Adjusting filter or classification control settings

Information

  • Patent Grant
  • 8185930
  • Patent Number
    8,185,930
  • Date Filed
    Tuesday, November 6, 2007
    17 years ago
  • Date Issued
    Tuesday, May 22, 2012
    12 years ago
Abstract
Methods and systems for adjusting control settings associated with filtering or classifying communications to a computer or a network. The adjustment of the control settings can include adjustment of policy and/or security settings associated with the computer or network. Ranges associated with the control settings can also be provided in some implementations.
Description
TECHNICAL FIELD

This document relates generally to systems and methods for processing communications and more particularly to systems and methods for classifying and/or filtering communications.


BACKGROUND

Internet connectivity has become central to many daily activities. For example, millions of people in the United States use the internet for various bill pay and banking functionalities. Countless more people use the internet for shopping, entertainment, to obtain news, and for myriad other purposes. Moreover, many businesses relies on the internet for communicating with suppliers and customers, as well as providing a resource library for their employees. However, various entities still use the internet for malicious or non-reputable activity. For example, spammers send billions of messages daily causing headaches for many users and administrators.


Reputation systems and message profilers have enabled better recognition of non-reputable traffic. Reputation systems and message profilers can take a one size fits all approach to identifying non-reputable entities and/or messages. Such an approach can lead to users opting out of such protection and ignoring the information provided by such systems.


SUMMARY

In one aspect, systems, methods, apparatuses and computer program products are provided. In one aspect, methods are disclosed, which comprise: receiving a plurality of ranges from an administrator; providing a security control interface to a user, the security control interface comprising a plurality of security control representations associated with security controls, each of the security control mechanisms including an associated range from among the plurality of ranges, the associated range defining a minimum and maximum setting associated with the respective security controls; receiving a plurality of security control settings from the user through the security control interface; adjusting a plurality of thresholds related to plurality of control settings received from the user, the plurality of thresholds being associated with tolerance for a classification of potential security violation; and, filtering communications streams from a protected entity associated with the user based upon the plurality of thresholds.


Systems can include a security control interface, a policy control interface and a filtering module. The security control interface can produce security control representations, each of the security control representations being operable to control security settings associated with a protected entity. The policy control interface can produce policy control representations, each of the policy control representations being operable to control policy settings associated with a protected entity. The filtering module can filter one or more communication streams based upon the plurality of security settings and based upon the plurality of policy settings.


Computer readable media can include program code operable to enable adjustment of filter and/or classification settings for incoming and outgoing communications, causing a processor to performs steps including: receiving a plurality of ranges from an administrator; providing a security control interface to a user, the security control interface comprising a plurality of security control representations associated with a plurality of security control settings, each of the security control mechanisms including an associated range from among the plurality of ranges, the associated range defining a minimum and maximum setting associated with the respective security controls; receiving input from the user through the security control interface, the input requesting adjustment of the security control settings; adjusting a plurality of thresholds related to plurality of control settings received from the user, the plurality of thresholds being associated with tolerance for a classification of potential security violation; and, filtering communications streams from a protected entity associated with the user based upon the plurality of thresholds.





DESCRIPTION OF DRAWINGS


FIG. 1A is a block diagram of an example network environment including a security agent.



FIG. 1B is a block diagram of another example network architecture including local security agents.



FIG. 2 is a block diagram of an example security agent.



FIG. 3 is a block diagram of a system used to derive global reputation.



FIG. 4 is a block diagram of a system providing resolution between a global reputation and a local reputation.



FIG. 5 is a screen shot of an example graphical user interface used to adjust the settings of a communications filter.



FIG. 6 is a screen shot of another example graphical user interface used to adjusting the settings of a communications filter.



FIG. 7 is a block diagram of another example interface used to adjust the settings of a communications filter.



FIG. 8 is a block diagram of another example interface used to adjust the settings of a communications filter.



FIG. 9 is a flowchart of an example method for adjusting filter settings associated with a network security agent.





DETAILED DESCRIPTION


FIG. 1 is a block diagram depicting an example network environment including a security agent. In various implementations, the network environment can include a security agent 100, a protected network 110 including a number of agents 120a-f, and a plurality of external entities 130a-f connected via an external network 140. The security system, in various implementations, can include a reputation system 150 and/or a message profiler 160. In some implementations, the security agent 100 can reside between a firewall system (not shown) and a network 110 (e.g., an enterprise network). The network 110, in various implementations, can include a plurality of agents (e.g., computers). In further implementations, the network 110 can include a number of servers, including, for example, electronic mail servers, web servers, and various application servers as may be used by the enterprise associated with the network 110.


In various implementations, the security agent 100 can monitor communications entering and exiting the network 110. These communications can be received, for example, through an external network 120 (e.g., the Internet) from any of a number of entities 130a-f connected to the external network 120. One or more of the entities 130a-f can be legitimate originators of communications traffic while other(s) of the entities 130a-f can also be non-reputable reputable entities originating unwanted communications. However, it can be difficult to know in advance which of the entities 130a-f are originating unwanted communications and which are originating legitimate communications. As such, in some implementations, the security agent 100 can include a reputation engine 150.


In various implementations, the reputation engine can inspect a communication and to determine a reputation of an entity 130a-f associated with the communication. In some implementations, the security agent 100 can determine what action to take with the communication based upon the reputation of the originating entity. For example, if the reputation indicates that the originator of the communication is reputable the security agent can forward the communication to the recipient of the communication. However, if the reputation indicates that the originator of the communication is non-reputable, for example, the security agent can quarantine the communication, perform more tests on the message, or require authentication from the message originator, among many others. Reputation engines are described in detail in United States Patent Publication No. 2006/0015942, which is hereby incorporated by reference.


In further implementations, the security agent 100 can monitor incoming communications and derive the reputable and non-reputable characteristics of a communication by identifying the characteristics associated with the communication. For example, the attributes associated with communications can be compared to the attributes of known reputable and known non-reputable messages to determine whether the communication is legitimate or not. Message profiling is describe in detail in U.S. application Ser. No. 11/173,941, entitled “Message Profiling Systems and Methods,” filed on Jun. 2, 2005.


In some implementations, a tolerance for specific types of messages or activity can be set by a user via an agent 120a-f or an administrator of the security agent 100. However, it can be impractical for a user to set tolerances for each individual attribute. Thus, in some implementations, the user can provide control settings through an agent 120a-f for general classifications of activities. For example, a user associated with one of agents 120a-f might have a high tolerance for spam messages, and a low tolerance for virus activity. Thus, the security agent 100 can be set to include a low threshold for attributes or senders that might be originating virus content, while also being set to include a high threshold for attributes or senders that might be originating spam content.


In some implementations, a low threshold for classifying a communication can lead to overinclusive classification of a category, while a high threshold for classifying a communication can lead to an underinclusive classification of a category. For example, when a threshold is set low, a communication does not need to exhibit many of the attributes associated with a classification before being assigned to the classification. Likewise, when the threshold is set high, a communication would exhibit many of the attributes associated with a classification before being assigned to the classification. In some implementations, when the threshold is set high, positive attributes associated with the communication can be overweighted in the analysis. In other implementations, when the threshold is set low, positive attributes associated with the communication can be underweighted in the analysis.



FIG. 1B is a block diagram illustrating an example network architecture including local security agents. In the example of FIG. 2, a number of agents 170a-c can be coupled to an external network 175. In some implementations, the agents 170a-c can reside on personal computing devices (e.g., personal computer, mobile communications device, laptop computer, personal digital assistant, etc). The agents 170a-c can include a local reputation engine and/or a message profiler.


A number of other entities 180a-c can also be coupled to the network 175. The entities 180a-c can send communications on the network. Some of the communications originating from the entities 180a-c can be directed to personal computing devices that include agents 170a-c. The agents 170a-c can receive the communications and determine what action to take with the communication based upon the reputation of the sending entity 180a-c or a profile (e.g., attributes) associated with the communication. For example, if the receiving agent 170a-c determines that the message is not legitimate, or that the sending entity 180a-c is not legitimate, the agent 170a-c can determine to delay delivery of the communication, place the communication in a quarantine, mark the communication, or drop the communication, among others. In other examples, where the message is legitimate, the agent 170a-c can allow a program associated with the communication to access the communication.


