This application claims priority from Taiwanese patent application no. 105132495, filed on Oct. 7, 2016.
The disclosure relates to an adjusting mechanism, more particularly to an adjusting mechanism for selectively setting a restoring force acting on a backrest of a chair.
For users of different weights, an office chair may be adjusted to selectively set a restoring force acting on a backrest of the chair.
U.S. Pat. No. 8,528,973 B2 discloses a conventional adjusting mechanism used to adjust a restoring force that acts on a backrest of a chair. The adjusting mechanism has a spring element for creating the restoring force, a support, and a backrest support that is pivotably mounted about a support axis on the support. An adjusting element configured as a pair of scissors containing a first scissor arm and a second scissor arm is provided, and the scissor arms are rotatably connected to each other about a scissor axis. The first scissor arm is pivotably mounted on the backrest support about an adjusting axis. A spring force produced by the spring element acts on the second scissor arm. A first actuating lever length is defined between the support axis and the scissor axis. The lever length is changeable using an adjusting element for adjusting the restoring force by pivoting the adjusting element about the adjusting axis.
U.S. Pat. No. 9,265,348 B2 discloses a conventional adjusting mechanism serves for the weight-dependent setting of a restoring force which acts on a backrest of an office chair which is configured with a synchronous mechanism. The synchronous mechanism comprises a support, a seat support and a backrest support which are connected to one another via joint pins, the restoring force being exerted via a spring element. In order to achieve as flat a design as possible, the restoring force is transmitted with the aid of a pivotable lever via a front bearing pin to a first front joint pin, an active lever length which can be varied with the aid of an adjusting element being defined by the spacing between the bearing pin and the second front joint pin. A weight setting is made possible by the variation of the active lever length.
An object of the disclosure is to provide a novel adjusting mechanism for selectively setting a restoring force acting on a backrest of a chair, which has a simple and durable configuration, and which can be adjusted more easily. In addition, the novel adjusting mechanism can be assembled easily and be manufactured at low cost.
According to a first aspect of the disclosure, an adjusting mechanism is used for selectively setting a restoring force acting on a backrest of a chair. The chair includes the backrest, a backrest support, a seat, a seat support, a front axle, and a rear axle. The backrest is angularly moveable from a normal position to an inclined position where a user rests on the backrest. The backrest support includes a base segment and an upright segment which is secured to the backrest for supporting the backrest. The seat support is disposed under the seat, and includes two side frames which are spaced apart from each other in a left-to-right direction. Each of the side frames has a forward segment and a rearward segment opposite to each other in a front-to-rear direction. The front axle extends along a front axis in the left-to-right direction, and is disposed to interconnect the forward segments of the side frames. The rear axle extends along a rear axis in the left-to-right direction, and is disposed to interconnect the rearward segments of the side frames. The adjusting mechanism includes a mounting frame, a pivot axle, a force varying unit, a biasing unit, and a switching unit. The mounting frame includes a left wall and a right wall which are spaced from each other in the left-to-right direction to define an accommodation space therebetween. Each of the left and right walls has a rear segment formed with a rear through hole, and a front segment formed with a front through hole for permitting the front axle to extend therethrough thereby mounting the mounting frame hingedly to the front axle about the front axis. The pivot axle extends along a pivot axis in the left-to-right direction and through the rear through holes of the rear segments of the mounting frame. The force varying unit includes a base mount, a pair of lugs, and a cam member. The base mount is for securing to the base segment of the backrest support, and extends in the left-to-right direction to terminate at two marginal edges. The pair of lugs extend forwardly from the two marginal edges of the base mount to respectively terminate at two front end regions each of which is disposed inboard of a corresponding one of the left and right walls, and each of which is formed with a front opening configured to permit the pivot axle to extend therethrough such that the force varying unit is hingedly mounted to the mounting frame about the pivot axis. Each of the lugs has a rear opening in proximate to the base mount for permitting the rear axle to extend therethrough thereby mounting the force varying unit hingedly to the rear axle about the rear axis. The cam member is disposed below the pivot axle and between the lugs, and has a cam surface disposed to face forwardly and having a distal region and a proximate region relative to the pivot axle. The biasing unit defines a biasing axis, and includes a head end, a follower end, and a spring segment. The head end is for mounting pivotably to the front axle about the front axis. The follower end is opposite to the head end in a direction of the biasing axis, and is configured to be angularly movable about the front axis on the cam surface between a distal position, where the follower end is in pressing engagement with the distal region, and a proximate position, where the follower end is in pressing engagement with the proximate region. The follower end is movable relative to the head end along the biasing axis between a remote position, where the backrest is in the normal position and the follower end is remote from the head end, and a close position, where the backrest is in the inclined position and the follower end is close to the head end. The spring segment is disposed between the head end and the follower end in the accommodation space to bias the follower end to the remote position, and is configured to keep the follower end to be in pressing engagement with the cam surface by a first biasing force when the follower end is in the distal position or by a second biasing force when the follower end is in the proximate position such that when the follower end in the distal position is moved toward the close position against the first biasing force in response to movement of the backrest from the normal position to the inclined position, a first restoring force is generated for returning the backrest to the normal position, and such that when the follower end in the proximate position is moved toward the close position against the second biasing force in response to movement of the backrest from the normal position to the inclined position, a second restoring force different from the first restoring force is generated for returning the backrest to the normal position. The switching unit is coupled to the biasing unit so as to switch the follower end between the proximate and distal positions.
