With the advancement of technology, the use and popularity of electronic devices has increased considerably. Electronic devices are commonly used to capture and process audio data.
For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.
Electronic devices may be used to capture and process audio data that includes speech. The audio data may be sent as a voice message or as part of a communication session, such as a voice over internet protocol (VoIP) telephone call, a videoconference or the like. The speech may be difficult to understand for a number of reasons, such as being too fast or too slow, the talker having an accent, variations in loudness of different words or sentences, presence of background noise, or the like. Sometimes, only a portion of the speech is difficult to understand, such as important information corresponding to a name, an address, a phone number or the like. The audio data may be processed to improve playback, which includes speeding up or slowing down the speech represented in the audio data without shifting a pitch of the speech. Thus, during playback of the voice message or the communication session (e.g., on the receiving side), a modified speech speed may be faster or slower than an original speech speed. However, choosing an undesired speech speed may negatively impact playback of the audio data, and the desired speech speed may vary throughout the voice message and/or communication session.
To improve playback of the audio data, devices, systems and methods are disclosed that perform normalization of human speech playback and dynamically adjust a target speech speed. For example, the system may dynamically adjust the target speech speed based on a number of inputs associated with input audio data, including non-audio data (e.g., input data), data associated with a command (e.g., command speech data), or data associated with the voice message itself (e.g., message speech data). The input data may correspond to information about an account, device or user, such as user preferences, calendar entries, location information, or the like. The system may analyze audio data associated with the command to determine the command speech data (e.g., command speech speed, identity of person listening, etc.) and/or may analyze the input audio data to determine the message speech data (e.g., message speech speed, background noise level, identity of the person speaking, etc.). Using all of these inputs, the system may dynamically determine a target speech speed and may generate output audio data having the target speech speed. In some examples, the system may adjust portions of the input audio data to have different target speech speeds, add additional pauses, adjust a volume of the speech, separate speech associated with different people, determine different target speech speeds for the different people, or the like. The system may adjust a speed of human speech playback on voice messages and/or communication sessions (e.g., VoIP telephone calls, video conversations or the like) without departing from the disclosure.
The VoIP device 30, the PSTN telephone 20, the first device 110a and/or the second device 110b may communicate with the server(s) 120 via the network(s) 10. For example, one or more of the VoIP device 30, the PSTN telephone 20, the first device 110a and the second device 110b may send audio data to the server(s) 120 via the network(s) 10, such as a voice message or audio during a communication session. While not illustrated in
The VoIP device 30 may be an electronic device configured to connect to the network(s) 10 and to send and receive data via the network(s) 10, such as a smart phone, tablet or the like. Thus, the VoIP device 30 may send audio data to and/or receive audio data from the server(s) 120, either during a VoIP communication session or as a voice message. In contrast, the PSTN telephone 20 may be a landline telephone (e.g., wired telephone, wireless telephone or the like) connected to the PSTN (not illustrated), which is a landline telephone network that may be used to communicate over telephone wires, and the PSTN telephone 20 may not be configured to directly connect to the network(s) 10. Instead, the PSTN telephone 20 may be connected to the adapter 22, which may be configured to connect to the PSTN and to transmit and/or receive audio data using the PSTN and configured to connect to the network(s) 10 (using an Ethernet or wireless network adapter) and to transmit and/or receive data using the network(s) 10. Thus, the PSTN telephone 20 may use the adapter 22 to send audio data to and/or receive audio data from the second device 110b during either a VoIP communication session or as a voice message.
The first device 110a and the second device 110b may be electronic devices configured to send audio data to and/or receive audio data from the server(s) 120. The device(s) 110 may include microphone(s) 112, speakers 114, and/or a display 116. For example,
While the server(s) 120 may receive audio data from multiple devices, for ease of explanation the disclosure illustrates the server(s) 120 receiving audio data from a single device at a time. For example, a first user may be associated with one of the VoIP device 30, the PSTN telephone 20, or the first device 110a and may send audio data to a second user associated with the second device 110b. In some examples, the audio data is associated with a one way exchange (e.g., voice message), such that the first device 110a sends the audio data to the server(s) 120 at a first time and the second device 110b receiving the audio data from the server(s) 120 at a second time, with a gap between the first time and the second time not corresponding to processing and/or networking delays. In other examples, the audio data may be associated with a two-way exchange, such as a real-time communication session (e.g., VoIP telephone conversation, video conversation or the like) in which the first device 110a sends the audio data to the server(s) 120 and the second device 110b receives the audio data from the server(s) 120 at roughly the same time, after slight processing and/or networking delays.
The server(s) 120 may be configured to receive input audio data and adjust a speed of human speech playback of the input audio data, as will be discussed in greater detail below, prior to sending output audio data to the second device 110b for playback. For example, the server(s) 120 may process the input audio data to improve playback, which includes speeding up or slowing down speech represented in the input audio data without shifting a pitch of the speech. Thus, a modified speech speed represented in the output audio data may be faster or slower than an original speech speed represented in the input audio data.
As used herein, “speech speed” (e.g., rate of speed associated with speech included in audio data) refers to a speech tempo, which is a measure of the number of speech units of a given type produced within a given amount of time. Speech speed may be measured using words per minute (wpm) or syllables per second (syl/sec), although the disclosure is not limited thereto. For example, the server(s) 120 may identify portions of the audio data that correspond to individual words and may determine the rate of speed of speech by determining a number of words spoken per minute. Additionally or alternatively, the server(s) 120 may identify portions of the audio data that correspond to individual syllables and may determine the rate of speed of speech by determining a number of syllables spoken per second. An original speech speed refers to the rate of speed at which the original speaker was talking, whereas a target speech speed refers to the rate of speed that is output by the server(s) 120 after adjustment. For example, the server(s) 120 may determine an original speech speed (e.g., 100 words per minute, or wpm) associated with first audio data, determine a target speech speed (e.g., 150 wpm) and may modify the first audio data to generate second audio data having the target speech speed.
The server(s) 120 may determine a target speech speed based on a number of inputs associated with the input audio data. For example, the server(s) 120 may dynamically adjust the target speech speed based on non-audio data (e.g., input data), data associated with a command (e.g., command speech data), or data associated with the voice message itself (e.g., message speech data), which will be discussed in greater detail below with regard to
Using all of these inputs, the server(s) 120 may dynamically determine a target speech speed and may generate output audio data having the target speech speed. In some examples, the server(s) 120 may adjust portions of the input audio data to have different target speech speeds, add additional pauses, adjust a volume of the speech, separate speech associated with different people, determine different target speech speeds for the different people, or the like, without departing from the disclosure.
To determine the target speech speed, a speech speed modification component in the server(s) 120 and/or the device 110 may implement one or more machine learning models. For example, the input data, the command speech data, and/or the message speech data may be input to the speech speed modification component, which outputs the target speech speed. A ground truth may be established for purposes of training the one or more machine learning models. In machine learning, the term “ground truth” refers to the accuracy of a training set's classification for supervised learning techniques.
