Adjustment device, adjustor and shock absorber

Information

  • Patent Grant
  • 11376918
  • Patent Number
    11,376,918
  • Date Filed
    Tuesday, March 10, 2020
    4 years ago
  • Date Issued
    Tuesday, July 5, 2022
    2 years ago
Abstract
An adjustment device includes a body, an adjustment inner gear ring, and an adjustment shaft. The body has a cavity therein, has a first end provided with a first hole and a second hole, and has a peripheral wall provided with a third hole. The first hole, the second hole, and the third hole are connected with the cavity. The adjustment inner gear ring is fitted in the cavity, and has a peripheral wall provided with adjustment holes. The adjustment holes have different cross-sectional areas. A second end of the adjustment shaft has an adjustment gear and passes through the second hole into the cavity. The adjustment gear meshes with the adjustment inner gear ring. The adjustment shaft is rotatable to drive rotation of the adjustment inner gear ring so as to enable the third hole to be connected with the cavity through one of the adjustment holes.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and benefits of Chinese Patent Application Serial No. 201910180984.9, filed with National Intellectual Property Administration of the People's Republic of China (PRC) on Mar. 11, 2019, Chinese Patent Application Serial No. 201920304957.3, filed with National Intellectual Property Administration of PRC on Mar. 11, 2019, Chinese Patent Application Serial No. 201910180966.0, filed with National Intellectual Property Administration of PRC on Mar. 11, 2019, Chinese Patent Application Serial No. 201920306364.0, filed with National Intellectual Property Administration of PRC on Mar. 11, 2019, Chinese Patent Application Serial No. 201910180983.4, filed with National Intellectual Property Administration of PRC on Mar. 11, 2019, and Chinese Patent Application Serial No. 201920306365.5, filed with National Intellectual Property Administration of PRC on Mar. 11, 2019, the entire contents of which are incorporated herein by reference.


TECHNICAL FIELD

The present disclosure relates to a field of shock absorption technology.


BACKGROUND

A vehicle shock absorber is used to reduce vibration of a vehicle frame and a vehicle body, and improve travelling stability and comfort of the vehicle. If the shock absorber is too soft, the vehicle body is prone to bounce up and down; if the shock absorber is too hard, large resistance may be caused and hinder a spring from working properly. Thus, in order to meet the needs of different vehicles, it is necessary to install shock absorbers with different hardnesses.


In the related art, in order to adapt to different needs, an adjustment device is provided to adjust the hardness of the shock absorber. However, the adjustment device in the related art has a narrow adjustment range and a poor adjustment effect, and hence the hardness of the shock absorber is unsatisfactorily adjusted.


SUMMARY

The present disclosure aims to solve one of the technical problems in the related art at least to some extent.


To this end, embodiments of an aspect of the present disclosure provide an adjustment device that can adjust the hardness of a shock absorber and has a wide adjustment range and an excellent adjustment effect.


Embodiments of another aspect of the present disclosure provide an adjustor.


Embodiments of still another aspect of the present disclosure provide a shock absorber.


The adjustment device according to embodiments of the first aspect of the present disclosure includes: a body having a cavity therein, and having a first end provided with a first hole and a second hole and a peripheral wall provided with a third hole, all of the first hole, the second hole, and the third hole being communicated with the cavity; an adjustment inner gear ring fitted in the cavity, and having a peripheral wall provided with a plurality of adjustment holes running through the peripheral wall, the plurality of adjustment holes being arranged along a circumferential direction of the adjustment inner gear ring and spaced apart from each other, and the plurality of adjustment holes having cross-sectional areas different from each other; and an adjustment shaft having a first end and a second end, the second end of the adjustment shaft having an adjustment gear and passing through the second hole into the cavity, the adjustment gear meshing with the adjustment inner gear ring, and the adjustment shaft being rotatable to drive rotation of the adjustment inner gear ring by the adjustment gear so as to enable the third hole to be communicated with the cavity through one of the plurality of adjustment holes.