According to a second aspect of the disclosure, a chair including the adjusting mechanism is provided.
According to a third aspect of the disclosure, an adjusting mechanism for selectively setting a restoring force acting on a backrest of a chair. The chair includes a seat support having a forward segment and a rearward segment which are opposite to each other in a front-to-rear direction. The adjusting mechanism includes a mounting frame, a force varying unit, a biasing unit, and a switching unit. The mounting frame is for hingedly mounted relative to the seat support. The force varying unit is hingedly mounted relative to the seat support about a rear axis, and includes a base mount, a pivot axle, and a cam member. The base mount is for securing to the backrest. The pivot axle extends along a pivot axis in a left-to-right direction, and is configured such that the force varying unit is hingedly mounted to the mounting frame about the pivot axis. The cam member is disposed below the pivot axle, and has a cam surface disposed to face forwardly and having a distal region and a proximate region relative to the pivot axle. The biasing unit defines a biasing axis, and includes a head end, a follower end, and a spring segment. The head end is mounted pivotably relative to the mounting frame about a front axis. The follower end is opposite to the head end in a direction of the biasing axis, and is configured to be angularly movable about the front axis on the cam surface between a distal position, where the follower end is in pressing engagement with the distal region, and a proximate position, where the follower end is in pressing engagement with the proximate region. The follower end is movable relative to the head end along the biasing axis between a remote position, where the backrest is in a normal position and the follower end is remote from the head end, and a close position, where the backrest is in an inclined position and the follower end is close to the head end. The spring segment is disposed between the head end and the follower end to bias the follower end to the remote position, and is configured to keep the follower end to be in pressing engagement with the cam surface by a first biasing force when the follower end is in the distal position or by a second biasing force when the follower end is in the proximate position such that when the follower end in the distal position is moved toward the close position against the first biasing force in response to movement of the backrest from the normal position to the inclined position, a first restoring force is generated for returning the backrest to the normal position, and such that when the follower end in the proximate position is moved toward the close position against the second biasing force in response to movement of the backrest from the normal position to the inclined position, a second restoring force different from the first restoring force is generated for returning the backrest to the normal position. The switching unit is coupled to the biasing unit so as to switch the follower end between the proximate and distal positions.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment(s) with reference to the accompanying drawings, in which:
Referring to
As shown in
The backrest 200 is angularly moveable from a normal position (
Referring to
As shown in
The rear axle 450 extends along a rear axis (L2) in the left-to-right direction (X), and is disposed to interconnect the rearward segments 112 of the side frames 11.
With reference to
As best shown in
The pivot axle 460 extends along a pivot axis (L3) in the left-to-right direction (X) and through the rear through holes 405 of the rear segments 404 of the mounting frame 420. The pivot axle 460 has two opposite ends 461 which are loosely mounted in the recesses 131, respectively, and which can be actuated to move together in an upright direction (Z).
As shown in
The base mount 431 is configured for securing to the base segment 201 of the backrest support 20, and extends in the left-to-right direction (X) to terminate at two marginal edges 4311.
The lugs 432 extend forwardly from the two marginal edges 4311 of the base mount 431 to respectively terminate at two front end regions 433. Each of the front end regions 433 is disposed inboard of a corresponding one of the left and right walls 401, 402, and is formed with a front opening 435 configured to permit the pivot axle 460 to extend therethrough such that the force varying unit 430 is hingedly mounted to the mounting frame 420 about the pivot axis (L3). Each of the lugs 432 has a rear opening 434 in proximate to the base mount 431. The rear opening 434 is configured to permit the rear axle 450 to extend therethrough thereby mounting the force varying unit 430 hingedly to the rear axle 450 about the rear axis (L2). In this embodiment, the rear opening 434 is elongated for loose engagement of the rear-axle 450 therein.
As shown in
With reference to
As shown in
The follower end 515 is opposite to the head end 514 in a direction of the biasing axis (B), and is configured to be angularly movable about the front axis (L1) on the cam surface 471 between a distal position and a proximate position. In the distal position, as shown in
The spring segment 513 is disposed between the head end 514 and the follower end 515 in the accommodation space 403 to bias the follower end 515 to the remote position (see
When the follower end 515 in the distal position is moved toward the close position against the first biasing force in response to movement of the backrest 200 from the normal position (
When the follower end 515 in the proximate position is moved toward the close position against the second biasing force in response to movement of the backrest 200 from the normal position (
In this embodiment, the distal region 472 of the cam surface 471 is proximate to the head end 514, and the proximate region 473 of the cam surface 471 is distal from the head end 514. Therefore, the first biasing force is larger than the second biasing force, and the first restoring force is larger than the second restoring force. In addition, the distal region 472 is more distal from the pivot axle 460 than the proximate region 473. As such, when the follower end 515 is in the distal position (
Therefore, the restoring forces may be selected base on user's requirements.