In some implementations, the agents 170a-c can include a user interface. The user interface can allow users associated with the agents 170a-c to adjust control setting associated with the agents 170a-c. For example, if the user has a particular aversion to bulk communications (e.g., spam messages), the user can set the control settings to classify communications as bulk even where the communication only shares a few characteristics with known bulk communications. Similarly, if the user is not concerned about bulk messages, and is instead more concerned with misclassification of communications, the user can set the control settings to provide a stricter classification of bulk communications, thereby identifying fewer communications as bulk communications. In another example, the user and/or administrator might have a particular aversion to phishing websites. In such instances, the user can


In some implementations, the user might not care about the type of content that is being delivered but rather a communications risk associated with that content. In such implementations, the user can set the control settings to provide a higher tolerance for various content classifications associated with incoming data (e.g., including e-mail, web-data, instant messaging data, voice over internet protocol (VoIP) data, or any other application used to communicate data) presented and provide a lower tolerance for classification of communications risk associated with any incoming data.


In some implementations, an optional central reputation server 185 can be included. The central reputation server 185 can provide reputation information regarding the network entities 180a-c to the agents 170a-c upon request. For example, one of the agents 170a-c might receive a communication from an entity 185a-c from which it has previously not received communications. As such, the agent 170a-c might not be configured to determine a reputation associated with the entity 180a-c. However, the agent 170a-c can send a reputation request to a central reputation server 185 to determine a reputation associated with the entity 180a-c.


In further implementations, the agents 170a-c can outsource all reputation functions to the central reputation server 185. Thus, each communication received by the agents 170a-c can be queried to the central reputation server 185. In further implementations, the agents 170a-c can provide control settings to the central reputation server 185. In such implementations, the central reputation server can use the control settings received from the agents 170a-c to bias the respective query responses sent to each of the agents 170a-c.


In some implementations, the central reputation server can be a reputation server associated with a large network receiving and/or routing a large volume of traffic daily. The central reputation server in such instances could provide a reputation based upon the communications and behavior that the central reputation server has directly observed. In further implementations, the central reputation server 185 could be one of many central reputation servers configured to provide reputation information to agents 170a-c.


In other implementations, the central reputation server can provide an aggregation of multiple local reputations, such as the local reputations derived by agents 170a-c. For example, the central reputation server might periodically poll a plurality of agents 170a-c for reputation information associated with all the traffic the agents 170a-c have observed. The reputation server 185 can then aggregate the local reputation information to provide a global reputation.



FIG. 2 is a block diagram of an example security agent 200. In various implementations, the security agent 200 can receive data from a user or an external entity 210 (e.g., depending on the direction of the data flow) at an interface module 220. The communications can be received through any of a variety of communications media (e.g., wired or wireless).


In some implementations, the interface module can provide the communications to a reputation and/or classification engine 230. The reputation and/or classification module 230 can operate to provide reputation of entities associated with data and/or classification of data received. In some implementations, the reputation and/or classification module 230 can be a part of the security agent 200. In other implementations, the reputation and/or classification module 230 can be provided to the security agent 200 from a central device.


In various implementations, reputation can be derived based upon one or more entities associated with various types of data. The past activities of such entities can be used to predict the future activities of these entities. For example, if an entity originates spam with a high frequency, there is some likelihood that future communications include spam. In some implementations, as the frequency with which entities engage in an activity rises, the likelihood that the future activity exhibits the same characteristic also rises. In further implementations, the reputation can also be time dependent. For example, an entity might have malware (e.g., a “bot”) installed on the device. Such malware can periodically send data to other devices at predetermined times. Such entities can be assigned reputations that include time dependencies. In those implementations including a reputation engine, such characteristics can be identified by the reputation and/or classification module 230 and provided to the security agent 200 for use in determining whether to allow the associated data.


In some implementations, classification of data can be derived based upon the similarities between data content and previously classified content. For example, a user/administrator can identify a corpus of documents associated with a particular classification. The corpus of documents have been identified by the user/administrator as exhibiting the characteristics belonging to the particular classification identified. A classification engine can analyze the corpus of documents to identify similarities between the documents, thereby identifying the defining characteristics of the particular classification of documents. Subsequently received data can then be tested to determine whether the data exhibits the same features as the corpus of documents characteristic of the particular classification. In various implementations, multiple classifications of documents can be identified by providing multiple sets of document corpora. For example, a user/administrator might provide a document corpus for a spam classification, a document corpus for a phishing classification, a document corpus for a malware classification, or a document corpus for a spyware classification, among many others. In those implementations including a classification engine, such classification characteristics can be identified by the reputation and/or classification module 230 and provided to the security agent 200 for use in determining whether to allow the associated data.


In some implementations, the security agent 200 can include an risk assessment module 240. The risk assessment module 240 can operate to assess a risk associated with the particular activity 240 being engaged in by the user. In various implementations, risks can include a spectrum of activities. The closer an activity lies to an origin of a risk scale associated with the activity, the safer the activity is. The further away an activity is from the origin of the risk scale associated with the activity, the more risk involved in the activity. In various examples, risk classifications can include: liability, maturity, network security, bandwidth exhaustion, communication freedom, information security, and low productivity. Other risk classifications can be used. The risk assessment module 240 can assess the activity to identify the risk associated with the activity.


In various implementations, the security agent 200 can include a filter module 250. The filter module 250 can receive an assessed risk associated with an activity from the risk assessment module 240. The filter module 250 can apply a policy to determine whether the activity falls within an acceptable risk level. In those instances where the activity is outside of an acceptable risk level, the activity can be blocked and an administrator and/or user 260 can be notified. In those instances where the activity is within an acceptable risk level, the activity can be allowed and the user 260 can be allowed to continue the activity.


In various implementations, the security agent can also include a control settings interface 270. The control settings interface 270 can facilitate the provision of policy by a user and/or administrator 260. The control settings interface 270 can allow the user and/or administrator to tune his/her own comfort levels with respect to risk associated with activities engaged in by the user(s). For example, the classification of data and reputation of the entity originating the data can be conflated using multiple transform into several risk classifications. An assessment of the risk associated with the data in these different categories can then be made by comparing the risk associated with the activity to a policy to determine whether the activity is prohibited by policy.



FIG. 3A is a block diagram of a central reputation module. In some implementations, control settings can be used to adjust the determination of a global reputation by the central reputation module based on local reputation feedback. A security agent 300 can send a query through a network 310 to a reputation module 320. In some implementations, the reputation module 320 can be local to the security agent 300. In some examples, the security agent 300 originates a query in response to receiving a communication from an unknown entity. Alternatively, the security agent 300 can originate the query responsive to receiving any communications, thereby promoting use of more up-to-date reputation information.


The reputation module 320 is operable to respond to the query with a global reputation determination. The central reputation module 320 can derive the reputation using a reputation engine 330. In some implementations, the reputation engine 330 is operable to receive a plurality of local reputations 332 from a respective plurality of local reputation engines. In some examples, the plurality of local reputations 332 can be periodically sent by the reputation engines to the reputation module 320. Alternatively, the plurality of local reputations 332 can be retrieved by the server upon receiving a query from a security agent 300. In some implementations, the reputation module 330 can be a central reputation module and the plurality of local reputations 332 can include a local reputation derived by a local reputation engine associated with the security agent 300.


The local reputations can be combined using confidence values 334 related to each of the local reputation engines and then accumulating the results. The confidence value 334 can indicate the confidence associated with a local reputation produced by an associated reputation engine. Reputation engines associated with individuals, for example, can receive a lower weighting in the global reputation determination. In contrast, local reputations associated with reputation engines operating on large networks can receive greater weight in the reputation determination based upon the confidence value 334 associated with that reputation engine.


In some implementations, the confidence values 334 can be based upon feedback received from users. For example, a reputation engine that receives a lot of feedback indicating that communications were not properly handled because local reputation information 332 associated with the communication indicated the wrong action can be assigned low confidence values 334 for local reputations 332 associated with those reputation engines. Similarly, reputation engines that receive feedback indicating that the communications were handled correctly based upon local reputation information 332 associated with the communication indicated the correct action can be assigned a high confidence value 334 for local reputations 332 associated with the reputation engine.


In some implementations, a tuner 340 can be used to adjust the confidence values associated with the various reputation engines. The tuner can to receive control settings 342 and can adjust the confidence values based upon the received control settings 342. For example, the agent 300 can provide control settings 342 including a variety of security settings, such as any of virus sensitivity settings, computer worm sensitivity settings, phishing detection sensitivity settings, trojan horse sensitivity settings, among many other types of malware sensitivities and combinations thereof.


