Adjusting variable limit on concurrent code executions

Information

  • Patent Grant
  • 11354169
  • Patent Number
    11,354,169
  • Date Filed
    Tuesday, August 27, 2019
    4 years ago
  • Date Issued
    Tuesday, June 7, 2022
    2 years ago
Abstract
Systems and methods are described for adjusting a number of concurrent code executions allowed to be performed for a given user on an on-demand code execution environment or other distributed code execution environments. Such environments utilize pre-initialized virtual machine instances to enable execution of user-specified code in a rapid manner, without delays typically caused by initialization of the virtual machine instances. However, to improve utilization of computing resources, such environments may temporarily restrict the number of concurrent code executions performed on behalf of the given user to a number less than the maximum number of concurrent code executions allowed for the given user. Such environments may adjust the temporary restriction on the number of concurrent code executions based on the number of incoming code execution requests associated with the given user.
Description
BACKGROUND

Computing devices can utilize communication networks to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or to provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.


To facilitate increased utilization of data center resources, virtualization technologies allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.


In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a block diagram depicting an illustrative environment in which an on-demand code execution environment can operate;



FIG. 2 is a block diagram depicting an example configuration of a worker manager ring of FIG. 1;



FIG. 3 depicts a general architecture of a computing device providing the scaling manager of FIG. 1;



FIG. 4 is a flow chart depicting an illustrative routine for scaling the worker managers assigned to a given user;



FIG. 5 is a flow chart depicting another illustrative routine for scaling the worker managers assigned to a given user; and



FIG. 6 is a flow chart depicting another illustrative routine for scaling the worker managers assigned to a given user.





DETAILED DESCRIPTION
Introduction

Companies and organizations no longer need to acquire and manage their own data centers in order to perform computing operations (e.g., execute code, including threads, programs, functions, software, routines, subroutines, processes, etc.). With the advent of cloud computing, storage space and compute power traditionally provided by hardware computing devices can now be obtained and configured in minutes over the Internet. Thus, developers can quickly purchase a desired amount of computing resources without having to worry about acquiring physical machines. Such computing resources are typically purchased in the form of virtual computing resources, or virtual machine instances. These instances of virtual machines are software implementations of physical machines (e.g., computers), which are hosted on physical computing devices, and may contain operating systems and applications that are traditionally provided on physical machines. These virtual machine instances are configured with a set of computing resources (e.g., memory, CPU, disk, network, etc.) that applications running on the virtual machine instances may request and can be utilized in the same manner as physical computers.


However, even when virtual computing resources are purchased, developers still have to decide how many and what type of virtual machine instances to purchase, and how long to keep them. For example, the costs of using the virtual machine instances may vary depending on the type and the number of hours they are rented. In addition, the minimum time a virtual machine may be rented is typically on the order of hours. Further, developers have to specify the hardware and software resources (e.g., type of operating systems and language runtimes, etc.) to install on the virtual machines. Other concerns that they might have include over-utilization (e.g., acquiring too little computing resources and suffering performance issues), under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying), prediction of change in traffic (e.g., so that they know when to scale up or down), and instance and language runtime startup delay, which can take 3-10 minutes, or longer, even though users may desire computing capacity on the order of seconds or even milliseconds.


On-Demand Code Execution Environment

Generally described, aspects of the present disclosure relate to managing execution of code on an on-demand code execution environment, and more specifically, to automatically adjusting the maximum number of concurrent code executions on the on-demand code execution environment. Further, aspects of the present disclosure relate to distributing code executions across virtual machines, based on the entities associated with the code execution, to increase the efficiency at which large volumes of code can be executed while maintaining the security of execution with respect to those entities. As described in detail herein, an on-demand code execution environment may provide a network-accessible service enabling users (also sometimes referred to herein as “clients”) to submit or designate computer-executable code to be executed by virtual machine instances on the on-demand code execution environment. The on-demand code execution environment can further enable users to trigger execution of a task based on a variety of potential events, such as transmission of an application programming interface (“API”) call or a specially formatted hypertext transport protocol (“HTTP”) packet. Thus, users may utilize the on-demand code execution environment to execute any specified executable code “on-demand,” without requiring configuration or maintenance of the underlying hardware or infrastructure on which the code is executed. Further, the on-demand code execution environment may be configured to begin executing the code in a rapid manner (e.g., within 100 milliseconds [ms] after receiving the request to execute the code), thus enabling code executions in “real-time” (e.g., with little or no perceptible delay to an end user). To enable this rapid execution, the on-demand code execution environment can include a group of virtual machine instances that are “pre-warmed” or pre-initialized (e.g., booted into an operating system and executing a complete or substantially complete runtime environment), also referred to herein as a “warming pool,” and configured to enable execution of user-defined code, such that the code may be rapidly executed in response to a request to execute the code, without delay caused by initializing the virtual machine instance. Thus, when an execution of a program code is requested, a pre-initialized virtual machine can begin executing the program code in a very short amount of time.


Specific embodiments and example applications of the present disclosure will now be described with reference to the drawings. These embodiments and example applications are intended to illustrate, and not limit, the present disclosure.


Virtual Environment

With reference to FIG. 1, a block diagram illustrating an embodiment of a virtual environment 100 will be described. The virtual environment 100 of FIG. 1 includes user computing devices 102, auxiliary services 106, and an on-demand code execution environment 110, connected to each other via a network 104. In the virtual environment 100, users (e.g., developers, etc.) of user computing devices 102 may run various program codes using the virtual computing resources provided by the on-demand code execution environment 110 and/or the auxiliary services 106.


Components of On-Demand Code Execution Environment

In the environment illustrated FIG. 1, the on-demand code execution environment 110 includes a load balancer 120, frontends 130A-130D, a warming pool manager 135, and a worker manager ring 140.


The load balancer 120 serves as a front door to all the other services provided by the on-demand code execution environment 110. The load balancer 120 processes requests to execute user code on the on-demand code execution environment 110 and handles the first level of load balancing across the frontends 130. For example, the load balancer 120 may distribute the requests among the frontends 130 (e.g., based on the individual capacity of the frontends 130). In one embodiment, the requests are distributed evenly across the frontends 130.


The frontend 130 receives requests to execute user code on the on-demand code execution environment 110 that have been processed by the load balancer 120. The frontend 130 causes the appropriate worker managers in the worker manager ring 140 to handle the received requests. Although not illustrated in FIG. 1, the frontend 130 may communicate directly with workers (e.g., virtual machine instances) managed and acquired by the worker managers to cause the workers to execute the program codes based on the received requests. For example, upon receiving, from a frontend, a request to acquire a worker that can be used to handle an incoming code execution request, the worker manager may identify an available worker from either the active pool(s) of virtual machine instances or the warming pool(s) of virtual machine instances ready to be assigned to a user. The worker manager may forward information (e.g., identity, IP address, etc.) regarding the worker to the frontend. Upon receiving the information from the worker manager, the frontend can send a request to the identified worker to execute the program code associated with the incoming code execution request.


The warming pool manager 135 facilitates allocation and configuration of compute capacity (e.g., virtual machine instances, containers, etc.). The warming pool manager 135 “pre-warms” (e.g., initializes prior to receipt of code execution requests) virtual machine instances to enable requested code executions to be performed quickly, without the delay caused by initialization of the virtual machines.


The worker manager ring 140 includes worker managers for managing active virtual machine instances (e.g., currently assigned to a user and/or executing program codes of the user). The worker managers manage the virtual machine instances used for servicing incoming code execution requests. For example, the frontend 130 may request a worker manager to acquire compute capacity, and in response, the worker manager may locate a virtual machine instance that can be used to handle the “the frontend 130” (e.g., virtual machine instances) and The components of the on-demand code execution environment 110 are described in greater detail below.


High-Level Description of On-Demand Code Execution Environment

A user on a user computing device 102 can send, via the network 104, a request to execute a program code associated with the user on the on-demand code execution environment 110. Upon receiving the request, a load balancer 120 for distributing the incoming code execution requests across a plurality of frontends 130 forwards the request to a selected frontend 130. The selected frontend 130 causes the request to be handled by a worker manager assigned to the user. The worker manager manages the code execution, keeping track of, for example, which code is executing in which container created on which the virtual machine instance associated which user at what time. The on-demand code execution environment 110 further includes a scaling manager 150 for providing improved scaling of the set of worker managers assigned to the user that results in improved resource utilization and other processing advantages.


Scaling Manager

The scaling manager 150 manages the scaling of the one or more worker managers assigned to a given user. The illustration of the scaling manager 150 in FIG. 1 is logical in nature, and one or more of the components of the scaling manager 150 can be implemented by other components of the on-demand code execution environment 110, such as the frontends 130 and/or the worker managers. One or more processes or techniques described herein as being performed by the scaling manager 150 may instead be performed by a frontend or a worker manager illustrated in FIG. 1. Additionally or alternatively, one or more processes or techniques described herein as being performed by a frontend or a worker manager may instead be performed by the scaling manager 150.


Concurrency Limit

In some implementations, the on-demand code execution environment 110 may limit the number of concurrent code executions that a user can have at any given time. Such a limit is referred to herein as a concurrency limit. For example, if a user's concurrency limit is 100, the user may be allowed to have up to 100 code executions running concurrently in the on-demand code execution environment 110.


Advantages of Concentrating Code Execution Requests

As illustrated in FIG. 1, the worker manager ring 140 includes a plurality of worker managers. In some embodiments, the frontend 130 sends each incoming code execution request associated with a given user to only the user's predefined subset of the plurality of worker managers in the worker manager ring 140 (also referred to herein as the user's “arc”), where the subset does not include all of the plurality of worker managers in the worker manager ring 140. By doing so, the code execution requests associated with the given user are concentrated in a smaller number of worker managers, allowing the worker managers to handle such requests more efficiently based on the amount of information that the worker managers have access to about the given user and the given user's prior requests.


Relationship Between Worker Managers and Concurrency Limit

The number of worker managers assigned to a given user may be determined based on the concurrency limit associated with the user. For example, each worker manager in the worker manager ring 140 may be configured to handle up to 50 requests per user. In other words, each worker manager may be associated with a per-user concurrency limit of 50. In such an example, if a user has a concurrency limit of 100, the user is assigned two worker managers, and the user's code execution requests are routed to one of the two worker managers. Similarly, if the user has a concurrency limit of 1000, the user is assigned 20 worker managers for handling the user's code execution requests.


In some embodiments, the scaling manager 150 may increase or decrease the per-user concurrency limit if a threshold condition is satisfied (e.g., if all of the worker managers in the worker manager ring illustrated in FIG. 2 are at the per-user capacity or above a threshold utilization level). The scaling manager 150 may also increase the per-user concurrency limit for a given user if the user has a concurrency limit that exceeds the total capacity of the worker manager ring 140 (e.g., [per-user concurrency limit of each worker manager]*[# of worker managers on the ring]).


In some embodiments, the scaling manager 150 may purposely assign to a user a number of worker managers whose collective per-user concurrency limit is less than the concurrency limit of the user. For example, if the user has a concurrency limit of 1000 and if the per-user concurrency limit of each worker manager is 50, the scaling manager 150 may assign less than 20 worker managers to the user for handling the user's code execution requests.


Routing by Frontend

The frontends 130 may distribute code execution requests across the worker managers in the worker manager ring 140 according to a method that is different from the method used by the load balancer 120 to distribute the code execution requests across the frontends 130. In some embodiments, the frontends 130 route the requests to a specific worker manager based on the user code and/or based on the user associated with the user code. In some embodiments, the routing is determined based on a consistent-hashing scheme in which one or more parameters associated with the request (e.g., user ID, user code ID, etc.) are hashed according to a hash function and the request is sent to one of the worker managers in the worker manager ring 140 that has previously been assigned to the sections of a hash ring (e.g., containing a plurality of hash values) that corresponds to the resulting hash value. For example, the worker managers occupy one or more sections of the hash ring, and the requests are mapped to those same hash values. In some embodiments, the hash values may be integer values, and each worker manager may be associated with one or more integer values. The one or more integer values associated with a particular worker manager may be determined based on one or more parameters associated with the worker manager (e.g., IP address, instance ID, etc.). In some embodiments, the request may be sent to the worker manager whose associated integer values are closest to, but not larger than, the hash value calculated for that request (e.g., using modulo arithmetic).


Worker Manager Ring

Turning now to FIG. 2, an example of the worker manager ring 140 will be described. As illustrated in FIG. 2, the worker manager ring 140 includes worker managers 140A, 140B, 140C, 140D, 140E, 140F. The worker manager 140A includes VM instances 140A1, 140A2, which include containers 140A1-1, 140A1-2 and containers 140A2-1, 140A2-2, respectively. The worker manager 140B includes VM instances 140B1, 140B2, which include containers 140B1-1, 140B1-2 and containers 140B2-1, 140B2-2, respectively. The worker manager 140C includes VM instances 140C1, 140C2, which include containers 140C1-1, 140C1-2 and containers 140C2-1, 140C2-2, respectively. The worker manager 140D includes VM instances 140D1, 140D2, which include containers 140D1-1, 140D1-2 and containers 140D2-1, 140D2-2, respectively. The worker manager 140E includes VM instances 140E1, 140E2, which include containers 140E1-1, 140E1-2 and containers 140E2-1, 140E2-2, respectively. The worker manager 140F includes VM instances 140F1, 140F2, which include containers 140F1-1, 140F1-2 and containers 140F2-1, 140F2-2, respectively.


As illustrated in FIG. 2, the worker managers are mapped onto various points on a hash ring 160. In the example of FIG. 2, each worker manager is associated with 3 points on the hash ring 160. In one embodiment, when a request is routed to the worker manager ring 140, a hash value corresponding to a point on the hash ring 160 is calculated for the request, The particular worker manager to which the request is routed may be determined based on the location of the calculated hash value on the hash ring 160. In some embodiments, the particular worker manager to which the request is routed is the one having a point on the hash ring 160 that is closest to the location of the calculated hash value of the request in the clockwise direction. For example, if the hash value calculated for “Request A” corresponds to Point A illustrated on the hash ring 160, “Request A” would be routed to the worker manager 140F. In another example, if the hash value calculated for “Request B” corresponds to Point B illustrated on the hash ring 160, “Request B” would be routed to the worker manager 140D. The worker manager ring 140 of the on-demand code execution environment 110 is not limited to the example illustrated in FIG. 2, and the worker manager ring 140 may be implemented with any number of worker managers, VM instances, and containers, and each worker manager may have any number of points or locations on the hash ring 160 assigned thereto. Although the hash ring 160 is used in the example of FIG. 2 to route the requests to the various worker managers, other request distribution schemes (e.g., rendezvous hashing) may be utilized without departing from the spirit of the present disclosure.


Removal and Addition of Worker Managers

When the frontends 130 determine that one or more worker managers have become unavailable, the frontends 130 may associate the hash values previously associated with the one or more worker managers that have become unavailable with one or more available worker managers in the worker manager ring 140. Similarly, when a new worker manager is added to the worker manager ring 140, the new worker manager may take a share of the hash values associated with the existing worker managers. For example, the new worker manager may be assigned one or more sections of the hash ring that were previously assigned to the existing worker managers. In some embodiments, the new worker manager may be assigned to one or more values previously unassigned to any existing worker managers. The one or more hash values associated with a worker manager may be altered to improve overall utilization across the individual worker managers on the ring.


Actual Utilization and Concurrency Limit

In some cases, a user may always be near his or her concurrency limit. In such cases, it may be beneficial to have a number of worker managers assigned to the user that can sufficiently handle a number of concurrent code executions at or near the concurrency limit.


In other cases, a user may reach only a fraction of the concurrency limit for the majority of the time. In such cases, some of the computing resources managed by the individual worker manager may be wasted if worker managers sufficient to handle concurrent code executions at or near the concurrency limit of the user are constantly waiting for code execution requests from the user. In some embodiments, each worker manager may need to have at least one virtual machine instance provisioned and ready to handle incoming code execution requests, even if the user is sending code execution requests at a rate that results in no concurrent code executions or only a small number of concurrent code executions. For example, if the user has a concurrency limit of 100, and the number of worker managers sufficient to handle 100 concurrent code executions is two, but the code execution requests sent by the user are not resulting in any concurrent code executions (e.g., because the user is sending subsequent code execution requests after prior code executions have been completed), it would be wasteful to have two worker managers each manage a separate virtual machine instance because a single worker manager working with a single virtual machine instance could handle the user's requests more efficiently.


Initial Number of Worker Managers

In some embodiments, instead of assigning users a static number of worker managers based on their concurrent limit, the scaling manager 150 determines a maximum number of worker managers to be assigned to a given user, and scales the number of worker managers assigned to the given user at any given time as needed (e.g., based on the code execution requests sent by the given user).


For example, instead of always having the maximum number of worker managers assigned to the user, the user may be initially assigned a minimum number (e.g., 1) of worker managers that is less than the maximum number. Upon determining that the number of worker managers currently assigned to the user is insufficient to handle the user's workload, the scaling manager 150 may increase the number of worker managers assigned to the user accordingly.


Alternatively, instead of always having the maximum number of worker managers assigned to the user, the user may be initially assigned the maximum number (e.g., equal to the user's concurrency limit divided by the per-user concurrency limit of worker managers) of worker managers that is greater than a minimum number of worker managers. Upon determining that the worker managers currently assigned to the user are not being sufficiently utilized, the scaling manager 150 may decrease the number of worker managers assigned to the user accordingly.


In yet other cases, instead of always having the maximum number of worker managers assigned to the user, the user may be initially assigned an initial number of worker managers that is greater than a minimum number of worker managers but less than the maximum number of worker managers (e.g., equal to the user's concurrency limit divided by the per-user concurrency limit of worker managers). Upon determining that the number of worker managers currently assigned to the user is insufficient to handle the user's workload, the scaling manager 150 may increase the number of worker managers assigned to the user accordingly, and upon determining that the worker managers currently assigned to the user are not being sufficiently utilized, the scaling manager 150 may decrease the number of worker managers assigned to the user accordingly.