In the adjustment device according to embodiments of the present disclosure, by configuring the cross-sectional areas of the plurality of adjustment holes of the adjustment inner gear ring to be different from each other, and by driving the adjustment inner gear ring to rotate by means of the adjustment gear to enable the third hole to be communicated with the cavity through one of the plurality of adjustment holes, the first hole is communicated with the third hole through the cavity and one of the plurality of adjustment holes. The flow rate of the oil which is allowed to pass through different adjustment holes is different, such that the adjustment for the hardness of the shock absorber can be realized. Moreover, since the adjustment inner gear ring has a relatively large diameter, more adjustment holes can be provided in the adjustment inner gear ring, and the cross-sectional areas of the adjustment holes can vary in a wider range, thereby resulting in a wider adjustment range and improving the adjustment effect.


The adjustor according to embodiments of another aspect of the present disclosure includes: a first cylinder body having a first inner cavity; a first piston movably provided in the first inner cavity; and an adjustment device provided at a first end of the first cylinder body and configured as the adjustment device described in the above embodiments.


The shock absorber according to embodiments of still another aspect of the present disclosure includes: a first cylinder body having a first inner cavity; a first piston movably provided in the first inner cavity; a second cylinder body having a second inner cavity; a second piston movably provided in the second inner cavity; an adjustment device configured as the adjustment device described in the above embodiments; and a connecting pipe communicated with the second inner cavity, and communicated with the first inner cavity by means of the adjustment device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded view of an adjustment device according to embodiments of the present disclosure.



FIG. 2 is a sectional view of an adjustment device according to embodiments of the present disclosure, in which a position of a first hole is illustrated.



FIG. 3 is a sectional view of a body of an adjustment device according to embodiments of the present disclosure.



FIG. 4 is a sectional view of an adjustment device according to embodiments of the present disclosure, in which a position of a positioning assembly is illustrated.



FIG. 5 is a schematic view of a body of an adjustment device according to embodiments of the present disclosure, in which a position of an opening portion is illustrated.



FIG. 6 is a schematic view of a body of an adjustment device according to embodiments of the present disclosure, in which a position of a recess is illustrated.



FIG. 7 is a schematic view of an adjustment inner gear ring of an adjustment device according to embodiments of the present disclosure.



FIG. 8 is a schematic view of an adjustment shaft of an adjustment device according to embodiments of the present disclosure.



FIG. 9 is a schematic view of a valve body of an adjustment device according to embodiments of the present disclosure, in which a first end of the valve body is illustrated.



FIG. 10 is a schematic view of a valve body of an adjustment device according to embodiments of the present disclosure, in which a second end of the valve body is illustrated.



FIG. 11 is a schematic view of a second valve sheet of an adjustment device according to embodiments of the present disclosure.



FIG. 12 is a schematic view of a knob of an adjustment device according to embodiments of the present disclosure.



FIG. 13 is a schematic view of a shock absorber according to embodiments of the present disclosure, in which oil flows from a second inner cavity into a first inner cavity.



FIG. 14 is a partially enlarged view of FIG. 13.



FIG. 15 is a schematic view of a shock absorber according to embodiments of the present disclosure, in which oil flows from a first inner cavity into a second inner cavity.



FIG. 16 is a partially enlarged view of FIG. 15.





Reference numerals include the following:


adjustment device 1, body 11, first end (solid section) 111 of body, second end (cylindrical section) 112 of body, boss 113, cavity 101, first end 1011 of cavity, second end 1012 of cavity, first hole 102, second hole 103, first hole segment 1031, second hole segment 1032, opening portion 10320, third hole 104, annular groove 105, counter bore 107, recess 108, adjustment inner gear ring 12, adjustment hole 120, limiting guide slot 121, adjustment shaft 13, first end 131 of adjustment shaft, second end 132 of adjustment shaft, adjustment gear 133, valve assembly 14, valve body 141, first end 1411 of valve body, second end 1412 of valve body, first valve opening 1413, second valve opening 1414, first valve sheet 142, second valve sheet 143, first elastic member 144, gasket 145, fastener 146, T-shaped bolt 1461, nut 1462, limiting member 15, knob 16, positioning assembly 17, second elastic member 171, positioning ball 172, first cylinder body 2, first inner cavity 21, first piston 3, connecting pipe 4, second cylinder body 5, second inner cavity 51, second piston 6.


DETAILED DESCRIPTION

Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the drawings. The embodiments described below with reference to the drawings are illustrative and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure. In the specification, it is to be understood that terms such as “central,” “longitudinal,” “transverse,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “clockwise,” “counterclockwise,” “axial,” “radial,” and “circumferential” should be construed to refer to the orientation or position relationship as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not indicate or imply that any feature of the present disclosure should have a particular orientation, or be constructed and operated in a particular orientation. Thus, these terms shall not be construed to limit the present disclosure.