In other examples, the agent 300 can provide control settings that include a variety of policy settings, such as spyware sensitivity settings, spam sensitivity settings, bulk mail sensitivity settings, content sensitivity settings, user privacy sensitivity settings, and many other policy settings to protect the network from unwanted or illegal activity, including, in some instances, communications traffic originating from the protected computer (e.g., preventing spyware infecting a computer from providing keystroke logs to external entities). In some implementations, various settings might be classified as security settings, while other settings might be reclassified as policy settings. For example, spam settings can be classified under security settings and/or policy settings depending on a configuration desired by an administrator or user. In other examples, phishing settings can be classified as a security setting or as a policy setting based upon the configuration provided by an administrator or a user.


In various implementations, the confidence values 334 can be provided to the reputation module 320 by the local reputation engine itself based upon stored statistics for incorrectly classified entities. In other implementations, information used to weight the local reputation information can be communicated to the reputation module 320.


In some examples, a bias 345 can be applied to the resulting global reputation vector. The bias 345 can normalize the reputation vector to provide a normalized global reputation vector to a security agent 300. Alternatively, the bias 345 can be applied to account for local preferences associated with the security agent 300 originating the reputation query. Thus, a security agent 300 can receive a global reputation vector matching the defined preferences of the querying security agent 300. The security agent 300 can take an action on the communication based upon the global reputation vector received from the reputation module 320.


In some implementations, the preferences used in the bias 345 can include control settings 342 provided by the security agent 300 to the central reputation module 320. For example, the agent 300 can provide control settings 342 including a variety of security settings and/or policy settings. In some implementations, security settings can include policy settings. In industry, policy settings are often set up as security measures to prevent misuse of company equipment and to secure sensitive trade secrets from exposure.



FIG. 3B is a block diagram of an example security agent 350. In some implementations, control settings can be used to adjust the classification and/or filtering of messages by a the security agent 350. In various implementations, the security agent can be configured to examine an existing set of related files 392, as specified by an administrator 394, to create identification characteristics associated with the set of related files 392. The files 392 can be supplied to a classification engine 355. In various implementations, the classification engine 355 might use any of the classification techniques 375, 380, 385 on the set of related files 392 to determine the features or characterizations identifying relationships between the files 392. For example, legal documents might include Latin phrases such as in re, ipso facto, or prima facie. Such an inclusion could be discoverable by a message classification engine 355.


In some implementations, a classification engine 355 can generate a set of identifying characteristics for a class of content. The same techniques 375, 380, 385 are then used on communications entering the security agent 350. In these implementations, the characteristics of the communication may then be compared to the identifying characteristics for a class of content to determine in which class (if any) the content of the communication belongs, thereby producing a content classification 390 for the communication. In some implementations, the security agent 350 can apply a policy related to the content classification, as shown by the filtering module 360, to determine whether the communication will be delivered via network 365, or dropped, quarantined, etc. as shown by block 370. In the event that a communication does not satisfy policy, the originating system 396 can be alerted to the policy failure. The messaging content compliance system could also notify a system user or administrator 394 and/or sender of the policy failure.


In some implementations, the security agent 350 can provide an tuner interface 398 to a user or an administrator 394. The tuner interface can be used by the user or administrator to make adjustments to the classification engine 355. In some implementations, the user or administrator 394 can provide control settings to the classification engine 355. The control settings can adjust the level of similarity found between received messages and classification characterizations before classifying the received message as belonging to a classification. In other implementations, the control settings can adjust the range into which a message characteristics may fall before being classified as belonging to a classification. In some implementations, the provision of control settings can dynamically adjust the level of filtering associated with the security agent. In other implementations, the provision of control settings can adjust the level of system resources consumed by the security agent.


In still further implementations, the tuner interface 398 can provide an interface that facilitates adjustment of the filter module 360 based upon the type of traffic. For example, the administrator/user might determine that electronic mail should be monitored more closely than other types of data communications (e.g., web traffic, music/video streaming traffic, instant messaging traffic, etc.). In such examples, the administrator can use the interface to adjust the control settings based upon the type of traffic being filtered.


In other implementations, the tuner interface 398 can provide an interface to facilitate adjustment of risk tolerance associated with communications. In such implementations, an administrator and/or user can provide control settings to the filter indicating one or more classifications of traffic that the filter should pass based upon the risk associated with the communications. Thus, while data might be loosely or strictly classified by the classification engine 355 the filter module 360 can be adjusted by the tuner interface to provide strict enforcement of filter policies or loose enforcement of filter policies based upon the risk associated with data of the various classifications.



FIG. 4 is a block diagram illustrating an example resolution between a global reputation and a local reputation. In some implementations, a security agent (e.g., security agent 300 of FIG. 3A) can use global reputation data and provide resolution between global reputation data and local reputation data. The security agent 400 communicates with a server 420 to retrieve global reputation information from the server 420. The local security agent 400 can receive a communication at 402. The local security agent can correlate the communication to identify attributes of the message at 404. The attributes of the message can include, for example, an originating entity, a fingerprint of the message content, a message size, etc. The local security agent 400 includes this information in a query to the server 420. In other examples, the local security agent 400 can forward the entire message to the server 420, and the server can perform the correlation and analysis of the message.


The server 420 uses the information received from the query to determine a global reputation based upon a configuration 425 of the server 420. The configuration 425 can include a plurality of reputation information, including both information indicating that a queried entity is non-reputable 430 and information indicating that a queried entity is reputable 435. The configuration 425 can also apply a weighting 440 to each of the aggregated reputations 430, 435. A reputation score determinator 445 can provide the engine for weighting 440 the aggregated reputation information 430, 435 and producing a global reputation vector.


The local security agent 400 then sends a query to a local reputation engine at 406. The local reputation engine 408 performs a determination of the local reputation and returns a local reputation vector at 410. The local security agent 400 also receives a response to the reputation query sent to the server 420 in the form of a global reputation vector. The local security agent 400 then mixes the local and global reputation vectors together at 412. An action is then taken with respect to the received message at 414.


In some implementations, the mixer 412 can include security and/or policy control settings received from the recipient 450. For example, a recipient 450 associated with an adult content provider might not be interested in blocking communications including adult content from the computer. Thus, the recipient 450 might raise a threshold associated with classifying a particular communication as non-reputable based upon adult content included in the communication. In various implementations, multiple security and/or policy control settings can be provided. For example, such settings can include, malware detection settings, virus detection settings, phishing detection settings, trojan horse detection settings, logic bomb detection settings, zombie detection settings, spyware detections settings, click fraud detection settings, distributed denial of service detection settings, spam detection settings, bulk communications detection settings, policy violation detection settings, among many others, and combinations thereof



FIG. 5 is an example graphical user interface 500 for adjusting the settings of a filter associated with a reputation server. The graphical user interface 500 can allow the user of a local security agent to adjust the settings of a local filter in several different categories 510, such as, for example, “Virus,” “Worms,” “Trojan Horse,” “Phishing,” “Spyware,” “Spam,” “Content,” and “Bulk.” However, the categories 510 depicted are merely examples. Other categories are possible.


In various implementations, this disclosure provides an interface that enables users and/or administrators to dynamically control filtering of inbound and outbound network traffic. For example, a user and/or administrator can adjust the filtering to lower spam filtering but adjust the filtering to raise porn filtering. In additional implementations, the user and/or administrator can “tune” the amount of inbound and outbound filtering. For example, a network administrator can be responsible for the performance of the network as well as the identification of unwanted network traffic. Thus, the network administrator might want to increase throughput of a filtering system to boost network performance, while sacrificing the identification of some types of traffic.


In some implementations, the categories 510 can be divided into two or more types of categories. For example, the categories 510 of FIG. 5 are divided into a “Security Settings” type 520 of category 510, and a “Policy Settings” type 530 of category. Other categories are possible. In each of the categories 510 and types 520, 530, a mixer bar representation 540 can allow the user to adjust the particular filter setting associated with the respective category 510 of communications or entity reputations.