Various machine learning techniques may be used to train and operate the speech speed modification component. Such techniques may include backpropagation, statistical learning, supervised learning, semi-supervised learning, stochastic learning, or other known techniques. Such techniques may more specifically include, for example, neural networks (such as deep neural networks and/or recurrent neural networks), inference engines, trained classifiers, etc. Examples of trained classifiers include Support Vector Machines (SVMs), neural networks, decision trees, AdaBoost (short for “Adaptive Boosting”) combined with decision trees, and random forests. Focusing on SVM as an example, SVM is a supervised learning model with associated learning algorithms that analyze data and recognize patterns in the data, and which are commonly used for classification and regression analysis. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples into one category or the other, making it a non-probabilistic binary linear classifier. More complex SVM models may be built with the training set identifying more than two categories, with the SVM determining which category is most similar to input data. An SVM model may be mapped so that the examples of the separate categories are divided by clear gaps. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gaps they fall on. Classifiers may issue a “score” indicating which category the data most closely matches. The score may provide an indication of how closely the data matches the category. The user response to content output by the system may be used to further train the machine learning model(s).
As illustrated in
The server(s) 120 may receive (134) input data associated with the command. The input data may be non-audio data that corresponds to information about an account, the second device 110b and/or user, such as user preferences, calendar entries, location information or the like. The input data is not determined based on the command audio data or the message audio data, but is received from the second device 110b and/or from a database associated with the account, the second device 110b and/or the user. While examples of the input data are illustrated in
The server(s) 120 may generate (136) message speech data based on the input audio data. The message speech data is associated with speech represented in the input audio data. For example, the server(s) 120 may analyze the input audio data to determine information such as a message speech speed, background noise level, identity of the person speaking, and/or the like. Thus, whereas the input data is information associated with the account, the second device 110b and/or the user (e.g., based on a user profile associated with the user), the message speech data refers to information derived from the input audio data itself, as will be discussed in greater detail below with regard to
The server(s) 120 may determine (138) an original speech speed (e.g., message speech speed). In some examples, the server(s) 120 may determine different original speech speeds associated with different portions of the input audio data, such as when the user speeds up or slows down while leaving the voice message. In some examples, the server(s) 120 determine the original speech speed as part of generating the message speech data and step 138 refers to identifying the original speech speed associated with a portion of the input audio data that is currently being processed by the server(s) 120. However, the disclosure is not limited thereto and the server(s) 120 may determine the original speech speed separately from determining the message speech data without departing from the disclosure.
The server(s) 120 may determine (140) a target speech speed based on the input data and the message speech data, may determine (142) a speech speed modification factor (e.g., speech speed modification variable) based on the original speech speed and the target speech speed and may generate (144) output audio data using the speech speed modification factor. In some examples, the server(s) 120 may determine the target speech speed in words per minute (wpm) and may divide the target speech speed by the original speech speed to determine the speech speed modification factor. For example, if the target speech speed is 120 wpm and the original speech speed is 100 wpm, the speech speed modification factor is equal to 1.2× (e.g., second speech speed associated with the output audio data is 1.2 times faster than a first speech speed associated with the input audio data). Similarly, if the target speech speed is 120 wpm and the original speech speed is 150 wpm, the speech speed modification factor is equal to 0.8× (e.g., second speech speed associated with the output audio data is 0.8 times as fast as the first speech speed associated with the input audio data).
In the examples illustrated above, the server(s) 120 determines a speech speed modification factor (e.g., multiplier), such as 1.2× or 0.8×. The server(s) 120 may determine the speech speed modification factor by dividing the target speech speed by the original speech speed. For ease of explanation, the disclosure will refer to determining and applying a speech speed modification factor to adjust a speech speed. However, the disclosure is not limited to determining a multiplier and the server(s) 120 may instead determine a speech speed modification variable without departing from the disclosure. Thus, any reference to a speech speed modification factor may instead refer to a speech speed modification variable without departing from the disclosure. A speech speed modification variable indicates a relationship between the target speech speed and the original speech speed, enabling the server(s) 120 to achieve the target speech speed by applying the speech speed modification variable to the input audio data. Thus, the server(s) 120 may modify the input audio data using the speech speed modification variable to generate the output audio data.
The server(s) 120 may take into consideration a number of different criteria in determining the target speech speed. In some examples, the server(s) 120 may associate a target speech speed with an identity. For example, the server(s) 120 may detect the identity in the message speech data (e.g., identity of the person speaking in the voice message) and may determine the target speech speed based on previous settings or user preferences associated with the identity (e.g., person speaks fast and the target speech speed should be slower). Additionally or alternatively, the server(s) 120 may determine that the identity is associated with the command (e.g., identity of the listener) and may determine the target speech speed based on previous settings or user preferences associated with the listener (e.g., listener prefers speeding up voice messages).
In some examples, the server(s) 120 may determine the target speech speed based on an estimated urgency. For example, the server(s) 120 may determine a range of values for the target speech speed and use the estimated urgency to select from within the range of values. The server(s) 120 may determine the estimated urgency based on the input data (e.g., calendar entries, location information of listener, number of voice messages, etc.) and/or the command speech data (e.g., speech speed of request for playback of voice messages, content analysis of the request, etc.). For example, if the listener requests voice messages en route to a location (e.g., almost to work or home) and/or prior to an upcoming calendar event, the server(s) 120 may determine that the estimated urgency is high and may increase the target speech speed. Additionally or alternatively, if the speech speed of the request for playback of voice messages is fast and/or the number of voice messages is high, the server(s) 120 may determine that the estimated urgency is high and may increase the target speech speed. Similarly, if the server(s) 120 detects an incoming communication (e.g., telephone call, communication session, etc.) or the presence of a guest (e.g., identifying an additional person speaking in the command audio data, detecting an additional face using facial recognition, etc.), the server(s) 120 may determine that the estimated urgency is high and may increase the target speech speed.
The server(s) 120 may determine the target speech speed based on presence information associated with the listener and/or guests. For example, as mentioned above, the server(s) 120 may determine that a new guest has arrived using facial recognition or the like and may increase the target speech speed accordingly. Additionally or alternatively, the server(s) 120 may determine that the listener walked away from the second device 110b during playback of the voice message or during a communication session (e.g., presence is no longer detected) and may pause or decrease the target speech speed until the listener returns to the second device 110b (e.g., presence is detected again). Once the listener returns to the second device 110b, the server(s) 120 may increase the target speech speed until the listener is caught up, at which point the server(s) 120 may return to a normal target speech speed. Thus, the listener may walk away from a communication session and/or voice message and come back without missing anything, with playback at an accelerated rate for a period of time after the listener returns.
In some examples, the server(s) 120 may determine the target speech speed based on an explicit command from the listener. For example, the listener may indicate in the command (e.g., command audio data) a desired speech speed or may input a follow up command to increase or decrease the target speech speed. Additionally or alternatively, the server(s) 120 may infer that the target speech speed should be increased or decreased based on other commands. For example, if the listener requests the same voice message to be repeated, the server(s) 120 may decrease the target speech speed for subsequent playback.