Communication Between Worker Managers and Frontends

In some implementations, when a frontend forwards a code execution request to a worker manager, the worker manager may respond in one of two ways: (i) the worker manager may perform the requested code execution, or (ii) the worker manager may send a signal back to the frontend indicating that the worker manager is overloaded and cannot handle any additional requests. In response to receiving such a signal from the worker manager, the frontend may forward the code execution request to the next worker manager in the set of worker managers assigned to the user. Upon receiving the same signal consecutively from a threshold number of worker managers, the frontend may cause the set of worker managers assigned to the user to be scaled up (e.g., by adding one or more additional worker managers to the set). For example, the scaling manager 150 may initially assign two worker managers to the user. If the scaling manager 150 determines that each of the two worker managers are overloaded, the scaling manager 150 may assign one or more additional worker managers to the user. In another example, upon determining that a threshold number (e.g., 3, 4, 5, or another number that is less than the total number of worker managers assigned to the user) of the worker managers assigned to the user are overloaded, the scaling manager 150 may assign one or more additional worker managers to the user. Alternatively, upon determining that all of the worker managers assigned to the user are overloaded, the scaling manager 150 may assign one or more additional worker managers to the user.


Upon determining that a load (e.g., average load, total load, etc.) on the worker managers assigned to the user is a threshold level, the scaling manager 150 may dissociate one or more worker managers currently assigned to the user from the user. For example, the scaling manager 150 may initially assign two worker managers to the user. If the scaling manager 150 determines that the code execution requests sent by the user are not resulting in any concurrent code executions (e.g., because the user is sending subsequent code execution requests after prior code executions have been completed) or resulting in a number of concurrent code executions that can be handled by a fewer number of worker managers, the scaling manager 150 may dissociate one or more worker managers from the user.


Default Concurrency Limit

When the frontend receives a code execution request from a user previously unseen by the frontend, the frontend may assume that the user has a default concurrency limit. In some embodiments, the default concurrency limit is equal to the per-user concurrency limit of a worker manager (or a multiple of such a per-user concurrency limit). For example, if each worker manager can handle up to 50 concurrent code execution requests from a user, the default concurrency limit may be 50 (or 100, 150, etc.).


Frontend Local State

In some embodiments, each frontend maintains, in a local memory, data indicating the individual users' concurrency limits and the number of worker managers currently assigned. The data maintained by one frontend may differ from those maintained by other frontends. In some embodiments, such data may be stored on one or more servers logically or physically separate from the frontends.


Worker Manager Local State

In some embodiments, each worker manager maintains, in a local memory, data indicating the individual users' concurrency limits and the number of worker managers currently assigned. In some of such embodiments, such data is stored in response to a request from a frontend. The data maintained by one worker manager may differ from those maintained by other worker managers. In some embodiments, such data may be stored on one or more servers logically or physically separate from the worker managers.


Communication Among Frontends

In some embodiments, the frontends 130 do not communicate with each other. In other embodiments, the frontends 130 communicate with each other but do not share data related to scaling of the worker managers assigned to the individual users of the on-demand code execution environment 110. For example, in some cases, a first frontend may determine that a first number of worker managers are assigned to a given user, whereas a second frontend may determine that a second number of worker managers are assigned to the given user at the same moment, where the second number is greater than the first number. In such an example, the second frontend may iterate through a greater number of worker managers than the first frontend.


Eventual Consistency Across Multiple Frontends

In some implementations, worker manager scaling information (e.g., the number of worker managers currently assigned to a given user) is not shared across multiple frontends, thereby resulting in a simpler design of the on-demand code execution environment.


In other implementations, worker manager scaling information is shared across the multiple frontends (e.g., using a gossip protocol), thereby resulting in code execution requests that are more evenly distributed across the worker managers. For example, upon receiving an indication that a worker manager assigned to a given user is overloaded or otherwise unavailable to handle a code execution request, the frontend propagates the received indication to other frontends on the on-demand code execution environment 110. The frontend may request additional information from the other frontends and determine whether to scale the worker managers assigned to the given user based on the additional information received from the other frontends.


In some embodiments, if one or more of the other frontends are also near the maximum capacity with respect to the given user (e.g., above or at a threshold load level), such frontends on the on-demand code execution environment 110 may scale up (e.g., all of the frontends or only the overloaded frontends scale up the user's arc according to one or more scaling methods described herein). If one or more of the other frontends indicate that the user's arc is underutilized (e.g., below a threshold load level), such frontends may scale down the user's arc, whereas the frontend receiving the throttling or error response may scale up. In some embodiments, based on a determination that the other frontends need not be scaled up or scaled down, only the frontend receiving the throttling or error response may scale up.


Multiple Frontends

In some embodiments, a given code execution request is not tied to a particular frontend. For example, when the on-demand code execution environment 110 receives a code execution request, the load balancer 120 may forward the received code execution request to any of the frontends 130. In some embodiments, even though any of the frontends 130 may receive the incoming code execution request of a user, regardless of which frontend 130 receives the incoming code execution request, the code execution request is sent to a designated worker manager in the set of worker managers assigned to the user.


In some embodiments, a frontend has its own number of worker managers assigned to a given user and its own iteration order for iterating through the worker managers. In some of such embodiments, the iteration order of one frontend for a given user is different from the iteration order of another frontend for the given user (e.g., to better distribute the incoming code executions across the given user's arc). A frontend may keep track of the worker manager to which the most recent code execution request was sent. In such a case, the frontend may send the immediately subsequent request to a worker manager that immediately follows the most recently used worker manager in the iteration order.


Iterating Through Assigned Worker Managers

When two or more worker managers are assigned to a user, the frontend may distribute the code execution requests from the user across the worker managers in a specific order. For example, if worker managers A, B, and C are assigned to a given user, the frontend may send the first request associated with the given user and received by the frontend to worker manager A, send the second request associated with the given user and received by the frontend to worker manager B, send the third request associated with the given user and received by the frontend to worker manager C, send the fourth request associated with the given user and received by the frontend to worker manager A, and so on.


Caching of List of Worker Managers

A frontend may cache the list of worker managers assigned to a given user so that the frontend would not have to calculate the hash value corresponding to the user each time a code execution request is received. The hash value may be calculated based on the user ID of the user (e.g., by applying a hash function on the user ID). Upon receiving a code execution request, the frontend may first determine whether the cache accessible by the frontend includes the list of worker managers assigned to the user associated with the code execution request. In some embodiments, the frontend may keep track of the order of the worker managers assigned to a given user. The frontend may also keep track of the identity of the worker manager that was most recently accessed. For example, upon receiving a code execution request, the frontend may determine the identity of the worker manager that follows the most recently accessed worker manager in the order in which the set of worker managers is to be iterated. If the frontend determines that the list of worker managers assigned to the user associated with the code execution request comprises worker managers A, B, C, and D in that specific order, and the most recently accessed worker manager was worker manager B, the frontend may reach out to worker manager C (the worker manager immediately subsequent to worker manager B) to acquire the compute capacity for executing the program code for the code execution request.


Rate of Worker Manager Scaling

In some embodiments, the scaling manager 150 may limit how quickly a set of worker managers assigned to a user may be scaled up. For example, the scaling manager 150 may allow a set of worker managers to be scaled up only a threshold number of times during a specific temporal window (e.g., only one scale-up every hour). In another example, the scaling manager 150 may allow a set of worker managers to be scaled up only a threshold number of times over a threshold amount of code execution requests associated with the user (e.g., only one scale-up every 10 code execution requests).


In yet another example, the scaling manager 150 may allow only a threshold number of worker managers to be added to the set of worker managers assigned to the user during a specific temporal window (e.g., only 4 worker managers every hour). In yet another example, the scaling manager 150 may allow only a threshold number of worker managers to the set of worker managers assigned to the user over a threshold amount of code execution requests associated with the user (e.g., only 4 worker managers every 10 code execution requests).


The scale-up may include adding a specific number of worker managers to the set of worker managers assigned to the user. For example, each scale-up may add a fixed number of worker managers (e.g., 1, 2, 4, etc.). As another example, each scale-up may add an increasing or decreasing number of worker managers (e.g., the first scale-up may add one worker manager to be added to the set, the second scale-up may add two, etc.). Alternatively or additionally, the scale-up may be based on the number of worker managers currently assigned to the user (e.g., scale-up may include doubling the size of the set or increasing the number of worker managers assigned to the user by 50%). In some other cases, the scale-up may be adding a number of worker managers to the set based on the concurrency limit associated with the user (e.g., scale-up may include adding 10% of the number of worker managers capable of handling the concurrency limit).


In some embodiments, the limit on how quickly a set of worker managers assigned to a user may be scaled up is activated only when the available capacity in the warming pool 135A is below a threshold level. For example, upon determining that the available capacity in the warming pool 135A has fallen below the threshold level, the scaling manager 150 starts limiting how quickly a set of worker managers assigned to a user may be scaled up, according to the techniques described herein.


In some implementations, the scaling manager 150 scales the worker managers at a first rate during a first time period and at a second rate during a second time period. For example, the scaling manager 150 may add 20% of the maximum number of worker managers that can be assigned to the user on the first scale-up, and add 10% of the maximum number of worker managers that can be assigned to the user on the subsequent scale-ups. In another example, the scaling manager 150 may increase the size of the set of worker managers assigned to the user tenfold on the first scale-up, and increase the size of the set of worker managers assigned to the user twofold on the subsequent scale-ups.


In some embodiments, the scaling manager 150 scales the set of worker managers assigned to the user based on the traffic pattern of the code execution requests associated with the user. If the scaling manager 150 determines that a given user has a spiky traffic pattern, each time a scale-up is needed for the user, the scaling manager 150 may add a greater number of worker managers to the user's set than usual (e.g., compared to a user with a non-spiky traffic pattern). The scaling manager 150 may scale the set of worker managers up or down based on a scaling policy specified by the user or determined for the user.


Arc and Arc Size

The set of worker managers assigned to a given user may be referred to herein as the giving user's “arc” since in some embodiments, the worker managers are distributed around a hash ring (as illustrated in FIG. 2), and a set of consecutive worker managers on the hash ring forms an arc of the hash ring. In such embodiments, the user's arc size refers to the number of worker managers in the set of worker managers assigned to the user.


New User

When a frontend receives a code execution request from a previously unseen user, the friend may assume that the arc size of the user has a default initial value (e.g., zero, or a minimum number of worker managers assigned to individual users on the on-demand code execution environment 110). The frontend may determine that the code execution request is from a previously unseen user if the frontend cannot find an arc size value corresponding to the user in its local memory.


Scale-Down for Inactive Users

Upon determining that the user has been inactive for a threshold amount of time, the scaling manager 150 may scale down the set of worker managers assigned to the user. The scaling manager 150 may determine that the user has been inactive for a threshold amount of time if the on-demand code execution environment 110 does not receive any code execution requests associated with the user during the threshold amount of time.


The scaling manager 150 may scale down a set of worker managers assigned to the user by dissociating one or more worker managers in the set from the user. For example, if worker managers A, B, and C are assigned to the user, after the scale-down, only worker managers A and B may be assigned to the user, and the code execution requests associated with the user may be sent to the worker managers A and B in an alternating manner. If only a single worker manager is assigned to the user when a scale-down is to be performed for the user, the arc size of the user may be set to zero in the local memory associated with the particular frontend initiating the scale-down. If the user is inactive for a threshold amount of time, each of the frontends may scale down the worker managers assigned to the user, eventually setting the arc size of the user to zero. The process of scaling down a set of worker managers assigned to a user is further described in greater detail with reference to FIG. 5.


Initializing a New Frontend

When a new frontend is added to the on-demand code execution environment 110, upon receiving a code execution request associated with the user, the new frontend may request scaling information from a worker manager assigned to the user so that the new frontend can properly route requests associated with the user. For example, the new frontend may call an API for retrieving the arc size of the user from the worker manager assigned to the user. The identity of the worker manager assigned to the user may be determined using a hash function described herein.


Preserving Scaling Information

In some embodiments, every time a frontend processes a code execution request associated with the user, the frontend sends the scaling information (e.g., the current arc size of the user) to the worker manager assigned to the user. In some cases, the frontend sends the scaling information to each of the worker managers assigned to the user. Alternatively, the frontend may send the scaling information to only the specific worker manager handling the given code execution request. The scaling information stored with the worker manager may later be retrieved by a different frontend that is new to the on-demand code execution environment 110.


Behavior of New Frontends

Upon receiving a code execution request associated with a previously unseen user, a frontend may first determine whether more than a threshold period of time has passed since the frontend was added to the on-demand code execution environment 110 (or since startup). In some embodiments, if the frontend determines that more than a threshold period of time has passed since the frontend was added to the on-demand code execution environment 110 (or since startup), the frontend determines that the arc size of the user has been scaled down to zero. If the frontend determines that more than a threshold period of time has not passed since the frontend was added to the on-demand code execution environment 110 (or since startup), the frontend requests the arc size of the user from a worker manager assigned to the user (or a worker manager identified based on the hash function and the information associated with the user).


For example, upon receiving a code execution request associated with a previously unseen user, a frontend may first determine if it has been more than 15 minutes since its startup. If the frontend determines that it has been more than 15 minutes since its startup, the frontend may determine that the arc size of the user is zero, update your size of the user to a nonzero value (e.g., 1 or another minimum value), and cause the request to be handled by a worker manager assigned to the user. If the frontend determines that it has not been more than 15 minutes since its startup, the frontend may request the arc size of the user from a worker manager assigned to the user.


Timing of Scaling

The scaling manager 150 may scale up a user's arc size (e.g., the number of worker managers assigned to the user) after a threshold number of worker managers assigned to the user returns a throttling response (e.g., indicating that the worker manager is overloaded or has reached its capacity reserved for the user) in response to a request to reserve a virtual machine instance or a container for executing the user's program code. In some embodiments, the scaling manager 150 scales up a user's arc size after a single throttling or error response from a worker manager on the user's arc. In some of such embodiments, after the scale-up, the scaling manager 150 requests compute capacity from a worker manager newly added to the user's arc for executing the program code. If the newly added worker manager returns a throttling or error response, the on-demand code execution environment 110 returns an error response back to the user (or another entity requesting the execution of the program code). In other embodiments, the scaling manager 150 may try a first threshold number of worker managers and scale up a second threshold number of times before such an error response is returned back to the user.


As for scaling down, the worker manager may report back to the frontend what percentage of its capacity is being used for the particular user. Upon determining that the percentage has fallen below a threshold level, the scaling manager 150 may scale down the user's arc size (e.g., the number of worker managers assigned to the user). In some embodiments, upon determining that the percentage has been below a threshold level for a threshold amount of time, the scaling manager 150 may scale down the user's arc size (e.g., the number of worker managers assigned to the user).


In some embodiments, the scaling manager 150 may periodically check, for each user, whether the average load across all of the worker managers assigned to the user is below a threshold. For example, the scaling manager 150 may check every 5 minutes whether the average load across the worker managers assigned to the user is below 50%. Upon determining that the average load is below 50%, the scaling manager 150 may scale down the user's arc. The periodic checking may be performed for each frontend.


Preemptive Scaling

In some embodiments, the scaling manager 150 scales up a set of worker managers assigned to a user before the user's concurrency limit is reached. For example, if the scheduling manager 150 determines that the average load value associated with the user is above a threshold load level (or a threshold number of concurrent executions for the user, a group of users, or all users), the scaling manager 150 scales up the set of worker managers assigned to the user (e.g., before a throttling response is received from one of the worker managers and the set).


In some embodiments, the scaling manager 150 performs an adaptive scaling based on the load profile associated with a given user. For example, the scaling manager 150 may scale the set of order managers assigned to the given user in advance of regularly scheduled events or spikes. In some embodiments, in response to determining that the load profile associated with the user is spiky (e.g., isolated peaks in incoming code execution requests), the scaling manager 150 scales the set of worker managers more restrictively (e.g., fewer number of scale-ups, smaller scale-ups, etc.), and in response to determining that the load profile associated with the user is smooth (e.g., not spiky), the scheduling manager 150 scales to set of worker managers more liberally (e.g., more frequent scale-ups, larger scale-ups, etc.).


Intermediate Layer Between Frontends and Worker Managers

In some embodiments, although not illustrated in FIG. 1, one or more intermediate entities that are logically or physically separate from the frontends and/or the worker managers may relay information between the frontends and the worker managers. For example, a worker manager may communicate its capacity information (e.g., number of concurrent executions, load percentage, etc.) to such an intermediate entity, and the intermediate entity may process and/or forward such information to the appropriate frontend(s). In some embodiments, some of such information may be directly exchanged between the frontends and the worker managers.


Reaching Concurrency Limit

If the scaling manager 150 determines that a user's arc size has been scaled to the limit (e.g., the number of worker managers assigned to the user is at the maximum level allowed by the concurrency limit) and a threshold number of consecutive throttling responses have been received from the worker managers in the user's arc, the scaling manager 150 may send a notification to the user (e.g., via the user computing device 102), indicating that the user has reached his or her maximum capacity. The scaling manager 150 may further cause a selectable option of increasing the limit to be presented to the user.


Overlapping of User's Arcs

The worker manager ring illustrated in FIG. 2 may be shared by multiple users of the on-demand code execution environment 110. In some embodiments, some or all of the arcs of such users are overlapped on the worker manager ring. For example, one or more worker managers on the worker manager ring may concurrently handle requests associated with multiple users. In some embodiments, there is a maximum number of concurrent code executions that a given worker manager is allowed to handle regardless of the user associated with the code executions. For example, such a maximum number may be a multiple of the per-user concurrency limit. Alternatively, the on-demand code execution environment may not artificially restrict the total number of concurrent code executions handled by a single worker manager.


Worker Manager Brownout Protection

The scaling manager 150 may track the throttling state of the individual worker managers. For example, upon receiving a response from a worker manager that is not a successful response (e.g., a throttling response or an error response), a frontend may not send another code execution request to the same worker manager for a first threshold amount of time (e.g., 500 ms). In some embodiments, if the same worker manager again returns a response other than a successful response after the threshold amount of time has passed, the frontend may not send another code execution request to the same worker manager for a second threshold amount of time that is greater than the first threshold amount of time. For example, the second threshold amount of time may be twice as long as the first threshold amount of time. The frontend may continue in a similar manner such that the threshold amount of time during which the frontend does not send a code execution request to the worker manager grows exponentially for each consecutive non-successful response from the worker manager. In some embodiments, the backoff period (e.g., the threshold amount of time for which the frontend does not send another request to the worker manager) may be based on a function duration (e.g., average time for which the execution of the program code lasts, a maximum duration allowed for the execution of the program code, etc.).