Moreover, while categories 510 of “Policy Settings” type 530 in various implementations can be adjusted freely based upon the user's own judgment, categories of “Security Settings” type 520 can be limited to adjustment within a range. This limitations on adjustment can be set in order to prevent a user from altering the security settings of the security agent beyond a range acceptable to a network administrator. For example, a disgruntled employee could attempt to lower the security settings, thereby leaving an enterprise network vulnerable to attack. Thus, in some implementations, the range limitations 550 placed on categories 510 in the “Security Settings” type 520 are operable to keep security at a minimum level to prevent the network from being compromised. In some implementations, the ranges 550 can be hard-wired by the system. In other implementations, the ranges 550 can be adjusted by the administrator or based upon a profile selected by a user and/or administrator. Such ranges 550 can prevent users from subverting network settings.


In various examples, the “Policy Settings” type 530 categories 510 are those types of categories 510 that would not compromise the security of a network, but might only inconvenience the user or the enterprise if the settings were lowered. Thus, in some implementations the “Policy Settings” 530 can be adjusted freely. In other implementations, the “Policy Settings” 530 can include limitations set by the administrator, by a profile, or hard-wired by the system.


Furthermore, in some implementations, range limits 550 can be placed upon all of the categories 510. Thus, the local security agent could prevent users from setting the mixer bar representation 540 outside of the provided range 550. In additional implementations, the ranges may not be shown on the graphical user interface 500. Instead, the range 550 could be abstracted out of the graphical user interface 500 and all of the settings would be relative settings. Thus, the category 510 could display and appear to allow a full range of settings, while transforming the setting into a setting within the provided range. For example, the “Virus” category 510 range 550 is provided in this example as being between level markers 8 and 13. If the graphical user interface 500 were set to abstract the allowable range 550 out of the graphical user interface 500, the “Virus” category 510 would allow setting of the mixer bar representation 540 anywhere between 0 and 14. However, the graphical user interface 500 could transform the 0-14 setting to a setting within the 8 to 13 range 550. Thus, if a user requested a setting of midway between 0 and 14, the graphical user interface could transform that setting into a setting of midway between 8 and 13.


In some implementations, control setting ranges can be limited by system performance. For example, if a system has a given processing power, the system might not have the capacity to provide for certain control settings. In some implementations, a system performance control setting can be provided. The system performance control setting can be used to provide an administrator or user with a representation of the system performance of the network based on the given security and policy control settings. For example, if each of the security and policy control settings is adjusted to a maximum level, the system performance control setting might be at lower than a maximum level.


In some implementations, adjustment of the system performance setting can cause the security and/or policy control settings to be adjusted. For example, if the security and policy control settings are set at the highest levels, and the administrator attempts to adjust the system performance setting to the maximum level, the interface can reduce the security and policy control settings to provide for maximum performance. In some implementations, the ratio between the settings can be maintained when the system performance control setting is adjusted.


In some implementations, a user can create his/her own categories for classifications. In such implementations, a tuner interface can allow the user or administrator to provide a catalog of files (e.g., documents, messages, etc.) that are representative of a group of documents for which the user intends to create a classification. A message classification engine can examine the documents and derive any relationships between the documents and derive the characteristics associated with the group of documents. For example, a user might determine that all unsolicited traffic is unwanted. Such a user can create a single classification for unsolicited traffic, which can comprise any of a number of classifications associated with the and provide those documents that belong to the classification to a message classification engine. The message classification engine can thereby create a classification and allow the user to tune the tolerance associated with the classification.



FIG. 6 is another example graphical user interface 600 for adjusting the settings of a filter associated with a reputation server. In some implementations, the graphical user interface 600 can allow the user to customize the settings view. For example, in the user interface 600 a plurality of sliders 640 can be moved horizontally to adjust policy control settings 620 and/or security control settings 630. The categories 610 can be displayed to provide the user with a list of categories corresponding to each of the sliders 640. In some implementations, the sliders can be limited to stay within a range 650 provided, for example, by an administrator.


In other implementations, the graphical user interface might provide knob representations, operable to provide the user with an interface for tuning security and/or policy control settings by turning the knob representations. Other interface abstractions are possible.



FIG. 7 is a block diagram of another example interface 700 used to adjust the settings of a communications filter. In some implementations, the interface 700 can include a number of risk classifications 710. In some examples, the risk classifications can include, among others: liability, maturity, network security, bandwidth exhaustion, communication freedom, information security, low productivity and general information.


The interface 700 can include a scale representation 720 against which the risk classifications 710 can be adjusted. In some implementations, adjusting a control setting to high tolerance on the scale 720 can allow more types of information associated with that activity category to be accessed, while adjusting the control setting to low tolerance on the scale 720 can prevent users from engaging in activities that might include some level of risk to an associated network.


In some implementations, the scale 720 can also include a blacklist setting representation 730 and a whitelist setting representation 740. The blacklist setting representation 730 can provide more freedom to users by allowing access to any types of activities associated with a risk classification 710 except where the activity is prohibited by a blacklist entry. The whitelist setting representation 740 can provide more limited access to activities associated with a risk classification 710 by blocking all activities associated with that risk classification 710 except where the activity is included on a whitelist associated with the risk classification 710.


In some implementations, the interface 700 can include a number of control setting representations 750a-h. The control setting representations 750a-h can represent risk classifications 710 including liability, maturity, network security, bandwidth exhaustion, communication freedom, information security, low productivity and general information, respectively. The various control settings can enable a user or administrator to adjust control settings associated with the respectively risk classification 710.


In some implementations, a liability risk classification setting 750a can define a user's risk tolerance with respect to legal liability. In various instances, an employee might engage in network activity could subject an employer to legal liability. For example, if a user is sending adult content to other employees, the employee may be subjecting the employer to liability for sexual harassment charges on the part of the recipient. In other examples, the employee may be engaging in criminal activities that could subject the employer to liability, such as defrauding customers under the color of his duties to the employer or embezzling money.


In some implementations, a maturity risk classification setting 750b can include content that may harm the emotional development of children. For example, in environments where children may be present, an administrator might want to limit access to content that contains mature content. In other examples, an environment such as a workplace might not include children. Such workplace environments can provide higher tolerance to mature content. In various examples, mature content can include (in no particular order) such concepts as violence, gambling, drugs, profanity, or nudity, among many others.


In some implementations, network security risk classification settings 750c can include filtering content such as sources of malware that might damage computer software, circumvent filtering policy or expose confidential data. Any network activity can expose network assets to security risks. However, a goal of a network is not to block all network traffic, but to limit the risks associated with the activities engaged in by users.


In some implementations, a bandwidth exhaustion risk classification setting 750d can include filtering risks that an application may exhaust the bandwidth of the network. Some applications, such as for example, streaming media, can use an inordinate amount of bandwidth and can cause greater risk that the network may not have enough bandwidth to serve new applications. For example, if a business is served by a digital subscriber line (DSL) connection, multiple streaming media connections (such as, e.g., streaming video, web phone, etc.) may increase the risk that an important teleconference connection cannot be established. In other examples, a business might have a T3 network connection. In such examples, bandwidth is probably less of a concern for an administrator or user based upon the available bandwidth. As such, an user/administrator can track the usage of the network and set the risk levels appropriately based upon historical usage.


In some implementations, communication freedom risk classification setting 750e can include filtering the types of applications with which users can communicate with other users. For example, many web mail programs and web phone are difficult to manage risk because they allow the user to communicate information directly to other users outside of the organization. Thus, some administrators can provide limits to the types of applications that can be used by network entities.


In some implementations, information security risk classification setting 750f can include filtering risks that a user or application exposes confidential company information to users outside of the company. For example, peer-to-peer file sharing can allow users outside of a business access to files on a business computer. In other examples, phishing websites and/or applications can allow external users to receive data associated with employees of a company, and even allow access to business information. In some implementations, productivity risk classification setting 750g can include filtering risks that employees are using the network resources for non-productive uses. Many companies do not wish to limit access to such resources for fear that employees would feel untrusted and not develop loyalty to the company. However, many websites and/or applications can reduce the productivity of a company's employees. Thus, the company might want to reduce total use of such websites and/or applications, while not eliminating access to these sites and/or applications.


In some implementations, general information risk classification setting 750h can include filtering of fact based sites that allow the user to review information about various subjects. If an administrator sets the control setting for the general information category at a low tolerance, the policy engine will limit the information accessed to those categories of information useful for their job, rather than information on a location of the user's polling place or science websites describing why the sky is blue. If the control settings are adjusted to high tolerance (or blacklist), the policy engine will allow the user to access most types of general information. So, if there is a site with lots of information that has some risk that might be blocked by your Bandwidth or Propriety setting, over-ride those other risks to let this site through.


In various implementations, other risk classifications can be used.