In some examples, the server(s) 120 may determine the target speech speed based on cues included in the input data and/or detected in the command audio data. For example, the input data may include an indication or notification from a companion device (e.g., smartphone, computer, etc.) that the listener is typing and may decrease the target speech speed accordingly. Additionally or alternatively, the server(s) 120 may detect typing in the command audio data (e.g., detect sound associated with a keyboard) and may decrease the target speech speed accordingly. However, the disclosure is not limited thereto and the server(s) 120 may detect cues based on image data (e.g., video during a video communication session, image data captured by the second device 110b, etc.), such as detecting that the listener is typing or writing something down or just that the listener is located in proximity to a keyboard or the like.
In some examples, the server(s) 120 may determine the target speech speed based on information received from other devices. As discussed above, the input data may include a notification from a companion device that the listener is typing. In addition, the companion device may send a notification if the listener is watching a video, scrolling through a website, email or document, or the like, which would indicate that the listener is distracted and multitasking. Additionally or alternatively, the input data may include a notification and/or media information from other devices associated with the listener, such as devices associated with multimedia playback. To illustrate an example, the listener may be watching video (e.g., a movie or television show) and the server(s) 120 may determine the target speech speed based on a location in the video and/or upcoming content in the video. For example, if the server(s) 120 determine that the video is in a commercial break, the server(s) 120 may increase the target speech speed to playback the voice message prior to the end of the commercial break. Similarly, if the server(s) 120 determine that a current location in the video corresponds to a quiet scene and a loud scene or action or something interesting is coming up, the server(s) 120 may increase the target speech speed. Thus, the server(s) 120 may receive information from additional devices that may influence the target speech speed.
In some examples, the server(s) 120 may determine the target speech speed based on analyzing the input audio data (e.g., message speech data). For example, the server(s) 120 may detect a background noise level and/or signal to noise ratio (SNR) and may determine the target speech speed accordingly. Thus, portions of the input audio data corresponding to a low background noise level and/or high SNR may have an increased target speech speed relative to portions of the input audio data corresponding to a high background noise level and/or low SNR. Similarly, the server(s) 120 may perform automatic speech recognition (ASR) processing on the input audio data and may adjust the target speech speed based on an error rate and/or confidence score associated with the ASR. For example, when the error rate increases and/or confidence scores decrease, the server(s) 120 may decrease the target speech speed.
In some examples, the server(s) 120 may analyze the input audio data and detect types of speech, such as a sequence of numbers (e.g., phone number), a date, an address or the like. For example, the server(s) 120 may decrease a target speech speed for a portion of the input audio data corresponding to a phone number in order to provide the listener additional time to write down the phone number. Additionally or alternatively, the server(s) 120 may detect a foreign accent or foreign language and may decrease the target speech speed.
In some examples, the server(s) 120 may determine different target speech speeds and/or speech speed modification factors for different portions of the input audio data. For example, the server(s) 120 may determine a first target speech speed (e.g., 120 wpm) and/or a first speech speed modification factor (e.g., 0.8×) for a first portion of the input audio data and may determine a second target speech speed (e.g., 100 wpm) and/or a second speech speed modification factor (e.g., 0.66×) for a second portion of the input audio data. In this example, the second portion may include important information (e.g., phone numbers or the like) and the server(s) 120 may decrease the second target speech speed to allow the listener to better understand and/or write down the important information. While this example illustrates dividing the input audio data into two portions, the disclosure is not limited thereto and the number of portions may vary without departing from the disclosure.
In some examples, the server(s) 120 may detect multiple people speaking in the input audio data and may separate speech from different individuals. For example, a first person and a second person may be speaking during the input audio data and the server(s) 120 may identify first speech associated with the first person and second speech associated with the second person. Thus, the server(s) 120 may separate the first speech and the second speech and may separately process the first speech and the second speech (e.g., determine a first target speech speed for the first speech and a second target speech speed for the second speech). Additionally or alternatively, the server(s) 120 may divide the first speech and/or the second speech into portions and may determine different target speech speeds for each of the portions, as discussed above. While this example illustrates identifying speech associated with two different people, the disclosure is not limited thereto and the server(s) 120 may identify three or more distinct voices/people without departing from the disclosure. The server(s) 120 may identify and separate the speech based on voice recognition, beamforming (e.g., separating the input audio data into multiple separate beams, with each beam corresponding to a different location relative to the microphone(s) 112), input data indicating an identity of each user associated with the input audio data, facial recognition (e.g., for input audio data corresponding to video data) and/or the like.
In some examples, the server(s) 120 may determine the target speech speed in order to synchronize speech with other audio data. For example, the server(s) 120 may synchronize the speech to match a tempo of a song (e.g., similar to auto-tuning pitch, this would auto-synchronize tempo or cadence). Additionally or alternatively, the server(s) 120 may synchronize a timing of the first speech and the second speech. For example, the first speech and the second speech may correspond to a shared message and/or song (e.g., singing “Happy Birthday”) and the server(s) 120 may determine the target speech speed for different portions of the first speech and the second speech in order to align individual words and/or pacing between the first speech and the second speech. The number of individuals
As used herein, voice normalization refers to performing signal processing to modify speech. For example, portions or an entirety of speech can be modified to change a speech speed, a volume level or the like to improve playback of the speech. In some examples, different portions of the speech may be modified to have different speech speeds, volume levels or the like without departing from the disclosure. While voice normalization may imply modifying the speech to a certain “normal” range (e.g., universal speech speed or the like, such as speeding up slow speech or slowing down fast speech), the disclosure is not limited thereto. Instead, for ease of explanation, voice normalization may refer to any signal processing used to change a speech speed. Thus, slow speech may be slowed down further, or fast speech sped up, without departing from the disclosure. To illustrate an example, audio data may correspond to speech having a slow speech speed, and a portion of the speech may include a phone number. While the speech is already associated with the slow speech speed, the system 100 may further slow the portion of the speech to provide additional time for a user to write down the phone number.
For ease of illustration,
As discussed above, the server(s) 120 may perform voice normalization and/or adjust a speed of human speech playback associated with a one way exchange (e.g., voice message) or a two-way exchange (e.g., real-time communication session, such as VoIP telephone conversation or video conversation) without departing from the disclosure. Thus, any reference to performing voice normalization and/or adjusting a speech speed on a voice message and/or corresponding steps may also apply to real-time communication session without departing from the disclosure. For example, the server(s) 120 may periodically determine an original speech speed associated with a person speaking during the communication session and determine a speech speed modification factor that modifies the original speech speed to a target speech speed. Thus, during the communication session, the server(s) 120 may apply a current speech speed modification factor to audio data associated with the person speaking. Thus, the speech speed modification factor may vary over time, depending on the original speech speed of the person speaking. In some examples, the server(s) 120 may determine individual speech speed modification factors for each unique voice (e.g., unique identity) detected in the input audio data. For example, first speech associated with a first person may be adjusted using a first speech speed modification factor while second speech associated with a second person may be adjusted using a second speech speed modification factor. However, the disclosure is not limited thereto and the server(s) 120 may apply a single speech speed modification factor for multiple users without departing from the disclosure.