General Architecture of Scaling Manager



FIG. 3 depicts a general architecture of a computing system (referenced as server 200) that implements embodiments of the present disclosure to enable concurrency and scaling management on the on-demand code execution environment 110. The general architecture of the server 200 depicted in FIG. 3 includes an arrangement of computer hardware and software modules that may be used to implement aspects of the present disclosure. The hardware modules may be implemented with physical electronic devices, as discussed in greater detail below. The server 200 may include many more (or fewer) elements than those shown in FIG. 3. It is not necessary, however, that all of these generally conventional elements be shown in order to provide an enabling disclosure. Additionally, the general architecture illustrated in FIG. 3 may be used to implement one or more of the other components illustrated in FIG. 1. As illustrated, the server 200 includes a processing unit 210, a network interface 212, a computer readable medium drive 214, and an input/output device interface 216, all of which may communicate with one another by way of a communication bus. The network interface 212 may provide connectivity to one or more networks or computing systems. The processing unit 210 may thus receive information and instructions from other computing systems or services via the network 104. The processing unit 210 may also communicate to and from memory 220 and further provide output information for an optional display (not shown) via the input/output device interface 216. The input/output device interface 216 may also accept input from an optional input device (not shown).


The memory 220 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 210 executes in order to implement one or more aspects of the present disclosure. The memory 220 generally includes RAM, ROM and/or other persistent, auxiliary or non-transitory computer readable media. The memory 220 may store an operating system 224 that provides computer program instructions for use by the processing unit 210 in the general administration and operation of the server 200. The memory 220 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 220 includes a user interface unit 222 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, the memory 220 may include and/or communicate with one or more data repositories, which may correspond to any persistent or substantially persistent data storage, such as a hard drive (HDD), a solid state drive (SDD), network attached storage (NAS), a tape drive, or any combination thereof.


In addition to and/or in combination with the user interface unit 222, the memory 220 may include scaling management software 226 that corresponds to computer-executable instructions which, when executed by the server 200, implement the functions described above with respect to the scaling manager 150. While the scaling management software 226 is shown in FIG. 3 as part of the server 200, in other embodiments, all or a portion of the account manager 160 may be implemented by other components of the on-demand code execution environment 110 and/or another computing device. For example, in certain embodiments of the present disclosure, another computing device in communication with the on-demand code execution environment 110 may include several modules or components that operate similarly to the modules and components illustrated as part of the account manager 160.


While the computing device of FIG. 3 is described as implementing the scaling manager 150, the same or a similar computing device may additionally or alternatively be utilized to implement other components of the on-demand code execution environment 110. For example, such a computing device may be utilized, independently or in conjunction with other components (e.g., data stores) to implement the warming pool manager or the worker managers of FIG. 1. The software or computer-executable instructions placed within the memory 220 may be modified to enable execution of the functions described herein with respect to the warming pool manager or the worker managers.


Example Routine for Scaling Worker Managers of a User

Turning now to FIG. 4, an example routine 400 implemented by one or more components of the on-demand code execution environment 110 (e.g., the frontend 130) will be described. Although the routine 400 is described with regard to implementation by the frontend 130, one skilled in the relevant art will appreciate that alternative components (e.g., the scaling manager 150, the worker managers, etc.) may implement the routine 400 or that one or more of the blocks of the routine 400 may be implemented by a different component or in a distributed manner.


At block 402 of the illustrative routine 400, the frontend 130 receives a request to execute a program code on the on-demand code execution environment 110. For example, the request may include one or more parameters related to the program code to be executed, such as the user ID, the program code ID, etc.


At block 404, the frontend 130 requests a first worker manager (also referred to herein as virtual machine instance manager) to execute the program code on behalf of the user. For example, the first worker manager may be in a set of worker managers configured to process code executions requests associated with the user (e.g., assigned to the user).


At block 406, the frontend 130 receives a response from the first virtual machine instance manager indicating that the first virtual machine instance manager did not successfully execute the program code on behalf of the user. For example, the response may be a throttling response indicating that the first virtual machine instance manager is currently overloaded with other code executions being performed on behalf of the user.


At block 408, the frontend 130 causes a second worker manager different from the first worker manager to be added to the set of worker managers configured to process code executions requests associated with the user. Prior to causing the second worker manager to be added to the set, the frontend 130 may request one or more remaining worker managers in the set to execute the program code on behalf of the user.


At block 410, the frontend 130 acquires a virtual machine instance from the second worker manager for executing the program code on behalf of the user. For example, the frontend 130 may send a virtual machine instance reserve request (or a container reserve request) to the second worker manager, and in response to receiving such a request, the second worker manager may identify a virtual machine instance and return the identity (e.g., IP address, location, or other information that can be used by the frontend 130 to communicate with the identified virtual machine instance) of the virtual machine instance to the frontend 130.


At block 412, the frontend 130 causes the virtual machine instance to execute the program code on behalf of the user. For example, the frontend 130 may cause a copy of the program code to be downloaded onto a container created on the virtual machine instance, and cause the downloaded copy of the program code to be executed in the container. The results and/or return values of the executed program code may be sent to the user who requested the execution of the program code.


While the routine 400 of FIG. 4 has been described above with reference to blocks 402-412, the embodiments described herein are not limited as such, and one or more blocks may be omitted, switched, or modified without departing from the spirit of the present disclosure. For example, in some embodiments, the frontend 130 causes a virtual machine instance identified by the first worker manager to execute the program code on behalf of the user, and blocks 406-412 may be omitted.


Example Routine for Scaling Worker Managers of a User

Turning now to FIG. 5, an example routine 500 implemented by one or more components of the on-demand code execution environment 110 (e.g., the frontend 130) will be described. Although the routine 500 is described with regard to implementation by the frontend 130, one skilled in the relevant art will appreciate that alternative components (e.g., the scaling manager 150, the worker managers, etc.) may implement the routine 500 or that one or more of the blocks of the routine 500 may be implemented by a different component or in a distributed manner.


At block 502 of the illustrative routine 500, the frontend 130 determines whether the average load associated with the user over a temporal window is below a threshold level. In some embodiments, the frontend 130 may calculate an average value of the most recently recorded load percentage (or moving average over a temporal window) of each worker manager in the set of worker managers assigned to the user. The average value may be compared to a threshold value (e.g., 30%, 50%, etc.). In other embodiments, the frontend 130 may calculate an average load value for each worker manager in the set of worker managers assigned to the user over a specific temporal window (e.g., last 5 minutes, last 30 minutes, last hour, last 24 hours, last week, last month, etc.). Then, the frontend 130 may average the average load values of the worker managers in the set, and compare the average to a threshold value.


At block 504, if the calculated value is below the threshold level, the routine 500 proceeds to block 506. Otherwise, the routine 500 proceeds to block 508.


At block 506, the frontend 130 waits for a time period and proceeds to block 502. For example, the frontend 130 periodically make the determination at block 502 to scale down the set of worker managers assigned to a given user.


At block 508, the frontend 130 removes one or more worker managers from the set of worker managers assigned to the user. In some embodiments, the frontend 130 reduces the number of worker managers assigned to the user by a number (e.g., 1, 2, etc.) or by a percentage (e.g., by 20%, by half, etc.). For example, if four worker managers are assigned to the user prior to the scale-down, during the scale-down at block 508, the frontend 130 may adjust the number to two. Alternatively or additionally, the frontend 130 may remove one or more worker managers from a list of worker managers assigned to the user. For example, if the frontend 130 determines that worker managers A-D are in the list of worker managers assigned to the user stored in the local (or remotely available) memory of the frontend 130, the frontend 130 may remove worker managers C and D from the list stored in the local (or remotely available) memory.


While the routine 500 of FIG. 5 has been described above with reference to blocks 502-508, the embodiments described herein are not limited as such, and one or more blocks may be omitted, switched, or modified without departing from the spirit of the present disclosure.


Example Routine for Scaling Worker Managers of a User

Turning now to FIG. 6, an example routine 600 implemented by one or more components of the on-demand code execution environment 110 (e.g., the frontend 130) will be described. Although the routine 600 is described with regard to implementation by the frontend 130, one skilled in the relevant art will appreciate that alternative components (e.g., the scaling manager 150, the worker managers, etc.) may implement the routine 600 or that one or more of the blocks of the routine 600 may be implemented by a different component or in a distributed manner.


At block 602 of the illustrative routine 600, the frontend 130 receives an indication that a scaling condition has been satisfied for a given user. In some embodiments, the indication is a throttling response or an error response received from a worker manager.


At block 604, the frontend 130 requests load information associated with the given user from one or more of their frontends on the on-demand code execution environment 110. For example, the frontend 130 may query each one of the other frontends for an average load value associated with the given user. In some embodiments, the load information may include the number of worker managers assigned to the given user by each frontend. For example, upon receiving the indication that a scaling condition has been satisfied, frontend A may reach out to other frontends on the on-demand code execution environment 110 (e.g., frontends B, C, and D) and request additional information maintained by the respective frontends. In response, frontend B may send the average load association with the user and the user's arc size (in the view of frontend B) to frontend A, frontend C may send the average load association with the user and the user's arc size (in the view of frontend C) to frontend A, and frontend D may send the average load association with the user and the user's arc size (in the view of frontend D) to frontend A.


At block 606, the frontend 130 determines a combined scaling strategy based on the information received from the one or more other frontends. For example, the frontend 130 may determine that the average load values on the other frontends are not greater than a threshold level, and thus only the frontend 130 should scale its worker managers assigned to the given user. In another example, the frontend 130 may determine that the average load values of one or more of the other frontends exceed a threshold level, and thus scaling of the worker managers should be performed for the frontend 130 as well as the one or more frontends having average load values exceeding the threshold level. In yet another example, the frontend may determine that's the average load values of the other frontends are below a threshold level, and thus the frontend 130 should be scaled up while the one or more other frontends having average load values below the threshold level should be scaled down.


At block 608, the frontend 130 causes the set of worker managers assigned to the user for one or more frontends (e.g., including frontend 130) to be adjusted based on the determination at block 606.


While the routine 600 of FIG. 6 has been described above with reference to blocks 602-608, the embodiments described herein are not limited as such, and one or more blocks may be omitted, switched, or modified without departing from the spirit of the present disclosure. For example, in some embodiments, the routine 600 may be performed by a central scaling service in communication with individual frontends. In such embodiments, the central scaling service may receive an indication that a scaling condition has been satisfied for a user from a frontend at block 602, and cause the frontend to adjust the set of worker managers at block 608. For example, the central scaling service may determine and update the user's arc size for each of the frontends based on how underutilized or overutilized the respective set of worker managers is for each frontend. In some embodiments, a scaling service that manages a group of frontends may scale the worker managers for the frontends such that the number of worker managers is decreased for a first frontend having the highest number of worker managers assigned to the user in the group and (ii) the number of worker managers is increased for a second frontend having the lowest number of worker managers assigned to the user in the group. The scaling service may periodically query the frontends and re-adjust the user's arc sizes across all the frontends so that the user's code executions are more evenly distributed. For example, the scaling service may re-adjust the user's arc sizes to be the same (or within the same range) across all the frontends.


Additional Details of Virtual Environment

Various components of the virtual environment 100 are described in greater detail below.


User Computing Device

By way of illustration, various example user computing devices 102 are shown in communication with the on-demand code execution environment 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop, mobile phone (or smartphone), tablet, kiosk, wireless device, and other electronic devices. In addition, the user computing devices 102 may include web services running on the same or different data centers, where, for example, different web services may programmatically communicate with each other to perform one or more techniques described herein. Further, the user computing devices 102 may include Internet of Things (IoT) devices such as Internet appliances and connected devices. The on-demand code execution environment 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLI), application programing interfaces (API), and/or other programmatic interfaces for generating and uploading user codes, invoking the user codes (e.g., submitting a request to execute the user codes on the on-demand code execution environment 110), scheduling event-based jobs or timed jobs, tracking the user codes, and/or viewing other logging or monitoring information related to their requests and/or user codes. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.


Network

The user computing devices 102 access the on-demand code execution environment 110 over a network 104. The network 104 may be any wired network, wireless network, or combination thereof. In addition, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. For example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.


The on-demand code execution environment 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks. The on-demand code execution environment 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1. Thus, the depiction of the on-demand code execution environment 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure. For example, the on-demand code execution environment 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer-to-peer network configurations to implement at least a portion of the processes described herein.


Further, the on-demand code execution environment 110 may be implemented in hardware and/or software and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers.


Definition of Virtual Machine Instance

As used herein, the term “virtual machine instance” may refer to an execution of software or other executable code that emulates hardware to provide an environment or platform on which software may execute (an “execution environment”). Virtual machine instances are generally executed by physical hardware devices, which may differ from the hardware emulated by the virtual machine instance. For example, a virtual machine may emulate a first type of processor and memory while being executed on a second type of processor and memory. Thus, virtual machines can be utilized to execute software intended for a first execution environment (e.g., a first operating system) on a physical device that is executing a second execution environment (e.g., a second operating system). In some instances, hardware emulated by a virtual machine instance may be the same or similar to hardware of an underlying device. For example, a device with a first type of processor may implement a plurality of virtual machine instances, each emulating an instance of that first type of processor. Thus, virtual machine instances can be used to divide a single device into a number of logical sub-devices (each referred to as a “virtual machine instance”). While virtual machine instances can generally provide a level of abstraction away from the hardware of an underlying physical device, this abstraction is not required. For example, assume a device implements a plurality of virtual machine instances, each of which emulate hardware identical to that provided by the device. Under such a scenario, each virtual machine instance may allow a software application to execute code on the underlying hardware without translation, while maintaining a logical separation between software applications running on other virtual machine instances. This process, which is generally referred to as “native execution,” may be utilized to increase the speed or performance of virtual machine instances. Other techniques that allow direct utilization of underlying hardware, such as hardware pass-through techniques, are known within the art.


Logical Illustration of On-Demand Code Execution Environment

The illustration of the various components within the on-demand code execution environment 110 is logical in nature and one or more of the components can be implemented by a single computing device or multiple computing devices. For example, the instances 152 and 154 can be implemented on one or more physical computing devices in different various geographic regions. Similarly, each of the load balancer 120, the frontends 130, the warming pool manager 135, the worker manager ring 140, and the scaling manager 150 can be implemented across multiple physical computing devices. Alternatively, one or more of such components can be implemented on a single physical computing device. In some embodiments, the on-demand code execution environment 110 may comprise multiple frontends, multiple warming pool managers, multiple worker manager rings, and/or multiple scaling managers. Although worker managers are shown in the example of FIG. 1, the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the on-demand code execution environment 110 may comprise any number of worker managers implemented using any number of physical computing devices. Similarly, although a single warming pool is shown in the example of FIG. 1, the embodiments described herein are not limited as such, and one skilled in the art will appreciate that the on-demand code execution environment 110 may comprise any number of warming pools.


Network and On-Demand Code Execution Environment

In the example of FIG. 1, the on-demand code execution environment 110 is illustrated as being connected to the network 104. In some embodiments, any of the components within the on-demand code execution environment 110 can communicate with other components of the virtual environment 100 via the network 104. In other embodiments, not all components of the on-demand code execution environment 110 are capable of communicating with other components of the virtual environment 100. In one example, only the load balancer 120 and/or the frontends 130 may be connected to the network 104, and other components of the on-demand code execution environment 110 may communicate with other components of the virtual environment 100 via the load balancer 120 and/or the frontends 130.


Use of On-Demand Code Execution Environment

As discussed above, users may use the on-demand code execution environment 110 to execute user code thereon. For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. Alternatively, the user may send a code execution request to the on-demand code execution environment 110. The on-demand code execution environment 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc., which are described in greater detail below) based on the code execution request, and execute the code using the compute capacity. The on-demand code execution environment 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).


User Code

The user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “code,” “user code,” and “program code,” may be used interchangeably. Such user code may be executed to achieve a specific task, for example, in connection with a particular web application or mobile application developed by the user. For example, the user codes may be written in JavaScript (node.js), Java, Python, and/or Ruby. The request may include the user code (or the location thereof) and one or more arguments to be used for executing the user code. For example, the user may provide the user code along with the request to execute the user code. In another example, the request may identify a previously uploaded program code (e.g., using the API for uploading the code) by its name or its unique ID. In yet another example, the code may be included in the request as well as uploaded in a separate location (e.g., an external storage service or a storage system internal to the on-demand code execution environment 110) prior to the request is received by the on-demand code execution environment 110. The on-demand code execution environment 110 may vary its code execution strategy based on where the code is available at the time the request is processed.


User Request

The load balancer 120 and/or the frontends 130 may receive the request to execute such user codes in response to Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing the user code. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing the code execution request to the load balancer 120 and/or the frontends 130. The load balancer 120 and/or the frontends 130 may also receive the request to execute such user codes when an event is detected, such as an event that the user has registered to trigger automatic request generation. For example, the user may have registered the user code with an auxiliary service 106 and specified that whenever a particular event occurs (e.g., a new file is uploaded), the request to execute the user code is sent to the load balancer 120 and/or the frontends 130. Alternatively, the user may have registered a timed job (e.g., execute the user code every 24 hours). In such an example, when the scheduled time arrives for the timed job, the request to execute the user code may be sent to the load balancer 120 and/or the frontends 130. In yet another example, the load balancer 120 and/or the frontends 130 may have a queue of incoming code execution requests, and when the user's batch job is removed from the on-demand code execution environment's work queue, the load balancer 120 and/or the frontends 130 may process the user request. In yet another example, the request may originate from another component within the on-demand code execution environment 110 or other servers or services not illustrated in FIG. 1.