FIG. 8 is a block diagram of another example interface used to adjust the settings of a communications filter. In various implementations, a number of risk classifications can be identified. Risk classifications can be mapped onto a multi-dimensional risk space 800. The multi-dimensional risk space can be used, in some implementations, to aid a user or administrator in determining how to set and apply policy for an associated network (or a network device).


In some implementations, each of the risk classifications can be represented by an axis 810-870 and can be identified as orthogonal (or substantially orthogonal) to each other. In such implementations, each of the axes 810-870 associated with the risk classification is substantially independent of the other axes and can be envisioned to lie at right angles to the other axes. The axes 810-870 can be used to map activities based upon the risk associated with that activity to a respective risk classification. For example, illegal activity can imply liability issues for a company. In some instances, an activity can imply multiple risk classifications. For example, an employee viewing porn might imply a liability risk and a maturity risk if there are young people that might be affected by the content (such as a children's television production company).


The multi-dimensional risk space 800 can also include a number of control settings 750a-g. In some implementations, the multi-dimensional risk space can be provided as a companion interface for a slider interface (e.g., interface 700 of FIG. 7). In these implementations, the control settings 750a-g can provide an indication of the types of activity being filtered by the various settings made with respect to the slider interface.


In other implementations, the multi-dimensional risk space 800 can be provided as a primary control setting interface for a filtering module (e.g., filtering module 250 of FIG. 2). In such implementations, an administrator and/or user can adjust the control settings 750a-g by moving the a control setting 750a-g away from an origin or toward an origin of the respective axis 810-870 associated with the control setting 750a-g. For example, if an administrator places a high priority on network security, the administrator could move a network security control setting 750c toward the origin of a network security axis 830. In other examples, if an administrator and/or user place a low priority on network bandwidth (e.g., because there is plenty of available bandwidth), the administrator and/or user could move a bandwidth control setting 750d away from the origin of a bandwidth axis 840. Other axes can be used.


In still further implementations, total risk can be calculated based upon an area associated with an activity. For example, based upon the multi-dimensional space 800, it can be identified that there might exist an activity that involves more than two different risks. In such instances, a filter can compute an area defined by the activity on the risk classification axes 810-870 and calculate a total risk associated with the activity based upon the risks implicated by the activity on each of the implicated risk classification axes 810-870. In such implementations, a user and/or administrator can define a maximum total level of risk acceptable to the user and/or administrator, and the calculated total risk of an activity can be compared to the maximum total level of acceptable risk to determine whether to allow an activity.



FIG. 9 is a flowchart illustrating an example method for adjusting filter settings associated with a network security agent. At stage 900, ranges are identified. The ranges can be identified, for example, by a security agent (e.g., security agent 100 of FIG. 1). In various implementations, the identified ranges can provide a range within which the control setting can be adjusted. In some implementations, the range can be depicted in a user interface environment. In other implementations, the control setting can be a weighting associated with a classification category within a range of weightings, whereby the setting comprises a percentage operator (e.g., multiplier) upon a default setting. In some examples, an administrator can be allowed to set a maximum multiplier and a minimum multiplier, and the maximum and minimum multipliers comprise the range within which the control setting can be adjusted. In still further implementations, the control setting can be a direct adjustment of a threshold associated with a classification and the range can be a reflection of a minimum and maximum threshold associated with the classification. In some implementations, the range can be hard coded into the security agent. In some such implementations, an administrator can be provided authorization to provide further limitations within the range allowed by the security agent.


At stage 910, a control interface is provided. The control interface can be provided, for example, by a security agent (e.g., security agent 100 of FIG. 1) in conjunction with a user interface. In some implementations, the control interface can include a plurality of sliders operable to adjust control settings associated with a communications filter. For example, the control interface can provide an equalizer representation to the user, enabling the user to adjust a plurality of detection settings for various classifications of communications that can be filtered by a communications filter.


At stage 920, control settings can be received. The control settings can be received, for example, by a security agent (e.g., security agent 100 of FIG. 1) in conjunction with a user interface. In some implementations, the control settings are received based upon a user accessing the control interface and adjusting a control representation associated with the control interface. In various implementations, the control settings can provide direct adjustment of classification thresholds. In other implementations, the control settings can operate as a percentage operator on a default bias associated with a classification. For example, a default setting could represent the identity of a default bias, while adjusting the control setting higher or lower could multiply or divide the default bias, respectively.


At stage 930, thresholds associated with a type of communication can be adjusted. The thresholds can be adjusted, for example, by a security agent (e.g., security agent 100 of FIG. 1) in conjunction with a user interface. In some implementations, the thresholds associated with a type of communication can define the level of similarity required between a subject communication and communications previously associated with the type before a subject communication will be classified as belonging to that communication type. For example, a high threshold might require many similarities between the subject communication and classified communications before classifying the subject communication as belonging to the type. Similarly, a low threshold might require only a few similarities between the subject communication and previously received communications of the classification type before classifying the subject communication as belonging to the type. In various implementations, the similarities between communications can be derived based upon multiple attributes associated with the communication, including similarities to known legitimate communications.


In other implementations, stage 930 can be replaced by a stage operable to adjust a bias associated with a type of communication. For example, the weightings associated with specific attributes or characteristics of a subject can be adjusted to provide results to a profiler. The weightings can cause a profiler to associate a communication with a particular classification based upon certain attributes of the communication being amplified with respect to other attributes.


At stage 940, communications can be filtered based on thresholds. The communications can be filtered, for example, by a security agent (e.g., security agent 100 of FIG. 1), in conjunction with a communications filter. In some implementations, the filter can drop communications of certain classifications. In other implementations, the filter can quarantine communications for further inspection. In still further implementations, the filter can mark communications based upon a classification. In some such implementations, the markings associated with a communication can be made available to the user and/or programs associated with the user's computer.


In alternative implementations, stage 940 can be replaced by filtering the communications based on classifications identified by results of the profiler, and as biased based on the control settings. For example, a user might request that all communications be marked based upon a classification, or that certain classifications be dropped, quarantined, or otherwise delayed.


The systems and methods disclosed herein may use data signals conveyed using networks (e.g., local area network, wide area network, internet, etc.), fiber optic medium, carrier waves, wireless networks (e.g., wireless local area networks, wireless metropolitan area networks, cellular networks, etc.), etc. for communication with one or more data processing devices (e.g., mobile devices). The data signals can carry any or all of the data disclosed herein that is provided to or from a device.


The methods and systems described herein may be implemented on many different types of processing devices by program code comprising program instructions that are executable by one or more processors. The software program instructions may include source code, object code, machine code, or any other stored data that is operable to cause a processing system to perform methods described herein.


The systems and methods may be provided on many different types of computer-readable media including computer storage mechanisms (e.g., CD-ROM, diskette, RAM, flash memory, computer's hard drive, etc.) that contain instructions for use in execution by a processor to perform the methods'operations and implement the systems described herein.


The computer components, software modules, functions and data structures described herein may be connected directly or indirectly to each other in order to allow the flow of data needed for their operations. It is also noted that software instructions or a module can be implemented for example as a subroutine unit of code, or as a software function unit of code, or as an object (as in an object-oriented paradigm), or as an applet, or in a computer script language, or as another type of computer code or firmware. The software components and/or functionality may be located on a single device or distributed across multiple devices depending upon the situation at hand.


This written description sets forth the best mode of the invention and provides examples to describe the invention and to enable a person of ordinary skill in the art to make and use the invention. This written description does not limit the invention to the precise terms set forth. Thus, while the invention has been described in detail with reference to the examples set forth above, those of ordinary skill in the art may effect alterations, modifications and variations to the examples without departing from the scope of the invention.


As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meanings of “and” and “or” include both the conjunctive and disjunctive and may be used interchangeably unless the context clearly dictates otherwise.


Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


These and other implementations are within the scope of the following claims.