As shown in
The server(s) 120 receives input data from the device 110. If the input data is the audio data 211, the server(s) 120 performs speech recognition processing (e.g., ASR) on the audio data 211 to generate input text data. The server(s) 120 performs natural language processing (e.g., NLU) on the input text data (either received directly from the device 110 or generated from the audio data 211) to determine a user command. A user command may correspond to a user request for the system to output content to the user. The requested content to be output may correspond to music, video, search results, weather information, etc.
The server(s) 120 determines output content responsive to the user command. The output content may be received from a first party (1P) source (e.g., one controlled or managed by the server(s) 120) or a third party (3P) source (e.g., one managed by an application server(s) (not illustrated) in communication with the server(s) 120 but not controlled or managed by the server(s) 120). The server(s) 120 sends to a device 110 output data including the output content responsive to the user command. The device 110 may emit the output data as audio and/or present the output data on a display.
The system may operate using various components as illustrated in and described with respect to
An audio capture component, such as a microphone or array of microphones of a device 110, captures the input audio 11 corresponding to a spoken utterance. The device 110, using a wakeword detection component 220, processes audio data corresponding to the input audio 11 to determine if a keyword (e.g., a wakeword) is detected in the audio data. Following detection of a wakeword, the device 110 sends audio data 211, corresponding to the utterance, to a server(s) 120 for processing.
Upon receipt by the server(s) 120, the audio data 211 may be sent to an orchestrator component 230. The orchestrator component 230 may include memory and logic that enable the orchestrator component 230 to transmit various pieces and forms of data to various components of the system.
The orchestrator component 230 sends the audio data 211 to a speech processing component 240. A speech recognition component 250 of the speech processing component 240 transcribes the audio data 211 into text data representing words of speech contained in the audio data 211. The speech recognition component 250 interprets the spoken utterance based on a similarity between the spoken utterance and pre-established language models. For example, the speech recognition component 250 may compare the audio data 211 with models for sounds (e.g., subword units or phonemes) and sequences of sounds to identify words that match the sequence of sounds spoken in the utterance of the audio data 211.
Results of speech recognition processing (i.e., text data representing speech) are processed by a natural language component 260 of the speech processing component 240. The natural language component 260 attempts to make a semantic interpretation of the text data. That is, the natural language component 260 determines the meaning behind the text data based on the individual words in the text data and then implements that meaning. The natural language component 260 interprets a text string to derive an intent or a desired action from the user as well as the pertinent pieces of information in the text data that allow a device (e.g., the device 110, the server(s) 120, the application server(s), etc.) to complete that action. For example, if a spoken utterance is processed using the speech recognition component 250, which outputs the text data “call mom”, the natural language component 260 may determine the user intended to activate a telephone in his/her device and to initiate a call with a contact matching the entity “mom.”
The natural language component 260 may be configured to determine a “domain” of the utterance so as to determine and narrow down which services offered by an endpoint device (e.g., the server(s) 120 or the device 110) may be relevant. For example, an endpoint device may offer services relating to interactions with a telephone service, a contact list service, a calendar/scheduling service, a music player service, etc. Words in a single textual interpretation may implicate more than one service, and some services may be functionally linked (e.g., both a telephone service and a calendar service may utilize data from a contact list).
The natural language component 260 may include a recognizer that includes a named entity resolution (NER) component configured to parse and tag to annotate text as part of natural language processing. For example, for the text “call mom,” “call” may be tagged as a command to execute a phone call and “mom” may be tagged as a specific entity and target of the command. Moreover, the telephone number for the entity corresponding to “mom” stored in a contact list may be included in the NLU results. Further, the natural language component 260 may be used to provide answer data in response to queries, for example using a natural language knowledge base.
In natural language processing, a domain may represent a discrete set of activities having a common theme, such as “shopping,” “music,” “calendaring,” “communications,” etc. As such, each domain may be associated with a particular recognizer, language model and/or grammar database, a particular set of intents/actions, and a particular personalized lexicon. Each gazetteer may include domain-indexed lexical information associated with a particular user and/or device. A user's music-domain lexical information (e.g., a gazetteer associated with the user for a music domain) might correspond to album titles, artist names, and song names, for example, whereas a user's contact-list lexical information (e.g., a gazetteer associated with the user for a contact domain) might include the names of contacts. Since every user's music collection and contact list is presumably different, this personalized information improves entity resolution. A lexicon may represent what particular data for a domain is associated with a particular user. The form of the lexicon for a particular domain may be a data structure, such as a gazetteer. A gazetteer may be represented as a vector with many bit values, where each bit indicates whether a data point associated with the bit is associated with a particular user. For example, a music gazetteer may include one or more long vectors, each representing a particular group of musical items (such as albums, songs, artists, etc.) where the vector includes positive bit values for musical items that belong in the user's approved music list. Thus, for a song gazetteer, each bit may be associated with a particular song, and for a particular user's song gazetteer the bit value may be 1 if the song is in the particular user's music list. Other data structure forms for gazetteers or other lexicons are also possible.
As noted above, in traditional natural language processing, text data may be processed applying the rules, models, and information applicable to each identified domain. For example, if text represented in text data potentially implicates both communications and music, the text data may, substantially in parallel, be natural language processed using the grammar models and lexical information for communications, and natural language processed using the grammar models and lexical information for music. The responses based on the text data produced by each set of models is scored, with the overall highest ranked result from all applied domains being ordinarily selected to be the correct result.
A downstream process called named entity resolution actually links a text portion to an actual specific entity known to the system. To perform named entity resolution, the system may utilize gazetteer information stored in an entity library storage. The gazetteer information may be used for entity resolution, for example matching speech recognition results with different entities (e.g., song titles, contact names, etc.). Gazetteers may be linked to users (e.g., a particular gazetteer may be associated with a specific user's music collection), may be linked to certain domains (e.g., shopping, music, communications), or may be organized in a variety of other ways. The NER component may also determine whether a word refers to an entity that is not explicitly mentioned in the text data, for example “him,” “her,” “it” or other anaphora, exophora or the like.
A recognizer of the natural language component 260 may also include an intent classification (IC) component that processes text data to determine an intent(s), where the intent(s) corresponds to the action to be performed that is responsive to the user command represented in the text data. Each recognizer is associated with a database of words linked to intents. For example, a music intent database may link words and phrases such as “quiet,” “volume off,” and “mute” to a “mute” intent. The IC component identifies potential intents by comparing words in the text data to the words and phrases in the intents database. Traditionally, the IC component determines using a set of rules or templates that are processed against the incoming text data to identify a matching intent.
In order to generate a particular interpreted response, the NER component applies the grammar models and lexical information associated with the respective recognizer to recognize a mention of one or more entities in the text represented in the text data. In this manner the NER component identifies “slots” (i.e., particular words in text data) that may be needed for later command processing. Depending on the complexity of the NER component, it may also label each slot with a type (e.g., noun, place, city, artist name, song name, or the like). Each grammar model includes the names of entities (i.e., nouns) commonly found in speech about the particular domain (i.e., generic terms), whereas the lexical information from the gazetteer is personalized to the user(s) and/or the device. For instance, a grammar model associated with the shopping domain may include a database of words commonly used when people discuss shopping.