A user request may specify one or more third-party libraries (including native libraries) to be used along with the user code. In one embodiment, the user request is a ZIP file containing the user code and any libraries (and/or identifications of storage locations thereof). In some embodiments, the user request includes metadata that indicates the program code to be executed, the language in which the program code is written, the user associated with the request, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code. For example, the program code may be provided with the request, previously uploaded by the user, provided by the on-demand code execution environment 110 (e.g., standard routines), and/or provided by third parties. In some embodiments, such resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular user code, and may not vary over each execution of the user code. In such cases, the on-demand code execution environment 110 may have access to such resource-level constraints before each individual request is received, and the individual requests may not specify such resource-level constraints. In some embodiments, the user request may specify other constraints such as permission data that indicates what kind of permissions that the request has to execute the user code. Such permission data may be used by the on-demand code execution environment 110 to access private resources (e.g., on a private network).


In some embodiments, the user request may specify the behavior that should be adopted for handling the user request. In such embodiments, the user request may include an indicator for enabling one or more execution modes in which the user code associated with the user request is to be executed. For example, the request may include a flag or a header for indicating whether the user code should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the user code is provided back to the user (e.g., via a console user interface). In such an example, the on-demand code execution environment 110 may inspect the request and look for the flag or the header, and if it is present, the on-demand code execution environment 110 may modify the behavior (e.g., logging facilities) of the container in which the user code is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the request by the user interface provided to the user by the on-demand code execution environment 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in the request.


Warming Pool Manager

The warming pool manager 135 ensures that virtual machine instances are ready to be used by the worker managers when the on-demand code execution environment 110 receives a request to execute user code on the on-demand code execution environment 110. In the example illustrated in FIG. 1, the warming pool manager 135 manages the warming pool 135A, which is a group (sometimes referred to as a pool) of pre-initialized and pre-configured virtual machine instances that may be used to service incoming user code execution requests. In some embodiments, the warming pool manager 135 causes virtual machine instances to be booted up on one or more physical computing machines within the on-demand code execution environment 110 and added to the warming pool 135A. In other embodiments, the warming pool manager 135 communicates with an auxiliary virtual machine instance service to create and add new instances to the warming pool 135A.


For example, the warming pool manager 135 may cause additional instances to be added to the warming pool 135A based on the available capacity in the warming pool 135A to service incoming calls. As will be described below, the warming pool manager 135 may further work in conjunction with other components of the on-demand code execution environment 110, such as the worker manager 140, to add or otherwise manage instances and/or containers in the warming pool based on received pre-trigger notifications.


In some embodiments, the warming pool manager 135 may utilize both physical computing devices within the on-demand code execution environment 110 and one or more virtual machine instance services to acquire and maintain compute capacity that can be used to service code execution requests received by the load balancer 120 and/or the frontends 130. In some embodiments, the on-demand code execution environment 110 may comprise one or more logical knobs or switches for controlling (e.g., increasing or decreasing) the available capacity in the warming pool 135A. For example, a system administrator may use such a knob or switch to increase the capacity available (e.g., the number of pre-booted instances) in the warming pool 135A during peak hours. In some embodiments, virtual machine instances in the warming pool 135A can be configured based on a predetermined set of configurations independent from a specific user request to execute a user's code. The predetermined set of configurations can correspond to various types of virtual machine instances to execute user codes. The warming pool manager 135 can optimize types and numbers of virtual machine instances in the warming pool 135A based on one or more metrics related to current or previous user code executions.


As shown in FIG. 1, instances may have operating systems (OS) and/or language runtimes loaded thereon. For example, the warming pool 135A managed by the warming pool manager 135 comprises instances 152 and 154. The instance 152 includes an OS 152A and a runtime 152B. The instance 154 includes an OS 154A. In some embodiments, the instances in the warming pool 135A may also include containers (which may further contain copies of operating systems, runtimes, user codes, etc.), which are described in greater detail below. Although the instance 152 is shown in FIG. 1 to include a single runtime, in other embodiments, the instances depicted in FIG. 1 may include two or more runtimes, each of which may be used for running a different user code. In some embodiments, the warming pool manager 135 may maintain a list of instances in the warming pool 135A. The list of instances may further specify the configuration (e.g., OS, runtime, container, etc.) of the instances.


In some embodiments, the virtual machine instances in the warming pool 135A may be used to serve any user's request. In one embodiment, all the virtual machine instances in the warming pool 135A are configured in the same or substantially similar manner. In another embodiment, the virtual machine instances in the warming pool 135A may be configured differently to suit the needs of different users. For example, the virtual machine instances may have different operating systems, different language runtimes, and/or different libraries loaded thereon. In yet another embodiment, the virtual machine instances in the warming pool 135A may be configured in the same or substantially similar manner (e.g., with the same OS, language runtimes, and/or libraries), but some of those instances may have different container configurations. For example, two instances may have runtimes for both Python and Ruby, but one instance may have a container configured to run Python code, and the other instance may have a container configured to run Ruby code. In some embodiments, multiple warming pools 130A, each having identically-configured virtual machine instances, are provided.


The warming pool manager 135 may pre-configure the virtual machine instances in the warming pool 135A, such that each virtual machine instance is configured to satisfy at least one of the operating conditions that may be requested or specified by the user request to execute program code on the on-demand code execution environment 110. In one embodiment, the operating conditions may include program languages in which the potential user codes may be written. For example, such languages may include Java, JavaScript, Python, Ruby, and the like. In some embodiments, the set of languages that the user codes may be written in may be limited to a predetermined set (e.g., set of 4 languages, although in some embodiments sets of more or less than four languages are provided) in order to facilitate pre-initialization of the virtual machine instances that can satisfy requests to execute user codes. For example, when the user is configuring a request via a user interface provided by the on-demand code execution environment 110, the user interface may prompt the user to specify one of the predetermined operating conditions for executing the user code. In another example, the service-level agreement (SLA) for utilizing the services provided by the on-demand code execution environment 110 may specify a set of conditions (e.g., programming languages, computing resources, etc.) that user requests should satisfy, and the on-demand code execution environment 110 may assume that the requests satisfy the set of conditions in handling the requests. In another example, operating conditions specified in the request may include: the amount of compute power to be used for processing the request; the type of the request (e.g., API call, HTTP packet transmission, detection of a specific data at an auxiliary service, etc.); the timeout for the request (e.g., threshold time after which an execution of a program code may be terminated); security policies (e.g., may control which instances in the warming pool 135A are usable by which user); scheduling information (e.g., the time by which the on-demand code execution environment is requested to execute the program code, the time after which the on-demand code execution environment is requested to execute the program code, the temporal window within which the on-demand code execution environment is requested to execute the program code, etc.), among other specified conditions.


Worker Manager

The worker manager ring 140 of FIG. 1 includes worker managers 140A, 140B, 140C, 140D, 140E, and 140F. The worker manager ring is not limited to the configuration illustrated in FIG. 1, and the worker manager ring may include fewer or more components. For example, the worker manager ring can include any number of worker managers, and each worker manager can manage any number of virtual machine instances.


A worker manager manages the instances used for servicing incoming code execution requests. In the example illustrated in FIG. 1, each worker manager may manage a group (sometimes referred to as a pool or an active pool) of virtual machine instances, implemented by one or more physical host computing devices, that are currently assigned to one or more users. Although the virtual machine instances are described here as being assigned to a particular user, in some embodiments, the instances may be assigned to a group of users, such that the instance is tied to the group of users and any member of the group can utilize resources on the instance. For example, the users in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one member's code in a container on a particular instance after another member's code has been executed in another container on the same instance does not pose security risks. Similarly, a worker manager may assign the instances and the containers according to one or more policies that dictate which requests can be executed in which containers and which instances can be assigned to which users. An example policy may specify that instances are assigned to collections of users who share the same account (e.g., account for accessing the services provided by the on-demand code execution environment 110). In some embodiments, the requests associated with the same user group may share the same containers (e.g., if the user codes associated therewith are identical). In some embodiments, a request does not differentiate between the different users of the group and simply indicates the group to which the users associated with the requests belong.


Definition of Containers

In the example illustrated in FIG. 1, user codes are executed in isolated compute systems referred to as containers. Containers are logical units created within a virtual machine instance using the resources available on that instance. For example, a worker manager may, based on information specified in the request to execute user code, create a new container or locate an existing container in one of the instances in an active pool (e.g., a group of virtual machine instances, implemented by one or more physical host computing devices, that are currently assigned to one or more users) and assigns the container to the request to handle the execution of the user code associated with the request. In one embodiment, such containers are implemented as Linux containers. The virtual machine instances in the active pool may have one or more containers created thereon and have one or more program codes associated with the user loaded thereon (e.g., either in one of the containers or in a local cache of the instance).


In some embodiments, the sizes of the containers may be 64 MB or any multiples thereof. In other embodiments, the sizes of the containers may be any arbitrary size smaller than or equal to the size of the instances in which the containers are created. In some embodiments, the sizes of the containers may be any arbitrary size smaller than, equal to, or larger than the size of the instances in which the containers are created. By how much the sizes of the containers can exceed the size of the instance may be determined based on how likely that those containers might be utilized beyond the capacity provided by the instance.


Code Execution

After a request has been successfully processed by the load balancer 120 and the frontend 130, the worker manager designated to handle the request finds capacity to service the request to execute user code on the on-demand code execution environment 110. For example, if there exists a particular virtual machine instance in the active pool that has a container with the same user code loaded therein, the worker manager may assign the container to the request and cause the user code to be executed in the container. Alternatively, if the user code is available in the local cache of one of the virtual machine instances, the worker manager may create a new container on such an instance, assign the container to the request, and cause the user code to be loaded and executed in the container. Otherwise, the worker manager may assign a new virtual machine instance to the user associated with the request from the pool of pre-initialized and pre-configured virtual machine instances, download the user code onto a container created on the virtual machine instance, and cause the user code to be executed in the container.


User Code Not Found

If the worker manager handling a code execution request determines that the user code associated with the request is not found on any of the instances (e.g., either in a container or the local cache of an instance) in the active pool, the worker manager may determine whether any of the instances in the active pool is currently assigned to the user associated with the request and has compute capacity to handle the current request. If there is such an instance, the worker manager may create a new container on the instance and assign the container to the request. Alternatively, the worker manager may further configure an existing container on the instance assigned to the user, and assign the container to the request. For example, the worker manager may determine that the existing container may be used to execute the user code if a particular library demanded by the current user request is loaded thereon. In such a case, the worker manager may load the particular library and the user code onto the container and use the container to execute the user code.


If the active pool does not contain any instances currently assigned to the user, the worker manager pulls a new virtual machine instance from the warming pool 135A, assigns the instance to the user associated with the request, creates a new container on the instance, assigns the container to the request, and causes the user code to be downloaded and executed on the container.


Latency

In some embodiments, the on-demand code execution environment 110 is adapted to begin execution of the user code shortly after it is received (e.g., by the load balancer 120 or frontend 130). A time period can be determined as the difference in time between initiating execution of the user code (e.g., in a container on a virtual machine instance associated with the user) and receiving a request to execute the user code (e.g., received by a frontend). The on-demand code execution environment 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration. In one embodiment, the predetermined duration is 500 ms. In another embodiment, the predetermined duration is 300 ms. In another embodiment, the predetermined duration is 100 ms. In another embodiment, the predetermined duration is 50 ms. In another embodiment, the predetermined duration is 10 ms. In another embodiment, the predetermined duration may be any value chosen from the range of 10 ms to 500 ms. In some embodiments, the on-demand code execution environment 110 is adapted to begin execution of the user code within a time period that is less than a predetermined duration if one or more conditions are satisfied. For example, the one or more conditions may include any one of: (1) the user code is loaded on a container in the active pool (e.g., active pool managed by the worker manager designated to handle the request) at the time the request is received; (2) the user code is stored in the code cache of an instance in the active pool at the time the request is received; (3) the active pool contains an instance assigned to the user associated with the request at the time the request is received; or (4) the warming pool 135A has capacity to handle the request at the time the request is received. In some embodiments, instead of initiating the requested code execution as soon as the code execution request is received, the on-demand code execution environment 110 may schedule the code execution according to the scheduling information provided by the request. For example, the request may specify a temporal window (e.g., between 3:00 AM to 4:00 AM next Monday) within which the on-demand code execution environment 110 is requested to perform the code execution, and the on-demand code execution environment 110 may schedule the code execution based on certain performance considerations (e.g., workload, latency, etc.).


Downloading of User Code

The user code may be downloaded from an auxiliary service 106 (e.g., a storage service) of FIG. 1. For example, the downloaded data may include user codes uploaded by one or more users, metadata associated with such user codes, or any other data utilized by the on-demand code execution environment 110 to perform one or more techniques described herein. Although only the auxiliary services 106 are illustrated in the example of FIG. 1, the virtual environment 100 may include other levels of storage systems from which the user code may be downloaded. For example, each instance may have one or more storage systems either physically (e.g., a local storage resident on the physical computing system on which the instance is running) or logically (e.g., a network-attached storage system in network communication with the instance and provided within or outside of the on-demand code execution environment 110) associated with the instance on which the container is created. Alternatively, the code may be downloaded from a web-based data store provided an external the storage service.


Using Compute Capacity in Warming Pool

Once a worker manager locates one of the virtual machine instances in the warming pool 135A that can be used to serve the user code execution request, the warming pool manager 135 or the worker manager takes the instance out of the warming pool 135A and assigns it to the user associated with the request. The assigned virtual machine instance is taken out of the warming pool 135A and placed in the active pool. In some embodiments, once the virtual machine instance has been assigned to a particular user, the same virtual machine instance cannot be used to service requests of any other user. This provides security benefits to users by preventing possible co-mingling of user resources. Alternatively, in some embodiments, multiple containers belonging to different users (or assigned to requests associated with different users) may co-exist on a single virtual machine instance. Such an approach may improve utilization of the available compute capacity.


Caching

In some embodiments, the on-demand code execution environment 110 may maintain a separate cache in which user codes are stored to serve as an intermediate level of caching system between the local cache of the virtual machine instances and a network storage external to the on-demand code execution environment 110 (e.g., accessible via the network 104).


Other Duties of Worker Manager

A worker manager may also manage creation, preparation, and configuration of containers within virtual machine instances. Containers are logical units within a virtual machine instance and utilize resources of the virtual machine instances to execute user code. Based on configuration information associated with a request to execute user code, such a container manager can create containers inside a virtual machine instance. In one embodiment, such containers are implemented as Linux containers.


After the user code has been executed, the worker manager may tear down the container used to execute the user code to free up the resources it occupied to be used for other containers in the instance. Alternatively, the worker manager may keep the container running to use it to service additional requests from the same user. For example, if another request associated with the same user code that has already been loaded in the container is received, the request can be assigned to the same container, thereby eliminating the delay associated with creating a new container and loading the user code in the container. In some embodiments, the worker manager may tear down the instance in which the container used to execute the user code was created. Alternatively, the worker manager may keep the instance running to use it to service additional requests from the same user. The determination of whether to keep the container and/or the instance running after the user code is done executing may be based on a threshold time, the type of the user, average request volume of the user, periodicity information (e.g., containers/instances in the active pool not currently executing user code thereon can be (i) kept alive if the periodicity information indicates that additional requests are expected to arrive soon or (ii) terminated if the periodicity information indicates that additional requests are not likely to arrive soon enough to justify keeping the containers/instances alive), and/or other operating conditions. For example, after a threshold time has passed (e.g., 5 minutes, 30 minutes, 1 hour, 24 hours, 30 days, etc.) without any activity (e.g., running of the code), the container and/or the virtual machine instance is shutdown (e.g., deleted, terminated, etc.), and resources allocated thereto are released. In some embodiments, the threshold time passed before a container is torn down is shorter than the threshold time passed before an instance is torn down.


Separation of Codes and Code Executions

Generally, the on-demand code execution environment may maintain a separation between the program codes of each user, to ensure the privacy and security of such program codes (which may include sensitive information, such as passwords, encryption keys, access codes, API keys, etc.). Further, the on-demand code execution environment may maintain a separation between executions of such program codes. For example, the on-demand code execution environment may require that program codes associated with different users be executed on logically or physically separate virtual machines.


Definition of Virtual Machine Instance

As used herein, the term “virtual machine instance” is intended to refer to an execution of software or other executable code that emulates hardware to provide an environment or platform on which software may execute (an “execution environment”). Virtual machine instances are generally executed by hardware devices, which may differ from the physical hardware emulated by the virtual machine instance. For example, a virtual machine may emulate a first type of processor and memory while being executed on a second type of processor and memory. Thus, virtual machines can be utilized to execute software intended for a first execution environment (e.g., a first operating system) on a physical device that is executing a second execution environment (e.g., a second operating system). In some instances, hardware emulated by a virtual machine instance may be the same or similar to hardware of an underlying device. For example, a device with a first type of processor may implement a plurality of virtual machine instances, each emulating an instance of that first type of processor. Thus, virtual machine instances can be used to divide a device into a number of logical sub-devices (each referred to as a “virtual machine instance”). While virtual machine instances can generally provide a level of abstraction away from the hardware of an underlying physical device, this abstraction is not required. For example, assume a device implements a plurality of virtual machine instances, each of which emulate hardware identical to that provided by the device. Under such a scenario, each virtual machine instance may allow a software application to execute code on the underlying hardware without translation, while maintaining a logical separation between software applications running on other virtual machine instances. This process, which is generally referred to as “native execution,” may be utilized to increase the speed or performance of virtual machine instances. Other techniques that allow direct utilization of underlying hardware, such as hardware pass-through techniques, may be used, as well.


The execution of program codes on the on-demand code execution environment will now be discussed. Specifically, to execute program codes, the on-demand code execution environment described herein may maintain a pool of pre-initialized virtual machine instances that are ready for use as soon as a user request is received. Due to the pre-initialized nature of these virtual machines, delay (sometimes referred to as latency) associated with executing the user code (e.g., instance and language runtime startup time) can be significantly reduced, often to sub-100 millisecond levels. Illustratively, the on-demand code execution environment may maintain a pool of virtual machine instances on one or more physical computing devices, where each virtual machine instance has one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. When the on-demand code execution environment receives a request to execute the program code of a user, which specifies one or more computing constraints for executing the program code of the user, the on-demand code execution environment may select a virtual machine instance for executing the program code of the user based on the one or more computing constraints specified by the request and cause the program code of the user to be executed on the selected virtual machine instance. The program codes can be executed in isolated containers that are created on the virtual machine instances. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) is significantly reduced.