Claims
  • 1. A system comprising: a communications interface, implemented as part of a system comprising one or more computing devices, operable to receive data associated with a network;a risk assessment module, implemented as part of the system comprising one or more computing devices, operable to parse the data to determine a particular type of sender or recipient activity associated with the data and to identify a sender and a recipient associated with the data based upon an application of a plurality of tests to the data, the risk assessment module being operable to assign a total risk level to the data based upon the sender or recipient and one or more risks associated with the particular type of sender or recipient activity, wherein the total risk level is calculated based upon the one or more risks and a tolerance for each of the one or more risks;a filtering module, implemented as part of the system comprising one or more computing devices, operable to filter the data based upon the total risk level assigned to the data and a maximum total acceptable level of risk, the maximum total acceptable level of risk being indicated by a policy associated with the network; anda control settings interface, implemented as part of the system comprising one or more computing devices, operable to facilitate setting of the policy, the control settings interface including a plurality of orthogonal risk categories associated with various activities, wherein each risk category comprises one or more types of sender or recipient activities.
  • 2. The system of claim 1, wherein the control settings interface comprises a slider interface facilitating the movement of control setting representations associated with the plurality of orthogonal risk categories.
  • 3. The system of claim 2, wherein the control settings interface is operable to allow a network administrator to move control setting representations along a plurality of axes respectively associated with the orthogonal risk categories.
  • 4. The system of claim 3, wherein each of the axes include example sender or recipient activities that correspond to risk levels associated with the example sender or recipient activities.
  • 5. The system of claim 4, wherein the example sender or recipient activities are associated with a respective risk level on an associated axis.
  • 6. The system of claim 3, wherein the plurality of axes are parallel to each other.
  • 7. The system of claim 3, wherein the plurality of axes share an origin.
  • 8. The system of claim 3, wherein the orthogonal risk categories comprise one or more of a liability category, a maturity category, a security category, bandwidth category, a communications category, an information security category, or a productivity category.
  • 9. The system of claim 3, wherein the slider interface includes a plurality of ranges, each of the ranges being associated with a respective control setting representation within which a control setting associated with a risk category, the risk category being one of the orthogonal risk categories, can be adjusted.
  • 10. The system of claim 3, wherein the slider interface comprises a blacklist setting associated with a particular risk category from among the orthogonal risk categories, whereby only entities on a blacklist associated with the particular risk category are blocked.
  • 11. The system of claim 3, wherein the slider interface comprises a whitelist setting associated with a particular risk category from among the orthogonal risk categories, whereby only entities on a whitelist associated with the particular risk category are allowed.
  • 12. A computer-implemented method comprising: receiving data associated with a network;parsing, by one or more computer devices, the data to determine a particular type of sender or recipient activity associated with the data and to identify a sender and a recipient associated with the data based upon an application of a plurality of tests to the data, and assigning a total risk level to the data based upon the sender or recipient and one or more risks associated with the particular type of sender or recipient activity, wherein the total risk level is calculated based upon the one or more risks and a tolerance for each of the one or more risks;filtering, by the one or more computer devices, the data based upon the total risk level assigned to the data and a maximum total acceptable level of risk, the maximum total acceptable level of risk being indicated by a policy associated with the network; andsetting the policy including a plurality of orthogonal risk categories associated with various activities, wherein each risk category comprises one or more types of sender or recipient activities.
  • 13. The computer-implemented method of claim 12, further comprising providing a slider interface facilitating adjustment of the policy through a plurality of control setting representations associated with the plurality of orthogonal risk categories.
  • 14. The computer-implemented method of claim 13, wherein the slider interface is operable to enable a network administrator to move control setting representations along a plurality of axes respectively associated with the orthogonal risk categories.
  • 15. The computer-implemented method of claim 14, wherein a plurality of example sender or recipient activities are disposed along each of the axes at locations that correspond to risk levels associated with each of the example sender or recipient activities, respectively.
  • 16. The computer-implemented method of claim 15, wherein each example sender or recipient activity is associated with a respective risk level on an associated axis.
  • 17. The computer-implemented method of claim 14, wherein the plurality of axes are disposed parallel to each other.
  • 18. The computer-implemented method of claim 14, wherein the plurality of axes share an origin.
  • 19. The computer-implemented method of claim 14, further comprising associating a plurality of ranges with a respective control setting representation within which a control setting associated with the risk category, the risk category being one of the orthogonal risk categories, can be adjusted.
  • 20. The computer-implemented method of claim 14, further comprising providing a blacklist setting associated with a particular risk category from among the orthogonal risk categories, whereby only entities on a blacklist associated with the particular risk category are blocked.
  • 21. The computer-implemented method of claim 14, further comprising providing a whitelist setting associated with a particular risk category from among the orthogonal risk categories, whereby only entities on a whitelist associated with the particular risk category are allowed.