The intents identified by the IC component are linked to domain-specific grammar frameworks with “slots” or “fields” to be filled. Each slot/field corresponds to a portion of the text data that the system believes corresponds to an entity. For example, if “play music” is an identified intent, a grammar framework(s) may correspond to sentence structures such as “Play {Artist Name},” “Play {Album Name},” “Play {Song name},” “Play {Song name} by {Artist Name},” etc. However, to make resolution more flexible, these frameworks would ordinarily not be structured as sentences, but rather based on associating slots with grammatical tags.
For example, the NER component may parse the text data to identify words as subject, object, verb, preposition, etc., based on grammar rules and/or models, prior to recognizing named entities. The identified verb may be used by the IC component to identify intent, which is then used by the NER component to identify frameworks. A framework for an intent of “play” may specify a list of slots/fields applicable to play the identified “object” and any object modifier (e.g., a prepositional phrase), such as {Artist Name}, {Album Name}, {Song name}, etc. The NER component then searches the corresponding fields in the domain-specific and personalized lexicon(s), attempting to match words and phrases in the text data tagged as a grammatical object or object modifier with those identified in the database(s).
To illustrate an example, a command of “book me a plane ticket from Boston to Seattle for July 5” may be associated with a <BookPlaneTicket> intent. The <BookPlaneTicket> intent may be associated with a framework including various slots including, for example, <DepartureDate>, <DepartureLocation>, <ArrivalDate>, and <DestinationLocation>. In the above example, the server(s) 120, namely the natural language component 260, may populate the framework as follows: <DepartureDate: July 5>, <DepartureLocation: Boston>, <ArrivalDate: July 5>, and <DestinationLocation: Seattle>.
This process includes semantic tagging, which is the labeling of a word or combination of words according to their type/semantic meaning. Parsing may be performed using heuristic grammar rules, or the NER component may be constructed using techniques such as HMMs, maximum entropy models, log linear models, conditional random fields (CRF), and the like.
For instance, a query of “play mother's little helper by the rolling stones” might be parsed and tagged as {Verb}: “Play,” {Object}: “mother's little helper,” {Object Preposition}: “by,” and {Object Modifier}: “the rolling stones.” At this point in the process, “Play” is identified as a verb based on a word database associated with the music domain, which the IC component will determine corresponds to the “play music” intent. At this stage, no determination has been made as to the meaning of “mother's little helper” and “the rolling stones,” but based on grammar rules and models, it is determined that the text of these phrases relate to the grammatical object (i.e., entity) of the text data.
The frameworks linked to the intent are then used to determine what database fields should be searched to determine the meaning of these phrases, such as searching a user's gazette for similarity with the framework slots. So a framework for “play music intent” might indicate to attempt to resolve the identified object based on {Artist Name}, {Album Name}, and {Song name}, and another framework for the same intent might indicate to attempt to resolve the object modifier based on {Artist Name}, and resolve the object based on {Album Name} and {Song Name} linked to the identified {Artist Name}. If the search of the gazetteer does not resolve the slot/field using gazetteer information, the NER component may search a database of generic words associated with the domain. For example, if the text data corresponds to “play songs by the rolling stones,” after failing to determine an album name or song name called “songs” by “the rolling stones,” the NER component may search the domain vocabulary for the word “songs.” In the alternative, generic words may be checked before the gazetteer information, or both may be tried, potentially producing two different results.
The results of natural language processing may be tagged to attribute meaning to the text data. So, for instance, “play mother's little helper by the rolling stones” might produce a result of: {domain} Music, {intent} Play Music, {artist name} “rolling stones,” {media type} SONG, and {song title} “mother's little helper.” As another example, “play songs by the rolling stones” might produce: {domain} Music, {intent} Play Music, {artist name} “rolling stones,” and {media type} SONG.
The results of natural language processing may be sent to an application 290, which may be located on a same or separate server 120 as part of system. The system may include more than one application 290, and the destination application 290 may be determined based on the natural language processing results. For example, if the natural language processing results include a command to play music, the destination application 290 may be a music playing application, such as one located on the device 110 or in a music playing appliance, configured to execute a music playing command. If the natural language processing results include a search request (e.g., requesting the return of search results), the application 290 selected may include a search engine application, such as one located on a search server, configured to execute a search command and determine search results, which may include output text data to be processed by a text-to-speech engine and output from a device as synthesized speech.
The server(s) 120 may include a user recognition component 295. The user recognition component 295 may take as input the audio data 211 as well as the text data output by the speech recognition component 250. The user recognition component 295 may receive the text data from the speech recognition component 250 either directly or indirectly via the orchestrator component 230. Alternatively, the user recognition component 295 may be implemented as part of the speech recognition component 250. The user recognition component 295 determines respective scores indicating whether the utterance in the audio data 211 was spoken by particular users. The user recognition component 295 also determines an overall confidence regarding the accuracy of user recognition operations. User recognition may involve comparing speech characteristics in the audio data 211 to stored speech characteristics of users. User recognition may also involve comparing biometric data (e.g., fingerprint data, iris data, etc.) received by the user recognition component 295 to stored biometric data of users. User recognition may further involve comparing image data including a representation of at least a feature of a user with stored image data including representations of features of users. It should be appreciated that other kinds of user recognition processes, including those known in the art, may be used. Output of the user recognition component 295 may be used to inform natural language processing as well as processing performed by 1P and 3P applications 290.
The server(s) 120 may additionally include user profile storage 270. The user profile storage 270 includes data regarding user accounts. As illustrated, the user profile storage 270 is implemented as part of the server(s) 120. However, it should be appreciated that the user profile storage 270 may be located proximate to the server(s) 120, or may otherwise be in communication with the server(s) 120, for example over the network(s) 10. The user profile storage 270 may include a variety of information related to individual users, accounts, etc. that interact with the system.
In some examples, an application 290 may correspond to a communications application configured to control communications (e.g., a communication session, including audio data and/or image data), voice messages (e.g., playback one or more voice messages stored in voicemail or the like), or the like. The communications application may be configured to perform normalization (e.g., power normalization, volume normalization or the like) and/or adjust a speech speed of audio data associated with the communication session (e.g., in real-time during the communication session) or the voice messages (e.g., offline, prior to playback of the voice messages, and/or in real-time during playback of the voice messages). For example, the communication application may modify the speech speed of a voice message at a first time and, after the user requests playback of the voice message, may output the modified voice message at a second time. In some examples, the communication application may begin outputting the modified voice message at the second time and may adjust the speech speed and generate a second modified voice message during playback (e.g., in response to a user command). Additionally or alternatively, the communication application may begin outputting the original voice message when the user requests playback of the voice message and may modify the speech speed of the voice message during playback (e.g., in response to a user command).