The on-demand code execution environment may include a virtual machine instance manager configured to receive user code (threads, programs, etc., composed in any of a variety of programming languages) and execute the code in a highly scalable, low latency manner, without requiring user configuration of a virtual machine instance. Specifically, the virtual machine instance manager can, prior to receiving the user code and prior to receiving any information from a user regarding any particular virtual machine instance configuration, create and configure virtual machine instances according to a predetermined set of configurations, each corresponding to any one or more of a variety of run-time environments. Thereafter, the virtual machine instance manager receives a request to execute code, and identifies a pre-configured virtual machine instance to execute the code based on configuration information associated with the request. The virtual machine instance manager can further cause the identified virtual machine instance to be assigned to the user and to execute the user's code at least partly by creating and configuring a container inside the identified virtual machine instance. Various embodiments for implementing a virtual machine instance manager and executing user code on virtual machine instances is described in more detail in U.S. Pat. No. 9,323,556, entitled “PROGRAMMATIC EVENT DETECTION AND MESSAGE GENERATION FOR REQUESTS TO EXECUTE PROGRAM CODE” and filed Sep. 30, 2014 (“the '556 Patent”), the entirety of which is hereby incorporated by reference.


As will be appreciated by one skilled in the art, the embodiments described herein function to improve the functioning of computing devices by enabling those devices to rapidly execute code of many users within an on-demand code execution environment. Moreover, in the context of an on-demand code execution environment, the present disclosure enables the efficient allocation of code executions to execution environments (e.g., virtual machine instances, containers, etc.), while maintaining the privacy or security of the code. Still further, the present disclosure enables users to quickly alter the parameters, resources, or permissions associated with code execution, thus provided increased flexibility and functionality over prior systems. Additionally, the present disclosure provides various concurrency and scaling techniques that enable improved resource utilization and improved replenishment of pre-warmed virtual machine instances. Thus, one skilled in the art will appreciate by virtue of the present disclosure that the embodiments described herein represent a substantial contribution to the technical field of virtual machine usage management, network-based code execution, and to computing devices in general.


Communication with Auxiliary Services

In some embodiments, the on-demand code execution environment 110 may provide data to one or more of the auxiliary services 106 as it services incoming code execution requests. For example, the on-demand code execution environment 110 may communicate with a monitoring service, a logging service, a billing service, etc. (not shown). For example, the auxiliary services 106 may include a monitoring service for managing monitoring information received from the on-demand code execution environment 110, such as statuses of containers and instances on the on-demand code execution environment 110; a logging service for managing logging information received from the on-demand code execution environment 110, such as activities performed by containers and instances on the on-demand code execution environment 110; and a billing service for generating billing information associated with executing user code on the on-demand code execution environment 110 (e.g., based on the monitoring information and/or the logging information managed by the monitoring service and the logging service). In addition to the system-level activities that may be performed by the auxiliary services 106 (e.g., on behalf of the on-demand code execution environment 110) as described above, the auxiliary services 106 may provide application-level services on behalf of the user code executed on the on-demand code execution environment 110. For example, the auxiliary services 106 may monitor and/or log various inputs, outputs, or other data and parameters on behalf of the user code being executed on the on-demand code execution environment 110. Although shown as a single block, the auxiliary services 106 may be provided as separate services.


Health Checks

In some embodiments, a worker manager may perform health checks on the instances and containers managed by the worker manager (e.g., those in the active pool associated with the worker manager). For example, the health checks performed by the worker manager may include determining whether the instances and the containers managed by the worker manager have any issues of (1) misconfigured networking and/or startup configuration, (2) exhausted memory, (3) corrupted file system, (4) incompatible kernel, and/or any other problems that may impair the performance of the instances and the containers. In one embodiment, the worker manager performs the health checks periodically (e.g., every 5 minutes, every 30 minutes, every hour, every 24 hours, etc.). In some embodiments, the frequency of the health checks may be adjusted automatically based on the result of the health checks. In other embodiments, the frequency of the health checks may be adjusted based on user requests. In some embodiments, the worker manager may perform similar health checks on the instances and/or containers in the warming pool 135A. The instances and/or the containers in the warming pool 135A may be managed either together with those instances and containers in the active pool or separately. In some embodiments, in the case where the health of the instances and/or the containers in the warming pool 135A is managed separately from the active pool, the warming pool manager 135, instead of the worker manager, may perform the health checks described above on the instances and/or the containers in the warming pool 135A.


More on Virtual Machine Instances

The virtual machine instances illustrated in FIGS. 1 and 2 are logical in nature and can be implemented by a single or multiple physical computing devices. At least some of the virtual machine instances may be provisioned to provide a variety of different desired conditions depending on the needs of the user. Examples of the types of desired conditions, include but are not limited to: particular operating systems, particular language runtimes, and particular libraries that may be utilized by the user code. Additionally, one or more virtual machine instances may be provisioned generically when a desired operating condition is not specified or is otherwise not available. One skilled in the relevant art will appreciate that the on-demand code execution environment 110 is logical in nature and can encompass physical computing devices from various geographic regions.


Example Clauses

Clause 1: A system to provide scaling of computational capacity on an on-demand code execution environment, the system comprising: a non-transitory data store configured to store one or more program codes associated with a client of the on-demand code execution environment; one or more hardware computing devices executing a frontend service through specific computer-executable instructions, said frontend service in communication with the non-transitory data store and configured to at least: receive a request to execute a program code on the on-demand code execution environment, the request including a client ID identifying the client associated with the program code, the client associated with a set of virtual machine instance managers configured to acquire compute capacity on behalf of the client; calculate a first hash value by applying a hash function on the client ID included in the request; identify, based on the calculated first hash value, a first virtual machine instance manager on a ring of virtual machine instance managers available on the on-demand code execution environment, the first virtual machine instance manager being in the set of virtual machine instance managers configured to acquire compute capacity on behalf of the client; request the first virtual machine instance manager to acquire compute capacity for executing the program code on behalf of the client; receive a throttling response from the first virtual machine instance manager, the throttling response indicating that the first virtual machine instance manager is currently overloaded with other code executions being performed on behalf of the client; determine whether a maximum concurrency limit of the client is greater than a current concurrency limit of the client, the maximum concurrency limit of the client defining a range of concurrency limits on a number of concurrent code executions allowed to be performed on the on-demand code execution environment on behalf of the client, and the current concurrency limit of the client indicating a current limit on the number of concurrent code executions allowed to be performed on the on-demand code execution environment on behalf of the client; in response to determining that the maximum concurrency limit of the client is greater than the current concurrency limit of the client, adjust the current concurrency limit of the client such that at least one additional virtual machine instance manager is assigned to the client, the at least one additional virtual machine instance manager including a second virtual machine instance manager; and cause the program code to be executed on behalf of the client on a virtual machine instance acquired by the second virtual machine instance manager.


Clause 2: The system of Clause 1, wherein the second virtual machine instance manager is associated with a second hash value that is greater than the first hash value, and the second virtual machine instance manager is immediately adjacent to the first virtual machine instance manager on the ring of virtual machine instance managers.


Clause 3: The system of Clause 1, wherein the frontend service is further configured to store a number of virtual machine instance managers in the set in a local memory associated with the frontend service.


Clause 4: The system of Clause 1, wherein the frontend service is further configured to request one or more additional virtual machine instance managers to acquire compute capacity for executing the program code on behalf of the client and receive a throttling response from each of the one or more additional virtual machine instance managers prior to adjusting the current concurrency limit of the client.


Clause 5: A computer-implemented method to provide scaling of computational capacity on an on-demand code execution environment, the computer-implemented method comprising: receiving a request to execute a program code on the on-demand code execution environment, the request including client information identifying the client associated with the program code, the client associated with a set of virtual machine instance managers configured to acquire compute capacity on behalf of the client; identifying, using a hash value calculated based on the client information, a first virtual machine manager assigned to the user from the set of virtual machine instance managers; requesting the a first virtual machine instance manager in the set of virtual machine instance managers to acquire compute capacity for executing the program code on behalf of the client; receiving a response indicating that the first virtual machine instance manager did not successfully acquire compute capacity for executing the program code on behalf of the client; causing a second virtual machine instance manager different from the first virtual machine instance manager to be added to the set of virtual machine instance managers configured to acquire compute capacity on behalf of the client; and causing the program code to be executed on behalf of the client on a virtual machine instance acquired by the second virtual machine instance manager.


Clause 6: The computer-implemented method of Clause 5, further comprising: calculating a first hash value by applying a hash function to a client ID of the client; and identifying the first virtual machine instance manager using the calculated first hash value.


Clause 7: The computer-implemented method of Clause 5, further comprising requesting one or more remaining virtual machine instance managers in the set to acquire compute capacity for executing the program code on behalf of the client and receiving a throttling response from each of the one or more remaining virtual machine instance managers in the set prior to causing the second virtual machine instance manager to be added to the set.


Clause 8: The computer-implemented method of Clause 5, wherein each virtual machine instance manager is associated with a per-client concurrency limit on a number of concurrent code executions allowed to be performed for a single client.


Clause 9: The computer-implemented method of Clause 5, further comprising: determining whether a maximum concurrency limit of the client is greater than a current concurrency limit of the client, the maximum concurrency limit of the client defining a range of concurrency limits on a number of concurrent code executions allowed to be performed on the on-demand code execution environment on behalf of the client, and the current concurrency limit of the client indicating a current limit on the number of concurrent code executions allowed to be performed on the on-demand code execution environment on behalf of the client; and in response to determining that the maximum concurrency limit of the client is greater than the current concurrency limit of the client, scaling the set of virtual machine instance managers such that a number of virtual machine instance managers in the set is increased based on a number of virtual machine instance managers currently in the set.


Clause 10: The computer-implemented method of Clause 5, further comprising: determining whether an average load across the set of virtual machine instance managers is below a threshold level; and in response to determining that the average load is below the threshold level, removing at least one virtual machine instance manager from the set of virtual machine instance managers.


Clause 11: The computer-implemented method of Clause 5, further comprising storing a number of virtual machine instance managers in the set in a local memory on the on-demand code execution environment.


Clause 12: The computer-implemented method of Clause 5, further comprising causing a number of virtual machine instance managers in the set to be stored in a local memory accessible by at least one of the virtual machine instance managers in the set.


Clause 13: Non-transitory physical computer storage including computer-executable instructions that, when executed by a computing system, cause the computing system to: receive a request to execute a program code on an on-demand code execution environment, the request including client information identifying the client associated with the program code, the client associated with a set of virtual machine instance managers configured to acquire compute capacity on behalf of the client; identify, using a hash value calculated based on the client information, a first virtual machine manager assigned to the user from the set of virtual machine instance managers; request the first virtual machine instance manager in the set of virtual machine instance managers to acquire compute capacity for executing the program code on behalf of the client; receive a response indicating that the first virtual machine instance manager did not successfully acquire compute capacity for executing the program code on behalf of the client; cause a second virtual machine instance manager different from the first virtual machine instance manager to be added to the set of virtual machine instance managers configured to acquire compute capacity on behalf of the client; and cause the program code to be executed on behalf of the client on a virtual machine instance acquired by the second virtual machine instance manager.


Clause 14: The non-transitory physical computer storage of Clause 13, wherein the instructions further cause the computing system to: calculate a first hash value by applying a hash function to a client ID of the client; and identify the first virtual machine instance manager using the calculated first hash value.


Clause 15: The non-transitory physical computer storage of Clause 13, wherein the instructions further cause the computing system to request one or more remaining virtual machine instance managers in the set to acquire compute capacity for executing the program code on behalf of the client and receive a throttling response from each of the one or more remaining virtual machine instance managers in the set prior to causing the second virtual machine instance manager to be added to the set.


Clause 16: The non-transitory physical computer storage of Clause 13, wherein each virtual machine instance manager is associated with a per-client concurrency limit on a number of concurrent code executions allowed to be performed for a single client.


Clause 17: The non-transitory physical computer storage of Clause 13, wherein the instructions further cause the computing system to: determine whether a maximum concurrency limit of the client is greater than a current concurrency limit of the client, the maximum concurrency limit of the client defining a range of concurrency limits on a number of concurrent code executions allowed to be performed on the on-demand code execution environment on behalf of the client, and the current concurrency limit of the client indicating a current limit on the number of concurrent code executions allowed to be performed on the on-demand code execution environment on behalf of the client; and in response to determining that the maximum concurrency limit of the client is greater than the current concurrency limit of the client, scale the set of virtual machine instance managers such that a number of virtual machine instance managers in the set is increased based on a number of virtual machine instance managers currently in the set.


Clause 18: The non-transitory physical computer storage of Clause 13, wherein the instructions further cause the computing system to: determine whether an average load across the set of virtual machine instance managers is below a threshold level; and in response to determining that the average load is below the threshold level, remove at least one virtual machine instance manager from the set of virtual machine instance managers.


Clause 19: The non-transitory physical computer storage of Clause 13, wherein the instructions further cause the computing system to store a number of virtual machine instance managers in the set in a local memory on the on-demand code execution environment.


Clause 20: The non-transitory physical computer storage of Clause 13, wherein the instructions further cause the computing system to cause a number of virtual machine instance managers in the set to be stored in a local memory accessible by at least one of the virtual machine instance managers in the set.


Other Considerations

It will be appreciated by those skilled in the art and others that all of the functions described in this disclosure may be embodied in software executed by one or more physical processors of the disclosed components and mobile communication devices. The software may be persistently stored in any type of non-volatile storage.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storage medium storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms, and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A system comprising: one or more processors; andone or more memories, the one or more memories having stored thereon instructions, which, when executed by the one or more processors, configure the one or more processors to: receive a plurality of requests to execute a program code, wherein the program code is associated with a user;determine load information associated with a set of virtual machine instance managers associated with the user, wherein the set of virtual machine instance managers are each configured to acquire compute capacity to be used to execute the program code on behalf of the user, and wherein the set of virtual machine instance managers includes at least two virtual machine instance managers such that requests to acquire compute capacity for at least some of the plurality of requests are distributable across the at least two virtual machine instance managers; andcause, based on the load information satisfying a threshold condition, one or more virtual machine instance managers in the set of virtual machine instance managers to be removed from the set of virtual machine instance managers associated with the user such that the one or more removed virtual machine instance managers are no longer requested to acquire compute capacity to be used to execute the program code on behalf of the user.
  • 2. The system of claim 1, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to request the set of virtual machine instance managers associated with the user to each report back its load information.
  • 3. The system of claim 1, wherein satisfying the threshold condition comprises the load information indicating that an average load value of the set of virtual machine instance managers is below a threshold load value.
  • 4. The system of claim 1, wherein satisfying the threshold condition comprises the load information indicating that a request to execute the program code has not been received for a threshold amount of time.
  • 5. The system of claim 1, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to periodically check whether an average load across all of the set of virtual machine instance managers associated with the user is below a threshold level, and based on the average load being below the threshold level, cause one or more additional virtual machine instance managers to be removed from the set.
  • 6. The system of claim 1, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to distribute incoming code execution requests associated with the user across the set of virtual machine instance managers.
  • 7. The system of claim 1, wherein the set of virtual machine instance managers are mapped onto different hash values on a ring of hash values such that each hash value on the ring is assigned to one of the virtual machine instance managers in the set, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to determine a hash value associated with an incoming request to execute the program code, and cause the incoming request to be routed to a specific virtual machine instance manager in the set that is assigned to the determined hash value.
  • 8. The system of claim 7, wherein the instructions, when executed by the one or more processors, further configure the one or more processors to cause one or more hash values associated with the one or more removed virtual machine instance managers to be associated with one or more remaining virtual machine instance managers in the set.
  • 9. A computer-implemented method comprising: receiving a plurality of requests to execute a program code, wherein the program code is associated with a user;determining load information associated a set of virtual machine instance managers associated with the user, wherein the set of virtual machine instance managers are each configured to acquire compute capacity to be used to execute the program code on behalf of the user, and wherein the set of virtual machine instance managers includes at least two virtual machine instance managers such that requests to acquire compute capacity for at least some of the plurality of requests are distributable across the at least two virtual machine instance managers; andremoving, based on the load information satisfying a threshold condition, one or more virtual machine instance managers in the set of virtual machine instance managers from the set of virtual machine instance managers associated with the user such that the one or more removed virtual machine instance managers are no longer requested to acquire compute capacity to be used to execute the program code on behalf of the user.
  • 10. The computer-implemented method of claim 9, further comprising requesting the set of virtual machine instance managers associated with the user to each report back its load information.
  • 11. The computer-implemented method of claim 9, wherein satisfying the threshold condition comprises the load information indicating that an average load value of the set of virtual machine instance managers is below a threshold load value.
  • 12. The computer-implemented method of claim 9, wherein satisfying the threshold condition comprises the load information indicating that a request to execute the program code has not been received for a threshold amount of time.
  • 13. The computer-implemented method of claim 9, further comprising distributing incoming code execution requests associated with the user across the set of virtual machine instance managers.
  • 14. The computer-implemented method of claim 9, wherein the set of virtual machine instance managers are mapped onto different hash values on a ring of hash values such that each hash value on the ring is assigned to one of the virtual machine instance managers in the set, wherein the method further comprises determining a hash value associated with an incoming request to execute the program code, and routing the incoming request to a specific virtual machine instance manager in the set that is assigned to the determined hash value.
  • 15. The computer-implemented method of claim 14, further comprising associating one or more hash values associated with the one or more removed virtual machine instance managers with one or more remaining virtual machine instance managers in the set.
  • 16. Non-transitory physical computer storage including computer-executable instructions that, when executed by a computing system, configure the computing system to: receive a plurality of requests to execute a program code, wherein the program code is associated with a user;determine load information associated a set of virtual machine instance managers associated with the user, wherein the set of virtual machine instance managers are each configured to acquire compute capacity to be used to execute the program code on behalf of the user, and wherein the set of virtual machine instance managers includes at least two virtual machine instance managers such that requests to acquire compute capacity for at least some of the plurality of requests are distributable across the at least two virtual machine instance managers; andcause, based on the load information satisfying a threshold condition, one or more virtual machine instance managers in the set of virtual machine instance managers to be removed from the set of virtual machine instance managers associated with the user such that the one or more removed virtual machine instance managers are no longer requested to acquire compute capacity to be used to execute the program code on behalf of the user.
  • 17. The non-transitory physical computer storage of claim 16, wherein the instructions, when executed by the computing system, further configure the computing system to request the set of virtual machine instance managers associated with the user to each report back its load information.
  • 18. The non-transitory physical computer storage of claim 16, wherein satisfying the threshold condition comprises the load information indicating that an average load value of the set of virtual machine instance managers is below a threshold load value.
  • 19. The non-transitory physical computer storage of claim 16, wherein the set of virtual machine instance managers are mapped onto different hash values on a ring of hash values such that each hash value on the ring is assigned to one of the virtual machine instance managers in the set, wherein the instructions, when executed by the computing system, further configure the computing system to determine a hash value associated with an incoming request to execute the program code, and cause the incoming request to be routed to a specific virtual machine instance manager in the set that is assigned to the determined hash value.
  • 20. The non-transitory physical computer storage of claim 19, wherein the instructions, when executed by the computing system, further configure the computing system to cause one or more hash values associated with the one or more removed virtual machine instance managers to be associated with one or more remaining virtual machine instance managers in the set.
CROSS-REFERENCE TO OTHER APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/160,674, filed Oct. 15, 2018 and titled “ADJUSTING VARIABLE LIMIT ON CONCURRENT CODE EXECUTIONS,” which is a continuation of U.S. application Ser. No. 15/197,670, filed Jun. 29, 2016 and titled “ADJUSTING VARIABLE LIMIT ON CONCURRENT CODE EXECUTIONS,” the disclosures of which are hereby incorporated by reference in their entirety for all purposes and made part of this application.