  • 22. A computer-readable non-transitory medium storing instructions that are executable by one or more processing devices, and upon such execution cause the one or more processing devices to facilitate processes comprising: receiving data associated with a network;parsing the data to determine a particular type of sender or recipient activity associated with the data and to identify a sender and a recipient associated with the data based upon an application of a plurality of tests to the data, and assigning a total risk level to the data based upon the sender or recipient and one or more risks associated with the particular type of sender or recipient activity, wherein the total risk level is calculated based upon the one or more risks and a tolerance for each of the one or more risks;filtering the data based upon the total risk level assigned to the data and a maximum total acceptable level of risk, the maximum total acceptable level of risk being indicated by a policy associated with the network; andsetting the policy including a plurality of orthogonal risk categories associated with various activities, wherein each risk category comprises one or more types of sender or recipient activities.
US Referenced Citations (391)
Number Name Date Kind
4289930 Connolly et al. Sep 1981 A
4384325 Slechta et al. May 1983 A
4386416 Giltner et al. May 1983 A
4532588 Foster Jul 1985 A
4713780 Schultz et al. Dec 1987 A
4754428 Schultz et al. Jun 1988 A
4837798 Cohen et al. Jun 1989 A
4853961 Pastor Aug 1989 A
4864573 Horsten Sep 1989 A
4951196 Jackson Aug 1990 A
4975950 Lentz Dec 1990 A
4979210 Nagata et al. Dec 1990 A
5008814 Mathur Apr 1991 A
5020059 Gorin et al. May 1991 A
5051886 Kawaguchi et al. Sep 1991 A
5054096 Beizer Oct 1991 A
5105184 Pirani et al. Apr 1992 A
5119465 Jack et al. Jun 1992 A
5144557 Wang Sep 1992 A
5144659 Jones Sep 1992 A
5144660 Rose Sep 1992 A
5167011 Priest Nov 1992 A
5210824 Putz et al. May 1993 A
5210825 Kavaler May 1993 A
5235642 Wobber et al. Aug 1993 A
5239466 Morgan et al. Aug 1993 A
5247661 Hager et al. Sep 1993 A
5276869 Forrest et al. Jan 1994 A
5278901 Shieh et al. Jan 1994 A
5283887 Zachery Feb 1994 A
5293250 Okumura et al. Mar 1994 A
5313521 Torii et al. May 1994 A
5319776 Hile et al. Jun 1994 A
5355472 Lewis Oct 1994 A
5367621 Cohen et al. Nov 1994 A
5377354 Scannell et al. Dec 1994 A
5379340 Overend et al. Jan 1995 A
5379374 Ishizaki et al. Jan 1995 A
5404231 Bloomfield Apr 1995 A
5406557 Baudoin Apr 1995 A
5414833 Hershey et al. May 1995 A
5416842 Aziz May 1995 A
5418908 Keller et al. May 1995 A
5424724 Williams et al. Jun 1995 A
5479411 Klein Dec 1995 A
5481312 Cash et al. Jan 1996 A
5483466 Kawahara et al. Jan 1996 A
5485409 Gupta et al. Jan 1996 A
5495610 Shing et al. Feb 1996 A
5509074 Choudhury et al. Apr 1996 A
5511122 Atkinson Apr 1996 A
5513126 Harkins et al. Apr 1996 A
5513323 Williams et al. Apr 1996 A
5530852 Meske, Jr. et al. Jun 1996 A
5535276 Ganesan Jul 1996 A
5541993 Fan et al. Jul 1996 A
5544320 Konrad Aug 1996 A
5550984 Gelb Aug 1996 A
5550994 Tashiro et al. Aug 1996 A
5557742 Smaha et al. Sep 1996 A
5572643 Judson Nov 1996 A
5577209 Boyle et al. Nov 1996 A
5602918 Chen et al. Feb 1997 A
5606668 Shwed Feb 1997 A
5608819 Ikeuchi Mar 1997 A
5608874 Ogawa et al. Mar 1997 A
5619648 Canale et al. Apr 1997 A
5632011 Landfield et al. May 1997 A
5638487 Chigier Jun 1997 A
5644404 Hashimoto et al. Jul 1997 A
5657461 Harkins et al. Aug 1997 A
5673322 Pepe et al. Sep 1997 A
5675507 Bobo, II Oct 1997 A
5675733 Williams Oct 1997 A
5677955 Doggett et al. Oct 1997 A
5694616 Johnson et al. Dec 1997 A
5696822 Nachenberg Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5708780 Levergood et al. Jan 1998 A
5708826 Ikeda et al. Jan 1998 A
5710883 Hong et al. Jan 1998 A
5727156 Herr-Hoyman et al. Mar 1998 A
5740231 Cohn et al. Apr 1998 A
5742759 Nessett et al. Apr 1998 A
5742769 Lee et al. Apr 1998 A
5745574 Muftic Apr 1998 A
5751956 Kirsch May 1998 A
5758343 Vigil et al. May 1998 A
5764906 Edelstein et al. Jun 1998 A
5768528 Stumm Jun 1998 A
5771348 Kubatzki et al. Jun 1998 A
5778372 Cordell et al. Jul 1998 A
5781857 Hwang et al. Jul 1998 A
5781901 Kuzma Jul 1998 A
5790789 Suarez Aug 1998 A
5790790 Smith et al. Aug 1998 A
5790793 Higley Aug 1998 A
5793763 Mayes et al. Aug 1998 A
5793972 Shane Aug 1998 A
5796942 Esbensen Aug 1998 A
5796948 Cohen Aug 1998 A
5801700 Ferguson Sep 1998 A
5805719 Pare, Jr. et al. Sep 1998 A
5812398 Nielsen Sep 1998 A
5812776 Gifford Sep 1998 A
5822526 Waskiewicz Oct 1998 A
5822527 Post Oct 1998 A
5826013 Nachenberg Oct 1998 A
5826014 Coley et al. Oct 1998 A
5826022 Nielsen Oct 1998 A
5826029 Gore, Jr. et al. Oct 1998 A
5835087 Herz et al. Nov 1998 A
5845084 Cordell et al. Dec 1998 A
5850442 Muftic Dec 1998 A
5855020 Kirsch Dec 1998 A
5860068 Cook Jan 1999 A
5862325 Reed et al. Jan 1999 A
5864852 Luotonen Jan 1999 A
5878230 Weber et al. Mar 1999 A
5884033 Duvall et al. Mar 1999 A
5892825 Mages et al. Apr 1999 A
5893114 Hashimoto et al. Apr 1999 A
5896499 McKelvey Apr 1999 A
5898836 Freivald et al. Apr 1999 A
5903723 Beck et al. May 1999 A
5911776 Guck Jun 1999 A
5923846 Gage et al. Jul 1999 A
5930479 Hall Jul 1999 A
5933478 Ozaki et al. Aug 1999 A
5933498 Schneck et al. Aug 1999 A
5937164 Mages et al. Aug 1999 A
5940591 Boyle et al. Aug 1999 A
5948062 Tzelnic et al. Sep 1999 A
5958005 Thorne et al. Sep 1999 A
5963915 Kirsch Oct 1999 A
5978799 Hirsch Nov 1999 A
5987609 Hasebe Nov 1999 A
5991881 Conklin et al. Nov 1999 A
5999932 Paul Dec 1999 A
6003027 Prager Dec 1999 A
6006329 Chi Dec 1999 A
6012144 Pickett Jan 2000 A
6014651 Crawford Jan 2000 A
6023723 McCormick et al. Feb 2000 A
6029256 Kouznetsov Feb 2000 A
6035423 Hodges et al. Mar 2000 A
6052709 Paul Apr 2000 A
6058381 Nelson May 2000 A
6058482 Liu May 2000 A
6061448 Smith et al. May 2000 A
6061722 Lipa et al. May 2000 A
6072942 Stockwell et al. Jun 2000 A
6092114 Shaffer et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094277 Toyoda Jul 2000 A
6094731 Waldin et al. Jul 2000 A
6104500 Alam et al. Aug 2000 A
6108688 Nielsen Aug 2000 A
6108691 Lee et al. Aug 2000 A
6108786 Knowlson Aug 2000 A
6118856 Paarsmarkt et al. Sep 2000 A
6119137 Smith et al. Sep 2000 A
6119142 Kosaka Sep 2000 A
6119230 Carter Sep 2000 A
6119236 Shipley Sep 2000 A
6122661 Stedman et al. Sep 2000 A
6141695 Sekiguchi et al. Oct 2000 A
6141778 Kane et al. Oct 2000 A
6145083 Shaffer et al. Nov 2000 A
6151675 Smith Nov 2000 A
6161130 Horvitz et al. Dec 2000 A
6185689 Todd, Sr. et al. Feb 2001 B1
6192407 Smith et al. Feb 2001 B1
6199102 Cobb Mar 2001 B1
6202157 Brownlie et al. Mar 2001 B1
6219714 Inhwan et al. Apr 2001 B1
6223213 Cleron et al. Apr 2001 B1
6249575 Heilmann et al. Jun 2001 B1
6249807 Shaw et al. Jun 2001 B1
6260043 Puri et al. Jul 2001 B1
6269447 Maloney et al. Jul 2001 B1
6269456 Hodges et al. Jul 2001 B1
6272532 Feinleib Aug 2001 B1
6275942 Bernhard et al. Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6279133 Vafai et al. Aug 2001 B1
6282565 Shaw et al. Aug 2001 B1
6285991 Powar Sep 2001 B1
6289214 Backstrom Sep 2001 B1
6298445 Shostack et al. Oct 2001 B1
6301668 Gleichauf et al. Oct 2001 B1
6304898 Shiigi Oct 2001 B1
6304973 Williams Oct 2001 B1
6311207 Mighdoll et al. Oct 2001 B1
6317829 Van Oorschot Nov 2001 B1
6320948 Heilmann et al. Nov 2001 B1
6321267 Donaldson Nov 2001 B1
6324569 Ogilvie et al. Nov 2001 B1
6324647 Bowman-Amuah Nov 2001 B1
6324656 Gleichauf et al. Nov 2001 B1
6330589 Kennedy Dec 2001 B1
6347374 Drake et al. Feb 2002 B1
6353886 Howard et al. Mar 2002 B1
6363489 Comay et al. Mar 2002 B1
6370648 Diep Apr 2002 B1
6373950 Rowney Apr 2002 B1
6385655 Smith et al. May 2002 B1
6393465 Leeds May 2002 B2