As shown in
The telescopic rod 511 includes a small-dimension rod segment 519 and a large-dimension tubular segment 518 which is telescopically joinable to the small-dimension rod segment 519. Each of the small-dimension rod segment 519 and the large-dimension rod segments 518 is connected to a corresponding one of the head end 514 and the follower end 515 at a corresponding juncture (J). In this embodiment, the small-dimension rod segment 519 is connected to the head end 514, and the large-dimension tubular segment 518 is connected to the follower end 515. Furthermore, the large-dimension tubular segment 518 is telescopically splined with the small-dimension rod segment 519. In this case, the small-dimension rod segment 519 and the large-dimension rod segments 518 cannot rotate relative to each other.
The first limiting flange 5121 is mounted on the corresponding juncture (J) proximate to the head end 514.
The second limiting flange 5122 is mounted on the corresponding juncture (J) proximate to the follower end 515.
The spring member 5131 is sleeved on the telescopic rod 511 and is configured to be compressed between the first and second limiting flanges 5121, 5122 to serve as the spring segment 513.
The roller 517 is rollably mounted to the second limiting flange 5122 to serve as the follower end 515.
The switching unit 520 is coupled to the biasing unit 510 so as to switch the follower end 515 between the distal position (
In this embodiment, the switching unit 520 includes a follower pin 526 and a switching cam 523.
As shown in
The switching cam 523 is rotatably mounted in the accommodation space 403 about a cam axis (C) parallel to and offset from the front axis (L1). The switching cam 523 has a camming route 525 which is configured to guide the follower pin 526, and which extends about the cam axis (C) to terminate at a first end region 5251 proximate to the cam axis (C) and a second end region 5252 distal from the cam axis (C). When the switching cam 523 is driven to rotate one cycle in a clockwise direction to move the follower pin 526 to the first end region 5251 (see
In this embodiment, the camming route 525 extends from the first region 5251 to the second end region 5252 along an angular line which is longer than a distance between the distal and proximate regions 472, 473 of the cam surface 471.
In this embodiment, the s witching cam 523 has a passing hole 5230 extending along the cam axis (C).
Said one of the left and right walls 401, 402 has a through bore 408 extending along the cam axis (C). The switching unit 520 further includes a switching shaft 521 and a hand-powered crank 522.
The switching shaft 521 extends along the cam axis (C) through the through bore 408 to terminate at an inner end segment 5211 and an outer end 5212, and is rotatable about the cam axis (C). The inner end segment 5211 is disposed in the accommodation space 403 to couple to drive the switching cam 523 to rotate with the switching shaft 521 about the cam axis (C). The outer end 5212 is disposed outwardly of the mounting frame 420.
In this embodiment, the inner end segment 5211 of the switching shaft 521 extends through the passing hole 5230 of the switching cam 523 which is configured to permit the switching cam 523 to be coupled to rotate with the switching shaft 521 about the cam axis (C).
In this embodiment, as shown in
The shaft hole 425 is configured to permit the inner end segment 5211 of the switching shaft 521 to extend therethrough.
The elongated slot 423 is configured to permit the follower pin 526 to extend therethrough to be guided by the camming route 525, and extends radially relative to the cam axis (C) to terminate at an upper end 4231 and a lower end 4232. When the follower pin 526 is in the upper position (
Moreover, as shown in
The hand-powered crank 522 is coupled to the outer end 5212 to drive the switching shaft 521 to rotate about the cam axis (C).
In this embodiment, as shown in
In this embodiment, the two switching shafts 521 are in register with each other along the cam axis (C) and are configured to be coupled to each other by, for example, threaded engagement or press-fitting.
In this embodiment, as best shown in
In addition, the mounting frame 420 includes two of the post 422 disposed to flank the mounting piece 524 for supporting the two of the switching shafts 521, respectively. Furthermore, for stabilize a corresponding one of the switching shafts 521, the mounting frame 420 may further include one or more additional posts 426 each having an extension hole 427 configured to permit the corresponding switching shafts 521 to extend there through.
Furthermore, in this embodiment, the mounting frame 420 is hinged relative to the seat 100 about the front axis (L1), the force varying unit 430 together with the backrest 200 and the backrest support 20 is hinged relative to seat 100 about the rear axis (L2), and the force varying unit 430 is hingedly mounted to the mounting frame 420 about the pivot axis (L3). Based on the arrangements of the mounting frame 420 and the force varying unit 430, the backrest 200 can be inclined at a relatively large angle.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment(s). It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects.
While the disclosure has been described in connection with what is (are) considered the exemplary embodiment(s), it is understood that this disclosure is not limited to the disclosed embodiment(s) but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
105132495 | Oct 2016 | TW | national |