US Referenced Citations (853)
Number Name Date Kind
4949254 Shorter Aug 1990 A
5283888 Dao et al. Feb 1994 A
5835764 Platt et al. Nov 1998 A
5970488 Crowe et al. Oct 1999 A
5983197 Enta Nov 1999 A
6237005 Griffin May 2001 B1
6260058 Hoenninger et al. Jul 2001 B1
6385636 Suzuki May 2002 B1
6463509 Teoman et al. Oct 2002 B1
6501736 Smolik et al. Dec 2002 B1
6523035 Fleming et al. Feb 2003 B1
6549936 Hirabayashi Apr 2003 B1
6708276 Yarsa et al. Mar 2004 B1
7036121 Casabona et al. Apr 2006 B1
7308463 Taulbee et al. Dec 2007 B2
7340522 Basu et al. Mar 2008 B1
7360215 Kraiss et al. Apr 2008 B2
7558719 Donlin Jul 2009 B1
7577722 Khandekar et al. Aug 2009 B1
7590806 Harris et al. Sep 2009 B2
7665090 Tormasov et al. Feb 2010 B1
7707579 Rodriguez Apr 2010 B2
7730464 Trowbridge Jun 2010 B2
7774191 Berkowitz et al. Aug 2010 B2
7823186 Pouliot Oct 2010 B2
7831464 Nichols et al. Nov 2010 B1
7870153 Croft et al. Jan 2011 B2
7886021 Scheitler et al. Feb 2011 B2
7949677 Croft et al. May 2011 B2
7954150 Croft et al. May 2011 B2
8010679 Low et al. Aug 2011 B2
8010990 Ferguson et al. Aug 2011 B2
8024564 Bassani et al. Sep 2011 B2
8046765 Cherkasova et al. Oct 2011 B2
8051180 Mazzaferri et al. Nov 2011 B2
8051266 DeVai et al. Nov 2011 B2
8065676 Sahai et al. Nov 2011 B1
8065682 Baryshnikov et al. Nov 2011 B2
8095931 Chen et al. Jan 2012 B1
8127284 Meijer et al. Feb 2012 B2
8146073 Sinha Mar 2012 B2
8166304 Murase et al. Apr 2012 B2
8171473 Lavin May 2012 B2
8201026 Bornstein et al. Jun 2012 B1
8209695 Pruyne et al. Jun 2012 B1
8219987 Vlaovic et al. Jul 2012 B1
8296267 Cahill et al. Oct 2012 B2
8321554 Dickinson Nov 2012 B2
8321558 Sirota et al. Nov 2012 B1
8336079 Budko et al. Dec 2012 B2
8352608 Keagy et al. Jan 2013 B1
8387075 McCann et al. Feb 2013 B1
8392558 Ahuja et al. Mar 2013 B1
8402514 Thompson et al. Mar 2013 B1
8417723 Lissack et al. Apr 2013 B1
8429282 Ahuja Apr 2013 B1
8448165 Conover May 2013 B1
8479195 Adams et al. Jul 2013 B2
8490088 Tang Jul 2013 B2
8555281 Van Dijk et al. Oct 2013 B1
8560699 Theimer et al. Oct 2013 B1
8566835 Wang et al. Oct 2013 B2
8601323 Tsantilis Dec 2013 B2
8613070 Borzycki et al. Dec 2013 B1
8615589 Adogla et al. Dec 2013 B1
8631130 Jackson Jan 2014 B2
8667471 Wintergerst et al. Mar 2014 B2
8677359 Cavage et al. Mar 2014 B1
8694996 Cawlfield et al. Apr 2014 B2
8700768 Benari Apr 2014 B2
8719415 Sirota et al. May 2014 B1
8725702 Raman et al. May 2014 B1
8756322 Lynch Jun 2014 B1
8756696 Miller Jun 2014 B1
8763091 Singh et al. Jun 2014 B1
8769519 Leitman et al. Jul 2014 B2
8793676 Quinn et al. Jul 2014 B2
8799236 Azari et al. Aug 2014 B1
8799879 Wright et al. Aug 2014 B2
8806468 Meijer et al. Aug 2014 B2
8806644 McCorkendale et al. Aug 2014 B1
8819679 Agarwal et al. Aug 2014 B2
8825863 Hansson et al. Sep 2014 B2
8825964 Sopka et al. Sep 2014 B1
8839035 Dimitrovich et al. Sep 2014 B1
8850432 Rath et al. Sep 2014 B2
8869300 Singh et al. Oct 2014 B2
8874952 Tameshige et al. Oct 2014 B2
8904008 Calder et al. Dec 2014 B2
8966495 Kulkarni Feb 2015 B2
8972980 Banga et al. Mar 2015 B2
8990807 Wu Mar 2015 B2
8997093 Dimitrov Mar 2015 B2
9002871 Bulkowski et al. Apr 2015 B2
9021501 Li et al. Apr 2015 B2
9027087 Ishaya et al. May 2015 B2
9038068 Engle et al. May 2015 B2
9052935 Rajaa Jun 2015 B1
9086897 Oh et al. Jul 2015 B2
9086924 Barsness et al. Jul 2015 B2
9092837 Bala et al. Jul 2015 B2
9098528 Wang Aug 2015 B2
9104477 Kodialam et al. Aug 2015 B2
9110732 Forschmiedt et al. Aug 2015 B1
9110770 Raju et al. Aug 2015 B1
9111037 Nalls et al. Aug 2015 B1
9112813 Jackson Aug 2015 B2
9116733 Banga et al. Aug 2015 B2
9141410 Leafe et al. Sep 2015 B2
9146764 Wagner Sep 2015 B1
9152406 De et al. Oct 2015 B2
9164754 Pohlack Oct 2015 B1
9183019 Kruglick Nov 2015 B2
9195520 Turk Nov 2015 B2
9208007 Harper et al. Dec 2015 B2
9218190 Anand et al. Dec 2015 B2
9223561 Orveillon et al. Dec 2015 B2
9223966 Satish et al. Dec 2015 B1
9250893 Blahaerath et al. Feb 2016 B2
9268586 Voccio et al. Feb 2016 B2
9298633 Zhao et al. Mar 2016 B1
9317689 Aissi Apr 2016 B2
9323556 Wagner Apr 2016 B2
9361145 Wilson et al. Jun 2016 B1
9405582 Fuller et al. Aug 2016 B2
9411645 Duan et al. Aug 2016 B1
9413626 Reque Aug 2016 B2
9417918 Chin et al. Aug 2016 B2
9430290 Gupta et al. Aug 2016 B1
9436555 Dornemann et al. Sep 2016 B2
9461996 Hayton et al. Oct 2016 B2
9471775 Wagner et al. Oct 2016 B1
9471776 Gu et al. Oct 2016 B2
9483335 Wagner et al. Nov 2016 B1
9489227 Oh et al. Nov 2016 B2
9497136 Ramarao et al. Nov 2016 B1
9501345 Lietz et al. Nov 2016 B1
9514037 Dow et al. Dec 2016 B1
9537788 Reque et al. Jan 2017 B2
9563613 Dinkel et al. Feb 2017 B1
9575798 Terayama et al. Feb 2017 B2
9588790 Wagner Mar 2017 B1
9594590 Hsu Mar 2017 B2
9596350 Dymshyts et al. Mar 2017 B1
9600312 Wagner Mar 2017 B2
9613127 Rus et al. Apr 2017 B1
9626204 Banga et al. Apr 2017 B1
9628332 Bruno, Jr. et al. Apr 2017 B2
9635132 Lin et al. Apr 2017 B1
9652306 Wagner et al. May 2017 B1
9652617 Evans et al. May 2017 B1
9654508 Barton et al. May 2017 B2
9661011 Van Horenbeeck et al. May 2017 B1
9678773 Wagner et al. Jun 2017 B1
9678778 Youseff Jun 2017 B1
9703681 Taylor et al. Jul 2017 B2
9715402 Wagner et al. Jul 2017 B2
9720661 Gschwind et al. Aug 2017 B2
9720662 Gschwind et al. Aug 2017 B2
9727725 Wagner et al. Aug 2017 B2
9733967 Wagner et al. Aug 2017 B2
9760387 Wagner et al. Sep 2017 B2
9760443 Tarasuk-Levin et al. Sep 2017 B2
9767271 Ghose Sep 2017 B2
9785476 Wagner et al. Oct 2017 B2
9787779 Frank et al. Oct 2017 B2
9798831 Chattopadhyay et al. Oct 2017 B2
9811363 Wagner Nov 2017 B1
9811434 Wagner Nov 2017 B1
9817695 Clark Nov 2017 B2
9830175 Wagner Nov 2017 B1
9830193 Wagner et al. Nov 2017 B1
9830449 Wagner Nov 2017 B1
9864636 Patel et al. Jan 2018 B1
9898393 Moorthi et al. Feb 2018 B2
9910713 Wisniewski et al. Mar 2018 B2
9921864 Singaravelu et al. Mar 2018 B2
9928108 Wagner et al. Mar 2018 B1
9929916 Subramanian et al. Mar 2018 B1
9930103 Thompson Mar 2018 B2
9930133 Susarla et al. Mar 2018 B2
9952896 Wagner et al. Apr 2018 B2
9977691 Marriner et al. May 2018 B2
9979817 Huang et al. May 2018 B2
9983982 Kumar et al. May 2018 B1
10002026 Wagner Jun 2018 B1
10013267 Wagner et al. Jul 2018 B1
10042660 Wagner et al. Aug 2018 B2
10048974 Wagner et al. Aug 2018 B1
10061613 Brooker et al. Aug 2018 B1
10067801 Wagner Sep 2018 B1
10102040 Marriner et al. Oct 2018 B2
10108443 Wagner et al. Oct 2018 B2
10139876 Lu et al. Nov 2018 B2
10140137 Wagner Nov 2018 B2
10146635 Chai et al. Dec 2018 B1
10162655 Tuch et al. Dec 2018 B2
10162672 Wagner et al. Dec 2018 B2
10162688 Wagner Dec 2018 B2
10191861 Steinberg Jan 2019 B1
10193839 Tandon et al. Jan 2019 B2
10198298 Bishop et al. Feb 2019 B2
10203990 Wagner et al. Feb 2019 B2
10248467 Wisniewski et al. Apr 2019 B2
10255090 Tuch et al. Apr 2019 B2
10277708 Wagner et al. Apr 2019 B2
10303492 Wagner et al. May 2019 B1
10331462 Varda et al. Jun 2019 B1
10346625 Anderson et al. Jul 2019 B2
10353678 Wagner Jul 2019 B1
10353746 Reque et al. Jul 2019 B2
10360025 Foskett et al. Jul 2019 B2
10360067 Wagner Jul 2019 B1
10365985 Wagner Jul 2019 B2
10387177 Wagner et al. Aug 2019 B2
10402231 Marriner et al. Sep 2019 B2
10423158 Hadlich Sep 2019 B1
10437629 Wagner et al. Oct 2019 B2
10445140 Sagar et al. Oct 2019 B1
10459822 Gondi Oct 2019 B1
10503626 Idicula et al. Dec 2019 B2
10528390 Brooker et al. Jan 2020 B2
10531226 Wang et al. Jan 2020 B1
10552193 Wagner et al. Feb 2020 B2
10552442 Lusk et al. Feb 2020 B1
10564946 Wagner et al. Feb 2020 B1
10572375 Wagner Feb 2020 B1
10592269 Wagner et al. Mar 2020 B2
10608973 Kuo et al. Mar 2020 B2
10615984 Wang Apr 2020 B1
10623476 Thompson Apr 2020 B2
10637817 Kuo et al. Apr 2020 B2
10649749 Brooker et al. May 2020 B1
10649792 Kulchytskyy et al. May 2020 B1
10650156 Anderson et al. May 2020 B2
10686605 Chhabra et al. Jun 2020 B2
10691498 Wagner Jun 2020 B2
10713080 Brooker et al. Jul 2020 B1
10719367 Kim et al. Jul 2020 B1
10725752 Wagner et al. Jul 2020 B1
10725826 Sagar et al. Jul 2020 B1
10733085 Wagner Aug 2020 B1
10754701 Wagner Aug 2020 B1
10776091 Wagner et al. Sep 2020 B1
10776171 Wagner et al. Sep 2020 B2
10817331 Mullen et al. Oct 2020 B2
10824484 Wagner et al. Nov 2020 B2
10831898 Wagner Nov 2020 B1
10846117 Steinberg Nov 2020 B1
10853112 Wagner et al. Dec 2020 B2
10853115 Mullen et al. Dec 2020 B2
10884722 Brooker et al. Jan 2021 B2
10884787 Wagner et al. Jan 2021 B1
10884802 Wagner et al. Jan 2021 B2
10884812 Brooker et al. Jan 2021 B2
10891145 Wagner et al. Jan 2021 B2
10915371 Wagner et al. Feb 2021 B2
10942795 Yanacek et al. Mar 2021 B1
10949237 Piwonka et al. Mar 2021 B2
10956185 Wagner Mar 2021 B2
11010188 Brooker et al. May 2021 B1
11016815 Wisniewski et al. May 2021 B2
11099870 Brooker et al. Aug 2021 B1
11099917 Hussels et al. Aug 2021 B2
11115404 Siefker et al. Sep 2021 B2
11119809 Brooker et al. Sep 2021 B1
11119813 Kasaragod Sep 2021 B1
11119826 Yanacek et al. Sep 2021 B2
11126469 Reque et al. Sep 2021 B2
11132213 Wagner et al. Sep 2021 B1
11146569 Brooker et al. Oct 2021 B1
11159528 Siefker et al. Oct 2021 B2
11188391 Sule Nov 2021 B1
11190609 Siefker et al. Nov 2021 B2
20010044817 Asano et al. Nov 2001 A1
20020120685 Srivastava et al. Aug 2002 A1
20020172273 Baker et al. Nov 2002 A1
20030071842 King et al. Apr 2003 A1
20030084434 Ren May 2003 A1
20030149801 Kushnirskiy Aug 2003 A1
20030191795 Bernardin et al. Oct 2003 A1
20030208569 O'Brien et al. Nov 2003 A1
20030229794 James, II et al. Dec 2003 A1
20040003087 Chambliss et al. Jan 2004 A1
20040019886 Berent et al. Jan 2004 A1
20040044721 Song et al. Mar 2004 A1
20040049768 Matsuyama et al. Mar 2004 A1
20040098154 McCarthy May 2004 A1
20040158551 Santosuosso Aug 2004 A1
20040205493 Simpson et al. Oct 2004 A1
20040249947 Novaes et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050027611 Wharton Feb 2005 A1
20050044301 Vasilevsky et al. Feb 2005 A1
20050120160 Plouffe et al. Jun 2005 A1
20050132167 Longobardi Jun 2005 A1
20050132368 Sexton et al. Jun 2005 A1
20050149535 Frey et al. Jul 2005 A1
20050193113 Kokusho et al. Sep 2005 A1
20050193283 Reinhardt et al. Sep 2005 A1
20050237948 Wan et al. Oct 2005 A1
20050257051 Richard Nov 2005 A1
20050262183 Colrain et al. Nov 2005 A1
20050262512 Schmidt et al. Nov 2005 A1
20060010440 Anderson et al. Jan 2006 A1
20060015740 Kramer Jan 2006 A1
20060036941 Neil Feb 2006 A1
20060080678 Bailey et al. Apr 2006 A1
20060123066 Jacobs et al. Jun 2006 A1
20060129684 Datta Jun 2006 A1
20060155800 Matsumoto Jul 2006 A1
20060168174 Gebhart et al. Jul 2006 A1
20060184669 Vaidyanathan et al. Aug 2006 A1
20060200668 Hybre et al. Sep 2006 A1
20060212332 Jackson Sep 2006 A1
20060218601 Michel Sep 2006 A1
20060242647 Kimbrel et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248195 Toumura et al. Nov 2006 A1
20060259763 Cooperstein et al. Nov 2006 A1
20060288120 Hoshino et al. Dec 2006 A1
20070033085 Johnson Feb 2007 A1
20070050779 Hayashi Mar 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070101325 Bystricky et al. May 2007 A1
20070112864 Ben-Natan May 2007 A1
20070130341 Ma Jun 2007 A1
20070174419 O'Connell et al. Jul 2007 A1
20070180449 Croft et al. Aug 2007 A1
20070180450 Croft et al. Aug 2007 A1
20070180493 Croft et al. Aug 2007 A1
20070186212 Mazzaferri et al. Aug 2007 A1
20070192082 Gaos et al. Aug 2007 A1
20070192329 Croft et al. Aug 2007 A1
20070198656 Mazzaferri et al. Aug 2007 A1
20070199000 Shekhel et al. Aug 2007 A1
20070220009 Morris et al. Sep 2007 A1
20070226700 Gal et al. Sep 2007 A1
20070240160 Paterson-Jones Oct 2007 A1
20070255604 Seelig Nov 2007 A1
20080028409 Cherkasova et al. Jan 2008 A1
20080052401 Bugenhagen et al. Feb 2008 A1
20080052725 Stoodley et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080104247 Venkatakrishnan et al. May 2008 A1
20080104608 Hyser et al. May 2008 A1
20080115143 Shimizu et al. May 2008 A1
20080126110 Haeberle et al. May 2008 A1
20080126486 Heist May 2008 A1
20080127125 Anckaert et al. May 2008 A1
20080147893 Marripudi et al. Jun 2008 A1
20080189468 Schmidt et al. Aug 2008 A1
20080195369 Duyanovich et al. Aug 2008 A1
20080201568 Quinn et al. Aug 2008 A1
20080201711 Amir Husain Aug 2008 A1
20080209423 Hirai Aug 2008 A1
20080244547 Wintergerst et al. Oct 2008 A1
20080288940 Adams et al. Nov 2008 A1
20080307098 Kelly Dec 2008 A1
20090006897 Sarsfield Jan 2009 A1
20090013153 Hilton Jan 2009 A1
20090025009 Brunswig et al. Jan 2009 A1
20090034537 Colrain et al. Feb 2009 A1
20090055810 Kondur Feb 2009 A1
20090055829 Gibson Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090077569 Appleton et al. Mar 2009 A1
20090125902 Ghosh et al. May 2009 A1
20090158275 Wang et al. Jun 2009 A1
20090158407 Nicodemus et al. Jun 2009 A1
20090019341 Arthursson et al. Jul 2009 A1
20090177860 Zhu et al. Jul 2009 A1
20090183162 Kindel et al. Jul 2009 A1
20090198769 Keller et al. Aug 2009 A1
20090204960 Ben-Yehuda et al. Aug 2009 A1
20090204964 Foley et al. Aug 2009 A1
20090222922 Sidiroglou et al. Sep 2009 A1
20090271472 Scheitler et al. Oct 2009 A1
20090288084 Astete et al. Nov 2009 A1
20090300151 Friedman et al. Dec 2009 A1
20090300599 Piotrowski Dec 2009 A1
20090307430 Bruening et al. Dec 2009 A1
20100023940 Iwamatsu et al. Jan 2010 A1
20100031274 Sim-Tang Feb 2010 A1
20100031325 Maigne et al. Feb 2010 A1
20100036925 Haffner Feb 2010 A1
20100037031 DeSantis et al. Feb 2010 A1
20100058342 Machida Mar 2010 A1
20100058351 Yahagi Mar 2010 A1
20100064299 Kacin et al. Mar 2010 A1
20100070678 Zhang et al. Mar 2010 A1
20100070725 Prahlad et al. Mar 2010 A1
20100083048 Calinoiu et al. Apr 2010 A1
20100083248 Wood et al. Apr 2010 A1
20100094816 Groves, Jr. et al. Apr 2010 A1
20100106926 Kandasamy et al. Apr 2010 A1
20100114825 Siddegowda May 2010 A1
20100115098 De Baer et al. May 2010 A1
20100122343 Ghosh May 2010 A1
20100131936 Cheriton May 2010 A1
20100131959 Spiers et al. May 2010 A1
20100186011 Magenheimer Jul 2010 A1
20100198972 Umbehocker Aug 2010 A1
20100199285 Medovich Aug 2010 A1
20100257116 Mehta et al. Oct 2010 A1
20100257269 Clark Oct 2010 A1
20100269109 Cartales Oct 2010 A1
20100299541 Ishikawa et al. Nov 2010 A1