6393568 Ranger et al. May 2002 B1
6405318 Rowland Jun 2002 B1
6442588 Clark et al. Aug 2002 B1
6442686 McArdle et al. Aug 2002 B1
6453345 Trcka et al. Sep 2002 B2
6460141 Olden Oct 2002 B1
6470086 Smith Oct 2002 B1
6487599 Smith et al. Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6502191 Smith et al. Dec 2002 B1
6516411 Smith Feb 2003 B2
6519703 Joyce Feb 2003 B1
6539430 Humes Mar 2003 B1
6546416 Kirsch Apr 2003 B1
6546493 Magdych et al. Apr 2003 B1
6550012 Villa et al. Apr 2003 B1
6574737 Kingsford et al. Jun 2003 B1
6578025 Pollack et al. Jun 2003 B1
6609196 Dickinson, III et al. Aug 2003 B1
6650890 Iriam et al. Nov 2003 B1
6654787 Aronson et al. Nov 2003 B1
6675153 Cook et al. Jan 2004 B1
6681331 Munson et al. Jan 2004 B1
6687687 Smadja Feb 2004 B1
6697950 Ko Feb 2004 B1
6701440 Kim et al. Mar 2004 B1
6704874 Porras et al. Mar 2004 B1
6711127 Gorman et al. Mar 2004 B1
6725377 Kouznetsov Apr 2004 B1
6732101 Cook May 2004 B1
6732157 Gordon et al. May 2004 B1
6735703 Kilpatrick et al. May 2004 B1
6738462 Brunson May 2004 B1
6742124 Kilpatrick et al. May 2004 B1
6742128 Joiner May 2004 B1
6754705 Joiner et al. Jun 2004 B2
6757830 Tarbotton et al. Jun 2004 B1
6768991 Hearnden Jul 2004 B2
6769016 Rothwell et al. Jul 2004 B2
6775657 Baker Aug 2004 B1
6792546 Shanklin et al. Sep 2004 B1
6892178 Zacharia May 2005 B1
6892179 Zacharia May 2005 B1
6892237 Gai et al. May 2005 B1
6895385 Zacharia et al. May 2005 B1
6907430 Chong et al. Jun 2005 B2
6910135 Grainger Jun 2005 B1
6928556 Black et al. Aug 2005 B2
6941348 Petry et al. Sep 2005 B2
6941467 Judge et al. Sep 2005 B2
6968461 Lucas et al. Nov 2005 B1
7272149 Bly et al. Sep 2007 B2
7647411 Schiavone et al. Jan 2010 B1
20010049793 Sugimoto Dec 2001 A1
20020004902 Toh et al. Jan 2002 A1
20020016910 Wright et al. Feb 2002 A1
20020023140 Hile et al. Feb 2002 A1
20020026591 Hartley et al. Feb 2002 A1
20020032871 Malan et al. Mar 2002 A1
20020035683 Kaashoek et al. Mar 2002 A1
20020042876 Smith Apr 2002 A1
20020046041 Lang Apr 2002 A1
20020049853 Chu et al. Apr 2002 A1
20020078382 Sheikh et al. Jun 2002 A1
20020087882 Schneier et al. Jul 2002 A1
20020095492 Kaashoek et al. Jul 2002 A1
20020112185 Hodges Aug 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020120853 Tyree Aug 2002 A1
20020133365 Grey et al. Sep 2002 A1
20020138416 Lovejoy et al. Sep 2002 A1
20020138755 Ko Sep 2002 A1
20020138759 Dutta Sep 2002 A1
20020138762 Horne Sep 2002 A1
20020143963 Converse et al. Oct 2002 A1
20020147734 Shoup et al. Oct 2002 A1
20020152399 Smith Oct 2002 A1
20020165971 Baron Nov 2002 A1
20020172367 Mulder et al. Nov 2002 A1
20020178227 Matsa et al. Nov 2002 A1
20020178383 Hrabik et al. Nov 2002 A1
20020188864 Jackson Dec 2002 A1
20020194469 Dominique et al. Dec 2002 A1
20020199095 Bandini et al. Dec 2002 A1
20030005326 Flemming Jan 2003 A1
20030009554 Burch et al. Jan 2003 A1
20030009693 Brock et al. Jan 2003 A1
20030009696 Bunker et al. Jan 2003 A1
20030009699 Gupta et al. Jan 2003 A1
20030014664 Hentunen Jan 2003 A1
20030023692 Moroo Jan 2003 A1
20030023695 Kobata et al. Jan 2003 A1
20030023873 Ben-Itzhak Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030023875 Hursey et al. Jan 2003 A1
20030028803 Bunker et al. Feb 2003 A1
20030033516 Howard et al. Feb 2003 A1
20030033542 Goseva-Popstojanova et al. Feb 2003 A1
20030041264 Black et al. Feb 2003 A1
20030051026 Carter et al. Mar 2003 A1
20030051163 Bidaud Mar 2003 A1
20030051168 King et al. Mar 2003 A1
20030055931 Cravo De Almeida et al. Mar 2003 A1
20030061506 Cooper et al. Mar 2003 A1
20030065943 Geis et al. Apr 2003 A1
20030084280 Bryan et al. May 2003 A1
20030084320 Tarquini et al. May 2003 A1
20030084323 Gales May 2003 A1
20030084347 Luzzatto May 2003 A1
20030088792 Card et al. May 2003 A1
20030093667 Dutta et al. May 2003 A1
20030093695 Dutta May 2003 A1
20030093696 Sugimoto May 2003 A1
20030095555 McNamara et al. May 2003 A1
20030097439 Strayer et al. May 2003 A1
20030097564 Tewari et al. May 2003 A1
20030105976 Copeland, III Jun 2003 A1
20030110392 Aucsmith et al. Jun 2003 A1
20030110396 Lewis et al. Jun 2003 A1
20030115485 Milliken Jun 2003 A1
20030115486 Choi et al. Jun 2003 A1
20030123665 Dunstan et al. Jul 2003 A1
20030126464 McDaniel et al. Jul 2003 A1
20030126472 Banzhof Jul 2003 A1
20030135749 Gales et al. Jul 2003 A1
20030140137 Joiner et al. Jul 2003 A1
20030140250 Taninaka et al. Jul 2003 A1
20030145212 Crumly Jul 2003 A1
20030145225 Bruton, III et al. Jul 2003 A1
20030145226 Bruton, III et al. Jul 2003 A1
20030149887 Yadav Aug 2003 A1
20030149888 Yadav Aug 2003 A1
20030152096 Chapman Aug 2003 A1
20030154393 Young Aug 2003 A1
20030154399 Zuk et al. Aug 2003 A1
20030154402 Pandit et al. Aug 2003 A1
20030158905 Petry et al. Aug 2003 A1
20030159069 Choi et al. Aug 2003 A1
20030159070 Mayer et al. Aug 2003 A1
20030167402 Stolfo et al. Sep 2003 A1
20030172166 Judge et al. Sep 2003 A1
20030172167 Judge et al. Sep 2003 A1
20030172289 Soppera Sep 2003 A1
20030172291 Judge et al. Sep 2003 A1
20030172292 Judge Sep 2003 A1
20030172294 Judge Sep 2003 A1
20030172301 Judge et al. Sep 2003 A1
20030172302 Judge et al. Sep 2003 A1
20030187996 Cardina et al. Oct 2003 A1
20030212791 Pickup Nov 2003 A1
20030233328 Scott et al. Dec 2003 A1
20040015554 Wilson Jan 2004 A1
20040025044 Day Feb 2004 A1
20040054886 Dickinson et al. Mar 2004 A1
20040058673 Iriam et al. Mar 2004 A1
20040059811 Sugauchi et al. Mar 2004 A1
20040088570 Roberts et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040139160 Wallace et al. Jul 2004 A1
20040139334 Wiseman Jul 2004 A1
20040177120 Kirsch Sep 2004 A1
20040203589 Wang et al. Oct 2004 A1
20040205135 Hallam-Baker Oct 2004 A1
20040267893 Lin Dec 2004 A1
20050021738 Goeller Jan 2005 A1
20050052998 Oliver et al. Mar 2005 A1
20050065810 Bouron Mar 2005 A1
20050102366 Kirsch May 2005 A1
20050262209 Yu Nov 2005 A1
20050262210 Yu Nov 2005 A1
20060015563 Judge et al. Jan 2006 A1
20060036727 Kurapati et al. Feb 2006 A1
20060042483 Work et al. Mar 2006 A1
20060095404 Adelman et al. May 2006 A1
20060123083 Goutte et al. Jun 2006 A1
20060191002 Lee et al. Aug 2006 A1
20060212925 Shull et al. Sep 2006 A1
20060212930 Shull et al. Sep 2006 A1
20060212931 Shull et al. Sep 2006 A1
20060230039 Shull et al. Oct 2006 A1
20060253458 Dixon et al. Nov 2006 A1
20070199070 Hughes Aug 2007 A1
20070233787 Pagan Oct 2007 A1
Foreign Referenced Citations (35)
Number Date Country
2564533 Dec 2005 CA
0375138 Jun 1990 EP
0413537 Feb 1991 EP
0420779 Apr 1991 EP
0720333 Jul 1996 EP
0838774 Apr 1998 EP
0869652 Oct 1998 EP
0907120 Apr 1999 EP
1326376 Jul 2003 EP
1271846 Jul 2005 EP
2271002 Mar 1994 GB
18350870 Dec 2006 JP
10-0447082 Sep 2004 KR
2006-0012137 Feb 2006 KR
10-2006-0028200 Mar 2006 KR
1020060041934 May 2006 KR
10-0699531 Mar 2007 KR
10-0737523 Jul 2007 KR
10-0750377 Aug 2007 KR
WO 9635994 Nov 1996 WO
WO 9905814 Feb 1999 WO
WO 9933188 Jul 1999 WO
WO 9937066 Jul 1999 WO
0008543 Feb 2000 WO
WO 0042748 Jul 2000 WO
WO 0117165 Mar 2001 WO
WO 0150691 Jul 2001 WO
WO 0176181 Oct 2001 WO
WO 0213469 Feb 2002 WO
WO 0213489 Feb 2002 WO
WO 0275547 Sep 2002 WO
WO 02091706 Nov 2002 WO
WO 2004061703 Jul 2004 WO
WO 2004081734 Sep 2004 WO
WO 2005116851 Dec 2005 WO
Related Publications (1)
Number Date Country
20090119740 A1 May 2009 US