018 US
Continuations (1)
Number Date Country
Parent 15069628 Mar 2016 US
Child 15729908 US