Application, as used herein, may be considered synonymous with a skill. A “skill” may correspond to a domain and may be software running on a server(s) 120 and akin to an application. That is, a skill may enable a server(s) 120 or application server(s) to execute specific functionality in order to provide data or produce some other output called for by a user. The system may be configured with more than one skill. For example a weather service skill may enable the server(s) 120 to execute a command with respect to a weather service server(s), a car service skill may enable the server(s) 120 to execute a command with respect to a taxi service server(s), an order pizza skill may enable the server(s) 120 to execute a command with respect to a restaurant server(s), etc.
Output of the application/skill 290 may be in the form of text data to be conveyed to a user. As such, the application/skill output text data may be sent to a text-to-speech (TTS) component 280 either directly or indirectly via the orchestrator component 230. The TTS component 280 may synthesize speech corresponding to the received text data. Speech audio data synthesized by the TTS component 280 may be sent to a device 110 for output to a user.
The TTS component 280 may perform speech synthesis using one or more different methods. In one method of synthesis called unit selection, the TTS component 280 matches the text data or a derivative thereof against a database of recorded speech. Matching units are selected and concatenated together to form speech audio data. In another method of synthesis called parametric synthesis, the TTS component 280 varies parameters such as frequency, volume, and noise to create an artificial speech waveform output. Parametric synthesis uses a computerized voice generator, sometimes called a vocoder.
As illustrated in
As discussed above, the server(s) 120 may perform voice normalization and/or adjust a speech speed by determining (310) an original speech speed associated with speech represented in the message audio data 15 (e.g., input audio data), determining (312) a target speech speed, determining (314) a speech speed modification factor and generating (316) output audio data based on the message audio data 15 and the speech speed modification factor. The server(s) 120 may determine the target speech speed dynamically for portions of the message audio data 15 based on the input data 320, the command speech data 340 and/or the message speech data 360.
As illustrated in
An example of other data 338 may include identity information associated with a listener. For example, a companion device (e.g., smart phone 110a) may be associated with a particular user profile, and if the companion device is in proximity to the second device 110b when the second device 110b receives input audio data, the system 100 may include an identity associated with the user profile in the input data 320. Alternatively, the companion device may receive the command and generate the input audio data, in which case the companion device may include the identity associated with the companion device in the input data 320. Similarly, the second device 110b itself may be associated with an identity and the input data 320 may include the identity associated with the second device 110b in the input data 320. Additionally or alternatively, other techniques may be used to identify the identity of the user speaking the command (e.g., the listener). For example, the identity of the listener may be determined using facial recognition or the like, and the server(s) 120 may receive an indication of the identity of the listener as part of the input data 320
As illustrated in
In some examples, the command audio data 13 corresponds to audio data received that instructs the server(s) 120 to perform playback of the voice messages (e.g., audio data prior to playback). However, the disclosure is not limited thereto and the command audio data may correspond to audio data received during playback of the voice messages. Thus, the typing detected notification 348, explicit commands to change speech speed 350, and/or the conversation/interruption 352 may correspond to when the voice message is being played back by the second device 110b without departing from the disclosure.
As used herein, the input data 320 and the command speech data 340 may be collectively referred to as configuration data. Thus, configuration data corresponds to non-message data used to determine the target speech speed. For example, the configuration data may correspond to information about the listener (e.g., user preferences, calendar entries, location information, identity, or the like that is included in a user profile associated with the listener), contextual information (e.g., a number of voice messages, previous commands, media information, typing detected notification, etc.), the command (e.g., command speech speed, speech urgency data, audio cues included in the command audio data 13, etc.), or the like.
As illustrated in
An example of information included in other data 378 is an age associated with the speaker. For example, a young child may be more difficult to understand and therefore the server(s) 120 may slow a speech speed to improve performance. In some examples, the age may be included in the identity of the speaker 370, although the disclosure is not limited thereto. The other data 378 may also include additional information that the server(s) 120 determine to be important, such as names, times, dates, phone numbers, addresses or the like. For example, the server(s) 120 may perform automatic speech recognition and/or natural language understanding to identify entities and may determine that the entities are likely to be significant. Thus, the server(s) 120 may analyze content of the voice message, detect portions that are likely to be important and adjust the target speech speed to improve playback of the voice message.
The message speech speed 362 may determine an overall speech speed associated with the voice message, such as an average speech speed over an entirety of the voice message. However, the disclosure is not limited thereto, and the message speech speed 362 may include more complex data such as an average speech speed for different portions of the voice message. For example, the message speech speed 362 may indicate an average speech speed for a fixed duration of time (e.g., 2 seconds, 5 seconds, etc.). Additionally or alternatively, the server(s) 120 may identify portions of the voice message associated with similar speech speeds (e.g., a range of speech speeds) and the message speech speed 362 may indicate the portions and an average speech speed for each portion. For example, the voice message may start at a first speech speed for 5 seconds and then slow to a second speech speed for 15 seconds. Thus, the message speech speed 362 included in the message speech data 360 may indicate that the first portion corresponds to the first 5 seconds (e.g., begin time=0 s, end time=5 s) and has the first speech speed (e.g., speech speed=150 words per minute) and that the second portion corresponds to the next 15 seconds (e.g., begin time=5 s, end time=20 s) and has the second speech speed (e.g., speech speed=100 words per minute). Thus, the original speech speed may vary over time and the server(s) 120 may track variations in the original speech speed and modify a speech speed modification factor to match the target speech speed.
While not illustrated in
The server(s) 120 may optionally determine (416) individual speech from multiple users (e.g., separate the input audio data into different segments of speech, with each segment of speech corresponding to a unique user/speaker). The server(s) 120 may also optionally generate (418) command speech data associated with command audio data 13, such as when the command is a voice command. However, the disclosure is not limited thereto and even when the command to play the voice message is not a voice command, the server(s) 120 may receive command audio data 13 from the second device 110b (e.g., during playback of the voice message) and may generate the command speech data based on the command audio data 13 without departing from the disclosure.
The server(s) 120 may generate (420) message speech data associated with the input audio data, and, either as part of generating the message speech data or as a separate step, may determine (422) an original speech speed associated with the input audio data. In some examples, the server(s) 120 may determine different original speech speeds associated with different portions of the input audio data, such as when the user speeds up or slows down while leaving the voice message. The server(s) 120 may determine (424) a target speech speed, as discussed in greater detail above with regard to
The server(s) 120 may optionally determine (428) to apply the speech speed modification factor to a portion of the input audio data. For example, the server(s) 120 may apply different speech speed modification factors to different portions of the input audio data without departing from the disclosure. Additionally or alternatively, the server(s) 120 may optionally determine (430) variations in the speech speed modification factor to reduce a distortion of the output audio data. For example, instead of abruptly changing from a first speech speed to a second speech speed, the server(s) 120 may incrementally transition from the first speech speed to the second speech speed using a maximum transition value to avoid abrupt changes in the output audio data that could result in distortion. In some examples, the server(s) 120 may determine a number of increments by dividing a change in speech speed (e.g., difference between the first speech speed factor and the second speech speed factor) by the maximum transition value, with the number of increments indicating a number of discrete speech speed modification factors over which to transition from a first speech speed factor to a second speech speed factor using the maximum transition value.