20100312871 Desantis et al. Dec 2010 A1
20100325727 Neystadt et al. Dec 2010 A1
20100329149 Singh et al. Dec 2010 A1
20100329643 Kuang Dec 2010 A1
20110004687 Takemura Jan 2011 A1
20110010690 Howard et al. Jan 2011 A1
20110010722 Matsuyama Jan 2011 A1
20110023026 Oza Jan 2011 A1
20110029970 Arasaratnam Feb 2011 A1
20110029984 Norman et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110055378 Ferris et al. Mar 2011 A1
20110055396 DeHaan Mar 2011 A1
20110055683 Jiang Mar 2011 A1
20110078679 Bozek et al. Mar 2011 A1
20110099204 Thaler Apr 2011 A1
20110099551 Fahrig et al. Apr 2011 A1
20110131572 Elyashev et al. Jun 2011 A1
20110134761 Smith Jun 2011 A1
20110141124 Halls et al. Jun 2011 A1
20110153541 Koch et al. Jun 2011 A1
20110153727 Li Jun 2011 A1
20110153838 Belkine et al. Jun 2011 A1
20110154353 Theroux et al. Jun 2011 A1
20110173637 Brandwine et al. Jul 2011 A1
20110179162 Mayo et al. Jul 2011 A1
20110184993 Chawla et al. Jul 2011 A1
20110225277 Freimuth et al. Sep 2011 A1
20110231680 Padmanabhan et al. Sep 2011 A1
20110247005 Benedetti et al. Oct 2011 A1
20110258603 Wisnovsky et al. Oct 2011 A1
20110265067 Schulte et al. Oct 2011 A1
20110265069 Fee et al. Oct 2011 A1
20110265164 Lucovsky Oct 2011 A1
20110271276 Ashok et al. Nov 2011 A1
20110276945 Chasman et al. Nov 2011 A1
20110276963 Wu et al. Nov 2011 A1
20110296412 Banga et al. Dec 2011 A1
20110314465 Smith et al. Dec 2011 A1
20110321033 Kelkar et al. Dec 2011 A1
20110321051 Rastogi Dec 2011 A1
20120011496 Shimamura Jan 2012 A1
20120011511 Horvitz et al. Jan 2012 A1
20120016721 Weinman Jan 2012 A1
20120041970 Ghosh et al. Feb 2012 A1
20120054744 Singh et al. Mar 2012 A1
20120060207 Mardikar et al. Mar 2012 A1
20120072762 Atchison et al. Mar 2012 A1
20120072914 Ota Mar 2012 A1
20120072920 Kawamura Mar 2012 A1
20120079004 Herman Mar 2012 A1
20120096271 Ramarathinam et al. Apr 2012 A1
20120096468 Chakravorty et al. Apr 2012 A1
20120102307 Wong Apr 2012 A1
20120102333 Wong Apr 2012 A1
20120102481 Mani et al. Apr 2012 A1
20120102493 Allen et al. Apr 2012 A1
20120110155 Adlung et al. May 2012 A1
20120110164 Frey et al. May 2012 A1
20120110570 Jacobson et al. May 2012 A1
20120110588 Bieswanger et al. May 2012 A1
20120131379 Tameshige et al. May 2012 A1
20120144290 Goldman et al. Jun 2012 A1
20120166624 Suit et al. Jun 2012 A1
20120173709 Li Jul 2012 A1
20120192184 Burckart et al. Jul 2012 A1
20120197795 Campbell et al. Aug 2012 A1
20120197958 Nightingale et al. Aug 2012 A1
20120198442 Kashyap et al. Aug 2012 A1
20120198514 McCune et al. Aug 2012 A1
20120204164 Castanos et al. Aug 2012 A1
20120209947 Glaser et al. Aug 2012 A1
20120222038 Katragadda et al. Aug 2012 A1
20120233464 Miller et al. Sep 2012 A1
20120254193 Chattopadhyay et al. Oct 2012 A1
20120324236 Srivastava et al. Dec 2012 A1
20120331113 Jain et al. Dec 2012 A1
20130014101 Ballani et al. Jan 2013 A1
20130042234 DeLuca et al. Feb 2013 A1
20130054804 Jana et al. Feb 2013 A1
20130054927 Raj et al. Feb 2013 A1
20130055262 Lubsey et al. Feb 2013 A1
20130061208 Tsao et al. Mar 2013 A1
20130061212 Krause et al. Mar 2013 A1
20130061220 Gnanasambandam et al. Mar 2013 A1
20130067484 Sonoda et al. Mar 2013 A1
20130067494 Srour et al. Mar 2013 A1
20130080641 Lui et al. Mar 2013 A1
20130091387 Bohnet et al. Apr 2013 A1
20130097601 Podvratnik et al. Apr 2013 A1
20130111032 Alapati et al. May 2013 A1
20130111469 B et al. May 2013 A1
20130124807 Nielsen et al. May 2013 A1
20130132942 Wang May 2013 A1
20130132953 Chuang et al. May 2013 A1
20130139152 Chang et al. May 2013 A1
20130139166 Zhang et al. May 2013 A1
20130145354 Bruening et al. Jun 2013 A1
20130151587 Takeshima et al. Jun 2013 A1
20130151648 Luna Jun 2013 A1
20130151684 Forsman et al. Jun 2013 A1
20130152047 Moorthi et al. Jun 2013 A1
20130167147 Corrie et al. Jun 2013 A1
20130179574 Calder et al. Jul 2013 A1
20130179881 Calder et al. Jul 2013 A1
20130179894 Calder et al. Jul 2013 A1
20130179895 Calder et al. Jul 2013 A1
20130185719 Kar et al. Jul 2013 A1
20130185729 Vasic et al. Jul 2013 A1
20130191924 Tedesco Jul 2013 A1
20130022771 Barak et al. Aug 2013 A1
20130198319 Shen et al. Aug 2013 A1
20130198743 Kruglick Aug 2013 A1
20130198748 Sharp et al. Aug 2013 A1
20130198763 Kunze et al. Aug 2013 A1
20130205092 Roy et al. Aug 2013 A1
20130219390 Lee et al. Aug 2013 A1
20130227097 Yasuda et al. Aug 2013 A1
20130227534 Ike et al. Aug 2013 A1
20130227563 McGrath Aug 2013 A1
20130227641 White et al. Aug 2013 A1
20130232190 Miller et al. Sep 2013 A1
20130232480 Winterfeldt et al. Sep 2013 A1
20130239125 Iorio Sep 2013 A1
20130246944 Pandiyan et al. Sep 2013 A1
20130262556 Xu et al. Oct 2013 A1
20130263117 Konik et al. Oct 2013 A1
20130274006 Hudlow et al. Oct 2013 A1
20130275376 Hudlow et al. Oct 2013 A1
20130275958 Ivanov et al. Oct 2013 A1
20130275969 Dimitrov Oct 2013 A1
20130275975 Masuda et al. Oct 2013 A1
20130283141 Stevenson et al. Oct 2013 A1
20130283176 Hoole et al. Oct 2013 A1
20130290538 Gmach et al. Oct 2013 A1
20130291087 Kailash et al. Oct 2013 A1
20130297964 Hegdal et al. Nov 2013 A1
20130298183 McGrath et al. Nov 2013 A1
20130311650 Brandwine et al. Nov 2013 A1
20130326506 McGrath et al. Dec 2013 A1
20130326507 McGrath et al. Dec 2013 A1
20130339950 Ramarathinam et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20130346946 Pinnix Dec 2013 A1
20130346952 Huang et al. Dec 2013 A1
20130346964 Nobuoka et al. Dec 2013 A1
20130346987 Raney et al. Dec 2013 A1
20130346994 Chen et al. Dec 2013 A1
20130347095 Barjatiya et al. Dec 2013 A1
20140007097 Chin et al. Jan 2014 A1
20140019523 Heymann et al. Jan 2014 A1
20140019735 Menon et al. Jan 2014 A1
20140019965 Neuse et al. Jan 2014 A1
20140019966 Neuse et al. Jan 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140040857 Trinchini et al. Feb 2014 A1
20140040880 Brownlow et al. Feb 2014 A1
20140047437 Wu Feb 2014 A1
20140058871 Marr et al. Feb 2014 A1
20140059209 Alnoor Feb 2014 A1
20140059226 Messerli et al. Feb 2014 A1
20140059552 Cunningham et al. Feb 2014 A1
20140068568 Wisnovsky Mar 2014 A1
20140068608 Kulkarni Mar 2014 A1
20140068611 McGrath et al. Mar 2014 A1
20140073300 Leeder et al. Mar 2014 A1
20140081984 Sitsky et al. Mar 2014 A1
20140082165 Marr et al. Mar 2014 A1
20140082201 Shankari et al. Mar 2014 A1
20140101643 Inoue Apr 2014 A1
20140101649 Kamble et al. Apr 2014 A1
20140108722 Lipchuk et al. Apr 2014 A1
20140109087 Jujare et al. Apr 2014 A1
20140109088 Dournov et al. Apr 2014 A1
20140129667 Ozawa May 2014 A1
20140130040 Lemanski May 2014 A1
20140137110 Engle et al. May 2014 A1
20140173614 Konik et al. Jun 2014 A1
20140173616 Bird et al. Jun 2014 A1
20140180862 Certain et al. Jun 2014 A1
20140189677 Curzi et al. Jul 2014 A1
20140189704 Narvaez et al. Jul 2014 A1
20140201735 Kannan et al. Jul 2014 A1
20140207912 Thibeault Jul 2014 A1
20140214752 Rash et al. Jul 2014 A1
20140215073 Dow et al. Jul 2014 A1
20140229221 Shih et al. Aug 2014 A1
20140229942 Wiseman Aug 2014 A1
20140245297 Hackett Aug 2014 A1
20140279581 Devereaux Sep 2014 A1
20140280325 Krishnamurthy et al. Sep 2014 A1
20140282418 Wood et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282615 Cavage et al. Sep 2014 A1
20140282629 Gupta et al. Sep 2014 A1
20140283045 Brandwine et al. Sep 2014 A1
20140289286 Gusak Sep 2014 A1
20140298295 Overbeck Oct 2014 A1
20140304246 Helmich et al. Oct 2014 A1
20140304698 Chigurapati et al. Oct 2014 A1
20140304815 Maeda Oct 2014 A1
20140317617 O'Donnell Oct 2014 A1
20140337953 Banatwala et al. Nov 2014 A1
20140344457 Bruno, Jr. et al. Nov 2014 A1
20140344736 Ryman et al. Nov 2014 A1
20140359093 Raju et al. Dec 2014 A1
20140365781 Dmitrienko et al. Dec 2014 A1
20140372489 Jaiswal et al. Dec 2014 A1
20140372533 Fu et al. Dec 2014 A1
20140380085 Rash et al. Dec 2014 A1
20150033241 Jackson et al. Jan 2015 A1
20150039891 Ignatchenko et al. Feb 2015 A1
20150040229 Chan et al. Feb 2015 A1
20150046926 Kenchammana-Hosekote et al. Feb 2015 A1
20150046971 Huh et al. Feb 2015 A1
20150052258 Johnson et al. Feb 2015 A1
20150058914 Yadav Feb 2015 A1
20150067019 Balko Mar 2015 A1
20150067830 Johansson et al. Mar 2015 A1
20150074659 Madsen et al. Mar 2015 A1
20150074661 Kothari et al. Mar 2015 A1
20150074662 Saladi et al. Mar 2015 A1
20150081885 Thomas et al. Mar 2015 A1
20150095822 Feis et al. Apr 2015 A1
20150106805 Melander et al. Apr 2015 A1
20150120928 Gummaraju et al. Apr 2015 A1
20150121391 Wang Apr 2015 A1
20150134626 Theimer et al. May 2015 A1
20150135287 Medeiros et al. May 2015 A1
20150142747 Zou May 2015 A1
20150142952 Bragstad et al. May 2015 A1
20150143374 Banga et al. May 2015 A1
20150143381 Chin et al. May 2015 A1
20150146716 Olivier et al. May 2015 A1
20150154046 Farkas et al. Jun 2015 A1
20150161384 Gu et al. Jun 2015 A1
20150163231 Sobko et al. Jun 2015 A1
20150178019 Hegdal et al. Jun 2015 A1
20150178110 Li et al. Jun 2015 A1
20150186129 Apte et al. Jul 2015 A1
20150188775 Van Der Walt et al. Jul 2015 A1
20150199218 Wilson et al. Jul 2015 A1
20150205596 Hiltegen et al. Jul 2015 A1
20150227598 Hahn et al. Aug 2015 A1
20150229645 Keith et al. Aug 2015 A1
20150235144 Gusev et al. Aug 2015 A1
20150242225 Muller et al. Aug 2015 A1
20150254248 Burns et al. Sep 2015 A1
20150256621 Noda et al. Sep 2015 A1
20150261578 Greden et al. Sep 2015 A1
20150264014 Budhani et al. Sep 2015 A1
20150269494 Kardes et al. Sep 2015 A1
20150271280 Zhang et al. Sep 2015 A1
20150289220 Kim et al. Oct 2015 A1
20150309923 Iwata et al. Oct 2015 A1
20150319160 Ferguson et al. Nov 2015 A1
20150324174 Bromley et al. Nov 2015 A1
20150324182 Barros et al. Nov 2015 A1
20150324229 Valine Nov 2015 A1
20150332048 Mooring et al. Nov 2015 A1
20150332195 Jue Nov 2015 A1
20150334173 Coulmeau et al. Nov 2015 A1
20150350701 Lemus et al. Dec 2015 A1
20150356294 Tan et al. Dec 2015 A1
20150363181 Alberti et al. Dec 2015 A1
20150363304 Nagamalla et al. Dec 2015 A1
20150370560 Tan et al. Dec 2015 A1
20150370591 Tuch et al. Dec 2015 A1
20150370592 Tuch et al. Dec 2015 A1
20150371244 Neuse et al. Dec 2015 A1
20150378762 Salad et al. Dec 2015 A1
20150378764 Sivasubramanian et al. Dec 2015 A1
20150378765 Singh et al. Dec 2015 A1
20150379167 Griffith et al. Dec 2015 A1
20160011901 Hurwitz et al. Jan 2016 A1
20160012099 Tuatini et al. Jan 2016 A1
20160019081 Chandrasekaran et al. Jan 2016 A1
20160019082 Chandrasekaran et al. Jan 2016 A1
20160019536 Ortiz et al. Jan 2016 A1
20160021112 Katieb Jan 2016 A1
20160026486 Abdallah Jan 2016 A1
20160048606 Rubinstein et al. Feb 2016 A1
20160070714 D'Sa et al. Mar 2016 A1
20160072727 Leafe et al. Mar 2016 A1
20160077901 Roth et al. Mar 2016 A1
20160092320 Baca Mar 2016 A1
20160092493 Ko et al. Mar 2016 A1
20160098285 Davis et al. Apr 2016 A1
20160100036 Lo et al. Apr 2016 A1
20160103739 Huang et al. Apr 2016 A1
20160110188 Verde et al. Apr 2016 A1
20160117163 Fukui et al. Apr 2016 A1
20160117254 Susarla et al. Apr 2016 A1
20160119289 Jain et al. Apr 2016 A1
20160124665 Jain et al. May 2016 A1
20160124978 Nithrakashyap et al. May 2016 A1
20160140180 Park et al. May 2016 A1
20160150053 Janczuk et al. May 2016 A1
20160188367 Zeng Jun 2016 A1
20160191420 Nagarajan et al. Jun 2016 A1
20160203219 Hoch et al. Jul 2016 A1
20160212007 Alatorre et al. Jul 2016 A1
20160226955 Moorthi et al. Aug 2016 A1
20160282930 Ramachandran et al. Sep 2016 A1
20160285906 Fine et al. Sep 2016 A1
20160292016 Bussard et al. Oct 2016 A1
20160294614 Searle et al. Oct 2016 A1
20160306613 Busi et al. Oct 2016 A1
20160315910 Kaufman Oct 2016 A1
20160350099 Suparna et al. Dec 2016 A1
20160357536 Firlik et al. Dec 2016 A1
20160364265 Cao et al. Dec 2016 A1
20160364316 Bhat et al. Dec 2016 A1
20160371127 Antony et al. Dec 2016 A1
20160371156 Merriman Dec 2016 A1
20160378449 Khazanchi et al. Dec 2016 A1
20160378547 Brouwer et al. Dec 2016 A1
20160378554 Gummaraju et al. Dec 2016 A1
20170004169 Merrill et al. Jan 2017 A1
20170041144 Krapf et al. Feb 2017 A1
20170041309 Ekambaram et al. Feb 2017 A1
20170060615 Thakkar et al. Mar 2017 A1
20170060621 Whipple et al. Mar 2017 A1
20170068574 Cherkasova et al. Mar 2017 A1
20170075749 Ambichl et al. Mar 2017 A1
20170083381 Cong et al. Mar 2017 A1
20170085447 Chen et al. Mar 2017 A1
20170085502 Biruduraju Mar 2017 A1
20170085591 Ganda et al. Mar 2017 A1
20170093684 Jayaraman et al. Mar 2017 A1
20170093920 Ducatel et al. Mar 2017 A1
20170134519 Chen et al. May 2017 A1
20170147656 Choudhary et al. May 2017 A1
20170149740 Mansour et al. May 2017 A1
20170161059 Wood et al. Jun 2017 A1
20170177854 Gligor et al. Jun 2017 A1
20170188213 Nirantar et al. Jun 2017 A1
20170221000 Anand Aug 2017 A1
20170230262 Sreeramoju et al. Aug 2017 A1
20170230499 Mumick et al. Aug 2017 A1
20170249130 Smiljamic et al. Aug 2017 A1
20170264681 Apte et al. Sep 2017 A1
20170272462 Kraemer et al. Sep 2017 A1
20170286143 Wagner et al. Oct 2017 A1
20170286187 Chen et al. Oct 2017 A1
20170308520 Beahan, Jr. et al. Oct 2017 A1
20170315163 Wang et al. Nov 2017 A1
20170329578 Iscen Nov 2017 A1
20170346808 Anzai et al. Nov 2017 A1
20170353851 Gonzalez et al. Dec 2017 A1
20170364345 Fontoura et al. Dec 2017 A1
20170371720 Basu et al. Dec 2017 A1
20170371724 Wagner et al. Dec 2017 A1
20170372142 Bilobrov Dec 2017 A1
20180004555 Ramanathan et al. Jan 2018 A1
20180004556 Marriner et al. Jan 2018 A1
20180004575 Marriner et al. Jan 2018 A1
20180046453 Nair et al. Feb 2018 A1
20180046482 Karve et al. Feb 2018 A1
20180060132 Maru et al. Mar 2018 A1
20180060221 Yim et al. Mar 2018 A1
20180060318 Yang et al. Mar 2018 A1
20180067841 Mahimkar Mar 2018 A1
20180067873 Pikhur et al. Mar 2018 A1
20180069702 Ayyadevara et al. Mar 2018 A1
20180081717 Li Mar 2018 A1
20180089232 Spektor et al. Mar 2018 A1
20180095738 Dürkop et al. Apr 2018 A1
20180121245 Wagner et al. May 2018 A1
20180121665 Anderson et al. May 2018 A1
20180129684 Wilson et al. May 2018 A1
20180143865 Wagner et al. May 2018 A1
20180150339 Pan et al. May 2018 A1
20180152401 Tandon et al. May 2018 A1
20180152405 Kuo et al. May 2018 A1
20180152406 Kuo et al. May 2018 A1
20180192101 Bilobrov Jul 2018 A1
20180203717 Wagner et al. Jul 2018 A1
20180225096 Mishra et al. Aug 2018 A1