The server(s) 120 may optionally determine (432) a volume modification factor and/or determine (434) to insert additional pauses. The volume modification factor may increase a volume of the output audio data and the server(s) 120 may determine the volume modification factor based on the target speech speed associated with the output audio data. For example, the server(s) 120 may identify that a portion of the input audio data corresponds to a decreased target speech speed and may increase the volume modification factor for the portion of the input audio data, as discussed in greater detail below with regard to
The server(s) 120 may generate (436) output audio data based on the input audio data and the speech speed modification factor(s) determined in step 426. In some examples, the server(s) 120 may determine a single speech speed modification factor associated with the input audio data and may generate the output audio data by applying the speech speed modification factor to an entirety of the input audio data. However, the disclosure is not limited thereto and the server(s) 120 may instead determine a plurality of speech speed modification factors and may generate the output audio data by applying the plurality of speech speed modification factors to corresponding portions of the input audio data without departing from the disclosure.
As illustrated in
The server(s) 120 may optionally determine (462) variations in the speech speed modification factor for the selected portion based on the maximum transition value (e.g., to reduce distortion in the output audio data as discussed above with regard to step 430), may optionally determine (464) a volume modification factor for the selected portion (e.g., to improve playback of the voice message, as discussed above with regard to step 432) and may optionally determine (466) to insert additional pauses in the selected portion.
The server(s) 120 may determine (468) if an additional portion of the input audio data is present, and if so, may loop to step 454 and repeat steps 454-466 for the additional portion. If an additional portion of the input audio data is not present, the server(s) 120 may determine (470) if an additional user is present and, if so, may loop to step 452 and repeat steps 452-468 for speech associated with the additional user. If an additional user is not determined to be represented in the input audio data, the server(s) 120 may generate (472) output audio data based on the input audio data, the speech speed modification factor(s) determined in steps 460 and 462, the volume modification factor(s) determined in step 464, and/or the additional pauses inserted in step 466.
While many examples described above refer to adjusting a speech speed of a voice message, the disclosure is not limited thereto. Instead, the server(s) 120 may adjust a speech speed in real-time during a communication session without departing from the disclosure. For example, the server(s) 120 may periodically determine an original speech speed associated with a person speaking during the communication session and determine a speech speed modification factor that modifies the original speech speed to a target speech speed. Thus, during the communication session, the server(s) 120 may apply a current speech speed modification factor to audio data associated with the person speaking. Thus, the speech speed modification factor may vary over time, depending on the original speech speed of the person speaking. In some examples, the server(s) 120 may determine individual speech speed modification factors for each unique voice (e.g., unique identity) detected in the input audio data. For example, first speech associated with a first person may be adjusted using a first speech speed modification factor while second speech associated with a second person may be adjusted using a second speech speed modification factor. However, the disclosure is not limited thereto and the server(s) 120 may apply a single speech speed modification factor for multiple users without departing from the disclosure.
In contrast, the second speech speed factor 514 corresponds to a lower speech speed factor (e.g., 0.66×), which is used to intentionally slow down a portion of the input audio data. For example, the server(s) 120 may detect that the original speech speed is too fast relative to the target speech speed for a first portion of the input audio data and may use the second speech speed factor 514 to decrease a speech speed associated with the first portion. Similarly, the third speech speed factor 516 corresponds to a higher speech speed factor (e.g., 0.7×), which is used to intentionally speed up a portion of the input audio data. For example, the server(s) 120 may detect that the original speech speed is too slow relative to the target speech speed for a second portion of the input audio data and may use the third speech speed factor 516 to increase a speech speed associated with the second portion.
As illustrated in
As shown in
To illustrate an example, if the maximum transition value is 0.1× and the difference between the first speech speed factor 612 (e.g., 1×) and the second speech speed factor 614 (e.g., 0.7×) is 0.3×, the server(s) 120 may transition from the first speech speed factor 612 to the second speech speed factor 614 using a total of three increments of 0.1× each. Thus, the server(s) 120 may transition from the first speech speed factor 612 (e.g., 1×) to a first intermediate speech speed factor 616a (e.g., 0.9×), from the first intermediate speech speed factor 616a to a second intermediate speech speed factor 616b (e.g., 0.8×), and from the second intermediate speech speed factor 616b to the second speech speed factor 614 (e.g., 0.7×).
To transition back from the second speech factor 614 to the first speech factor 612, the server(s) 120 may repeat the process and transition from the second speech speed factor 614 (e.g., 0.7×) to the second intermediate speech speed factor 616b (e.g., 0.8×), from the second intermediate speech speed factor 616b to the first intermediate speech speed factor 616a (e.g., 0.9×), and from the first intermediate speech speed factor 616a to the first speech speed factor 612 (e.g., 1×).
While
In addition to modifying the second speech speed associated with the output audio data, the server(s) 120 may also insert additional pauses in the input audio data 712. For example, output chart 730 illustrates output audio data 732 having a third duration 734, which is caused by inserting pauses 736. Thus, a third speech speed associated with the output audio data 732 is identical to the second speech speed associated with the output audio data 722, but the additional pauses 736 increase the third duration 734 relative to the second duration 724. The additional pauses 736 may provide a listener with additional time to understand and/or write down information included in the output audio data 732.
As shown in
In addition to changing a speech speed, the server(s) 120 may also modify a volume level associated with the second portion. For example, output chart 830 illustrates output audio data 832 having the first speech speed modification factor 824 (e.g., 1×) applied to a first portion and the second speech speed modification factor 826 (e.g., 0.7×) applied to a second portion. In addition, the output audio data 832 has a normal volume level 834 associated with the first portion and a boosted volume level 836 associated with the second portion. The server(s) 120 may generate the boosted volume level 836 using a volume modification factor. For example, the server(s) 120 may determine the volume modification factor based on the second speech speed modification factor 826 and may apply the volume modification factor to the second portion of the input audio data. Thus, the volume is increased for the second portion in order to improve playback of the output audio data.
The server(s) 120 may generate the modified volume level 846 using a volume modification factor and a maximum threshold value (e.g., maximum volume level). For example, the server(s) 120 may determine the volume modification factor based on the second speech speed modification factor 826 and may apply the volume modification factor to the second portion of the input audio data, with any volume levels above the maximum volume level being capped at the maximum volume level. Thus, instead of increasing a maximum volume level of the second portion, the server(s) 120 increase a volume level of individual words/sentences within the output audio data 842 to be closer to the maximum volume level. This removes variations in volume levels between words/sentences, which may be caused by variations in a volume of speech, variations in distance between a speaker and the microphone(s) 112, or the like. As a result of the modified volume 846, playback of the output audio data 842 may be improved and speech included in the output audio data 842 may be more reliably understood by the listener.
While the output chart 830 illustrates the server(s) 120 increasing a maximum volume level of the output audio data 832 and the output chart 840 illustrates the server(s) 120 increasing volume levels within the output audio data 842 to be closer to the maximum volume level, the disclosure is not limited thereto and the server(s) 120 may increase a maximum volume level of output audio data and increase volume levels within output audio data without departing from the disclosure.