20180239636 Arora et al. Aug 2018 A1
20180253333 Gupta Sep 2018 A1
20180268130 Ghosh et al. Sep 2018 A1
20180275987 Vandeputte Sep 2018 A1
20180285101 Yahav et al. Oct 2018 A1
20180300111 Bhat et al. Oct 2018 A1
20180309819 Thompson Oct 2018 A1
20180314845 Anderson et al. Nov 2018 A1
20180316552 Subramani Nadar et al. Nov 2018 A1
20180341504 Kissell Nov 2018 A1
20180365422 Callaghan et al. Dec 2018 A1
20180375781 Chen et al. Dec 2018 A1
20190004866 Du et al. Jan 2019 A1
20190028552 Johnson, II et al. Jan 2019 A1
20190043231 Uzgin et al. Feb 2019 A1
20190072529 Andrawes et al. Mar 2019 A1
20190073234 Wagner et al. Mar 2019 A1
20190073430 Webster Mar 2019 A1
20190079751 Foskett et al. Mar 2019 A1
20190102231 Wagner Apr 2019 A1
20190108058 Wagner et al. Apr 2019 A1
20190140831 De Lima Junior et al. May 2019 A1
20190141015 Nellen May 2019 A1
20190147085 Pal et al. May 2019 A1
20190155629 Wagner et al. May 2019 A1
20190171423 Mishra et al. Jun 2019 A1
20190171470 Wagner Jun 2019 A1
20190179678 Banerjee et al. Jun 2019 A1
20190179725 Mital et al. Jun 2019 A1
20190180036 Shukla Jun 2019 A1
20190188288 Holm et al. Jun 2019 A1
20190196884 Wagner Jun 2019 A1
20190205171 Brooker et al. Jul 2019 A1
20190227849 Wisniewski et al. Jul 2019 A1
20190235848 Swiecki et al. Aug 2019 A1
20190238590 Talukdar et al. Aug 2019 A1
20190250937 Thomas et al. Aug 2019 A1
20190268152 Sandoval et al. Aug 2019 A1
20190286475 Mani Sep 2019 A1
20190286492 Gulsvig Wood et al. Sep 2019 A1
20190303117 Kocberber et al. Oct 2019 A1
20190311115 Lavi et al. Oct 2019 A1
20190318312 Foskett et al. Oct 2019 A1
20190361802 Li et al. Nov 2019 A1
20190363885 Schiavoni et al. Nov 2019 A1
20200007456 Greenstein et al. Jan 2020 A1
20200026527 Xu et al. Jan 2020 A1
20200028936 Gupta et al. Jan 2020 A1
20200065079 Kocberber et al. Feb 2020 A1
20200073770 Mortimore, Jr. et al. Mar 2020 A1
20200073987 Perumala et al. Mar 2020 A1
20200081745 Cybulski et al. Mar 2020 A1
20200104378 Wagner et al. Apr 2020 A1
20200110691 Bryant et al. Apr 2020 A1
20200120120 Cybulski Apr 2020 A1
20200136933 Raskar Apr 2020 A1
20200153897 Mestery et al. May 2020 A1
20200167208 Floes et al. May 2020 A1
20200213151 Srivatsan et al. Jul 2020 A1
20200327236 Pratt et al. Oct 2020 A1
20200341799 Wagner et al. Oct 2020 A1
20200366587 White et al. Nov 2020 A1
20210081233 Mullen et al. Mar 2021 A1
20210117534 Maximov et al. Apr 2021 A1
20210232415 Wagner et al. Jul 2021 A1
20210389963 Wagner Dec 2021 A1
Foreign Referenced Citations (66)
Number Date Country
2975522 Aug 2016 CA
1341238 Mar 2002 CN
101002170 Jul 2007 CN
101267334 Sep 2008 CN
101345757 Jan 2009 CN
101496005 Jul 2009 CN
101627388 Jan 2010 CN
101640700 Feb 2010 CN
102420846 Apr 2012 CN
103098027 May 2013 CN
103384237 Nov 2013 CN
103731427 Apr 2014 CN
104243479 Dec 2014 CN
105122243 Dec 2015 CN
112513813 Mar 2021 CN
2663052 Nov 2013 EP
3201762 Aug 2017 EP
3254434 Dec 2017 EP
3356938 Aug 2018 EP
3201768 Dec 2019 EP
3811209 Apr 2021 EP
3814895 May 2021 EP
3857375 Aug 2021 EP
2002287974 Oct 2002 JP
2006-107599 Apr 2006 JP
2007-080161 Mar 2007 JP
2007-538323 Dec 2007 JP
2010-026562 Feb 2010 JP
2011-065243 Mar 2011 JP
2011-233146 Nov 2011 JP
2011257847 Dec 2011 JP
2013-156996 Aug 2013 JP
2014-525624 Sep 2014 JP
2017-534107 Nov 2017 JP
2017-534967 Nov 2017 JP
2018-503896 Feb 2018 JP
2018-512087 May 2018 JP
2018-536213 Dec 2018 JP
10-357850 Oct 2002 KR
WO 2008114454 Sep 2008 WO
WO 2009137567 Nov 2009 WO
WO 2012039834 Mar 2012 WO
WO 2012050772 Apr 2012 WO
WO 2013106257 Jul 2013 WO
WO 2015078394 Jun 2015 WO
WO 2015108539 Jul 2015 WO
WO 2015149017 Oct 2015 WO
WO 2016053950 Apr 2016 WO
WO 2016053968 Apr 2016 WO
WO 2016053973 Apr 2016 WO
WO 2016090292 Jun 2016 WO
WO 2016126731 Aug 2016 WO
WO 2016164633 Oct 2016 WO
WO 2016164638 Oct 2016 WO
WO 2017059248 Apr 2017 WO
WO 2017112526 Jun 2017 WO
WO 2017172440 Oct 2017 WO
WO 2018005829 Jan 2018 WO
WO 2018098443 May 2018 WO
WO 2018098445 May 2018 WO
WO 2020005764 Jan 2020 WO
WO 2020006081 Jan 2020 WO
WO 2020069104 Apr 2020 WO
WO 2020123439 Jun 2020 WO
WO 2020264431 Dec 2020 WO
WO 2021108435 Jun 2021 WO
Non-Patent Literature Citations (134)
Entry
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017].
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, Jun. 26, 2016, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 346 pages.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL : http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages.
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: 2007, 12 pages.
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, 2013, 15 pages.
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages.
CodeChef ADMIN discussion web page, retrieved from https://discuss.codechef.eom/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, 2019.
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, 2019.
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012.
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, 2014, 13 pages.
Deis, Container, 2014, 1 page.
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37.
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages.
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013.
Han et al., Lightweight Resource Scaling for Cloud Applications, 2012, 8 pages.
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages.
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012.
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014.
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015.
Kamga et al., Extended scheduler for efficient frequency scaling in virtualized systems, Jul. 2012, 8 pages.
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation.
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, Jul. 2010, 12 pages.
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages.
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages.
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages.
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages.
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, 2013, <hal-01228236, pp. 81-89.
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578.
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321.
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31.
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages.
Stack Overflow, Creating a database connection pool, 2009, 4 pages.
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages.
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010.
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011.
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages.
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, 2019.
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en .wikipedia.org/wiki/Recursion_(computer_science), 2015.
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, 2019.
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages.
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7.
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education 2012.
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38.
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015.
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018.
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015.
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018.
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016.
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018.
International Search Report and Written Opinion in PCT/US2015/064071 dated Mar. 16, 2016.
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017.
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016.
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017.
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016.
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016.
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016.
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018.
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017.
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018.
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017.
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018.
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017.
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019.
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017.
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019.
Amazon, “AWS Lambda: Developer Guide”, Jun. 26, 2016 Retrieved from the Internet, URL:http://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf, [retrieved on Aug. 30, 2017], 314 pages.
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages.
Bryan Liston, “Ad Hoc Big Data Processing Made Simple with Serverless Map Reduce”, Nov. 4, 2016, Amazon Web Services <https :/laws. amazon .com/bl ogs/compute/ad-hoc-big-data-processi ng-made-si mple-with-serverless-mapred uce >.
Dean et al., “MapReduce: Simplified Data Processing on Large Clusters”, ACM, 2008, pp. 107-113.
Dornemann et al., “On-Demand Resource Provisioning for BPEL Workflows Using Amazon's Elastic Compute Cloud”, 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009, pp. 140-147.
Ekanayake et al., “Twister: A Runtime for Iterative MapReduce”, ACM, 2010, pp. 810-818.
Fan et al., Online Optimization of VM Deployment in IaaS Cloud, Dec. 17, 2012-Dec. 19, 2012, 6 pages.
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu, Jun. 2009.
Hammoud et al., “Locality-Aware Reduce Task Scheduling for MapReduce”, IEEE, 2011, pp. 570-576.
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework for mapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, Sep. 4, 2012-Sep. 7, 2012.
Kim et al., “MRBench: A Benchmark for Map-Reduce Framework”, IEEE, 2008, pp. 11-18.
Lagar-Cavilla et al., “SnowFlock: Virtual Machine Cloning as a First-Class Cloud Primitive”, ACM Transactions on Computer Systems, vol. 29, No. 1, Article 2, Publication date: Feb. 2011, in 45 pages.
Lin, “MR-Apriori: Association Rules Algorithm Based on MapReduce”, IEEE, 2014, pp. 141-144.
Ryden et al., “Nebula: Distributed Edge Cloud for Data-Intensive Computing”, IEEE, 2014, pp. 491-492.
Search Query Report from IP.com, performed Dec. 2, 2020.
Search Query Report from IP.com, performed May 27, 2021.
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47.
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/20150407191158/https://en .wikipedia.org/wiki/Application_programming_interface.
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7(2011): 121-132. (Year: 2011).
Yang, The Application of MapReduce in the Cloud Computing:, IEEE, 2011, pp. 154-156.
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338.
Office Action in Chinese Application No. 202110268031.5, dated Sep. 3, 2021.
Office Action in Canadian Application No. 2,962,633 dated May 21, 2020.
Office Action in Canadian Application No. 2,962,633 dated Jun. 18, 2021.
Office Action in European Application No. 19199402.9 dated Mar. 23, 2021.
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020.
Office Action in Japanese Application No. 2017-516160 dated Jan. 15, 2018.
Notice of Allowance in Japanese Application No. 2017-516160 dated May 8, 2018.
Office Action in Canadian Application No. 2,962,631 dated May 19, 2020.
Office Action in Canadian Application No. 2,962,631 dated May 31, 2021.
Office Action in Indian Application No. 201717013356 dated Jan. 22, 2021.
Office Action in Japanese Application No. 2017-516168 dated Mar. 26, 2018.
Office Action in Indian Application No. 201717019903 dated May 18, 2020.
Office Action in Australian Application No. 2016215438 dated Feb. 26, 2018.
Notice of Allowance in Australian Application No. 2016215438 dated Nov. 19, 2018.
Office Action in Canadian Application No. 2,975,522 dated Jun. 5, 2018.
Notice of Allowance in Canadian Application No. 2,975,522 dated Mar. 13, 2020.
Office Action in Indian Application No. 201717027369 dated May 21, 2020.
Office Action in Chinese Application No. 201680020768.2 dated May 14, 2021 in 23 pages.
Office Action in Chinese Application No. 201680020768.2 dated Sep. 24, 2021 in 20 pages.
First Examination Report for Indian Application No. 201717034806 dated Jun. 25, 2020.
Office Action in Chinese Application No. 2016800562398 dated Jun. 18, 2021.
Office Action in European Application No. 16781265.0 dated Jul. 13, 2020.
Office Action in Indian Application No. 201817013748 dated Nov. 20, 2020.
Office Action in Chinese Application No. 201680072794X dated Jun. 22, 2021.
Office Action in European Application No. 16823419.3 dated Mar. 12, 2021.
Office Action in Chinese Application No. 201780022789.2 dated Apr. 28, 2021.
Office Action in European Application No. 17776325.7 dated Apr. 12, 2021.
Office Action in Chinese Application No. 2017800451968 dated May 26, 2021.
Office Action in European Application No. 17740533.9 dated May 4, 2021.
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019.
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020.
Office Action in European Application No. 17743108.7 dated Dec. 22, 2020.
International Search Report and Written Opinion dated Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages.
International Preliminary Report on Patentability dated Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages.
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019.
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020.
International Preliminary Report on Patentability and Written Opinion in PCT/US2019/053123 dated Mar. 23, 2021.
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020.
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020.
International Preliminary Report on Patentability for Application No. PCT/US2019/065365 dated Jun. 8, 2021.
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020.
International Search Report for Application No. PCT/US2020/062060 dated Mar. 5, 2021.
Related Publications (1)
Number Date Country
20200057680 A1 Feb 2020 US
Continuations (2)
Number Date Country
Parent 16160674 Oct 2018 US
Child 16552535 US
Parent 15197670 Jun 2016 US
Child 16160674 US