The server(s) 120 may synchronize the modified first speech 922, the modified second speech 924 and the modified third speech 926 (hereinafter, “modified speech”) using several techniques. In some examples, the server(s) 120 may synchronize the modified speech by identifying shared words that are common to each of the modified speech. For example, if three users are singing a song or repeating the same phrase, the server(s) 120 may detect words that are repeated by each of the three users and use these words to synchronize the modified speech. Additionally or alternatively, the server(s) 120 may synchronize the modified speech based on a tempo of a song. For example, if the three users are singing a song with a specific tempo, the modified speech should share similar pauses or other timing and the server(s) 120 may align the modified speech based on a beat or other characteristic associated with the timing. However, the disclosure is not limited thereto and the server(s) 120 may align the modified speech using any technique known to one of skill in the art without departing from the disclosure.
In some examples, the server(s) 120 may separate the first speech 912, the second speech 914 and the third speech 916 into three separate sections and generate separated speech 930 that plays the three separate sections sequentially. For example, the combined speech 910 may correspond to audio data from a teleconference or the like, with multiple users speaking at the same time. While the combined speech 910 may be difficult to understand due to the overlapping speech, the separated speech 930 only includes speech associated with a single user at a time. Thus, the separated speech 930 may be more easily understood by the server(s) 120 and/or by a user.
The system 100 may include one or more audio capture device(s), such as microphone(s) 112 or an array of microphones 112. The audio capture device(s) may be integrated into the device 110 or may be separate.
The system 100 may also include an audio output device for producing sound, such as loudspeaker(s) 114. The audio output device may be integrated into the device 110 or may be separate.
As illustrated in
The device(s) 110/server(s) 120 may include one or more controllers/processors 1004, that may each include a central processing unit (CPU) for processing data and computer-readable instructions, and a memory 1006 for storing data and instructions. The memory 1006 may include volatile random access memory (RAM), non-volatile read only memory (ROM), non-volatile magnetoresistive (MRAM) and/or other types of memory. The device(s) 110/server(s) 120 may also include a data storage component 1008, for storing data and controller/processor-executable instructions (e.g., instructions to perform the algorithm illustrated in
The device(s) 110/server(s) 120 includes input/output device interfaces 1010, such as the microphone(s) 112 and/or the speaker(s) 114. A variety of components may be connected through the input/output device interfaces 1010.
The input/output device interfaces 1010 may be configured to operate with network(s) 10, for example a wireless local area network (WLAN) (such as WiFi), Bluetooth, ZigBee and/or wireless networks, such as a Long Term Evolution (LTE) network, WiMAX network, 3G network, etc. The network(s) 10 may include a local or private network or may include a wide network such as the internet. Devices may be connected to the network(s) 10 through either wired or wireless connections.
The input/output device interfaces 1010 may also include an interface for an external peripheral device connection such as universal serial bus (USB), FireWire, Thunderbolt, Ethernet port or other connection protocol that may connect to network(s) 10. The input/output device interfaces 1010 may also include a connection to an antenna (not shown) to connect one or more network(s) 10 via an Ethernet port, a wireless local area network (WLAN) (such as WiFi) radio, Bluetooth, and/or wireless network radio, such as a radio capable of communication with a wireless communication network such as a Long Term Evolution (LTE) network, WiMAX network, 3G network, etc.
As discussed above with regard to
The device(s) 110/server(s) 120 may include a speech speed modification module 1020, which may comprise processor-executable instructions stored in storage 1008 to be executed by controller(s)/processor(s) 1004 (e.g., software, firmware, hardware, or some combination thereof). For example, components of the speech speed modification module 1020 may be part of a software application running in the foreground and/or background on the device(s) 110/server(s) 120. The speech speed modification module 1020 may control the device(s) 110/server(s) 120 as discussed above, for example with regard to
Executable computer instructions for operating the device(s) 110/server(s) 120 and its various components may be executed by the controller(s)/processor(s) 1004, using the memory 1006 as temporary “working” storage at runtime. The executable instructions may be stored in a non-transitory manner in non-volatile memory 1006, storage 1008, or an external device. Alternatively, some or all of the executable instructions may be embedded in hardware or firmware in addition to or instead of software.
Multiple device(s) 110/server(s) 120 may be employed in a single system 100. In such a multi-device system, each of the device(s) 110/server(s) 120 may include different components for performing different aspects of the process. The multiple device(s) 110/server(s) 120 may include overlapping components. The components of the device(s) 110/server(s) 120, as illustrated in
The concepts disclosed herein may be applied within a number of different devices and computer systems, including, for example, general-purpose computing systems, server-client computing systems, mainframe computing systems, telephone computing systems, laptop computers, cellular phones, personal digital assistants (PDAs), tablet computers, video capturing devices, video game consoles, speech processing systems, distributed computing environments, etc. Thus the components, components and/or processes described above may be combined or rearranged without departing from the scope of the present disclosure. The functionality of any component described above may be allocated among multiple components, or combined with a different component. As discussed above, any or all of the components may be embodied in one or more general-purpose microprocessors, or in one or more special-purpose digital signal processors or other dedicated microprocessing hardware. One or more components may also be embodied in software implemented by a processing unit. Further, one or more of the components may be omitted from the processes entirely.
The above embodiments of the present disclosure are meant to be illustrative. They were chosen to explain the principles and application of the disclosure and are not intended to be exhaustive or to limit the disclosure. Many modifications and variations of the disclosed embodiments may be apparent to those of skill in the art. Persons having ordinary skill in the field of computers and/or digital imaging should recognize that components and process steps described herein may be interchangeable with other components or steps, or combinations of components or steps, and still achieve the benefits and advantages of the present disclosure. Moreover, it should be apparent to one skilled in the art, that the disclosure may be practiced without some or all of the specific details and steps disclosed herein.
Embodiments of the disclosed system may be implemented as a computer method or as an article of manufacture such as a memory device or non-transitory computer readable storage medium. The computer readable storage medium may be readable by a computer and may comprise instructions for causing a computer or other device to perform processes described in the present disclosure. The computer readable storage medium may be implemented by a volatile computer memory, non-volatile computer memory, hard drive, solid-state memory, flash drive, removable disk and/or other media.
Embodiments of the present disclosure may be performed in different forms of software, firmware and/or hardware. Further, the teachings of the disclosure may be performed by an application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other component, for example.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is to be understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z, or a combination thereof. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each is present.
As used in this disclosure, the term “a” or “one” may include one or more items unless specifically stated otherwise. Further, the phrase “based on” is intended to mean “based at least in part on” unless specifically stated otherwise.
Number | Name | Date | Kind |
---|---|---|---|
20020010916 | Thong | Jan 2002 | A1 |
20020038209 | Brandel | Mar 2002 | A1 |
20060293883 | Endo | Dec 2006 | A1 |
20080140391 | Yen | Jun 2008 | A1 |
20130325456 | Takagi | Dec 2013 | A1 |
20150287403 | Holzer Zaslansky | Oct 2015 | A1 |
20170064244 | Abou Mahmoud | Mar 2017 | A1 |