A shock absorber according to embodiments of the present disclosure will be described with reference to the drawings.


As illustrated in FIGS. 13-16, the shock absorber according to embodiments of the present disclosure includes a first cylinder body 2, a first piston 3, a connecting pipe 4, a second cylinder body 5, a second piston 6, and an adjustment device 1. The first cylinder body 2 has a first inner cavity 21, and the first piston 3 is movably provided in the first inner cavity 21. The second cylinder body 5 has a second inner cavity 51, and the second piston 6 is movably provided in the second inner cavity 51. The connecting pipe 4 is in communication with the second inner cavity 51, and is communicated with the first inner cavity 21 through the adjustment device 1. In the description of the present disclosure, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance.


As illustrated in FIGS. 14 and 15, the adjustment device 1 is provided in a right end of the first inner cavity 21, and the connecting pipe 4 has a lower end communicated with the first inner cavity 21 through the adjustment device 1 and an upper end communicated with the second inner cavity 51.


The adjustment device according to embodiments of the present disclosure will be described with reference to the drawings.


As illustrated in FIGS. 1-3, the adjustment device 1 according to embodiments of the present disclosure includes a body 11, an adjustment inner gear ring 12, and an adjustment shaft 13.


The body 11 has a cavity 101 therein, a first end 111 of the body 11 (an upper end of the body 11 as shown in FIG. 2) is provided with a first hole 102 and a second hole 103, and the first hole 102 is in communication with an inner cavity of the connecting pipe 4. A third hole 104 is provided in a peripheral wall of the body 11 and is communicated with the first inner cavity 21. The first hole 102, the second hole 103, and the third hole 104 are all communicated with the cavity 101. As illustrated in FIGS. 2 and 3, the cavity 101 is defined in a lower end of the body 11, the first hole 102 and the second hole 103 are provided in the upper end of the body 11, and both of a lower end of the first hole 102 and a lower end of the second hole 103 are communicated with the cavity 101. The third hole 104 is provided in a lower end of the peripheral wall of the body 11 and runs through the peripheral wall to make the third hole 104 communicated with the cavity 101.


As illustrated in FIGS. 2 and 7, the adjustment inner gear ring 12 is fitted in the cavity 101 and has a peripheral wall provided with a plurality of adjustment holes 120 running through this peripheral wall. The plurality of adjustment holes 120 are arranged along a circumferential direction of the adjustment inner gear ring 12 and spaced apart from each other, and the plurality of adjustment holes 120 have cross-sectional areas different from each other. In the description of the present disclosure, unless specified otherwise, the term “a plurality of” means at least two, such as two, three, etc.


As illustrated in FIGS. 2, 3 and 8, the adjustment shaft 13 has a first end 131 and a second end 132. The second end 132 of the adjustment shaft 13 has an adjustment gear 133 and passes through the second hole 103 into the cavity 101. The adjustment gear 133 meshes with the adjustment inner gear ring 12. The adjustment shaft 13 is rotatable to drive rotation of the adjustment inner gear ring 12 by the adjustment gear 133, such that the third hole 104 is communicated with the cavity 101 through one of the plurality of adjustment holes 120.


In the adjustment device 1 according to embodiments of the present disclosure, the adjustment shaft 13 is rotatable about its axis to drive the adjustment inner gear ring 12 to rotate about an axis of the adjustment inner gear ring 12 by means of the adjustment gear 133. Through the rotation of the adjustment inner gear ring 12, any one of the plurality of adjustment holes 120 in the adjustment inner gear ring 12 can communicate the third hole 104 with the cavity 101, such that oil flowing into the cavity 101 through the connecting pipe 4 and the first hole 102 flows into the first inner cavity 21 through one of the plurality of adjustment holes 120 via the third hole 104, or oil in the first inner cavity 21 flows into the cavity 101 through the third hole 104 and one of the plurality of adjustment holes 120 and flows into the second inner cavity 51 through the first hole 102 and the connecting pipe 4. Moreover, since the cross-sectional areas of the plurality of adjustment holes 120 are different from each other, the flow rate of the oil entering the third hole 104 through different adjustment holes 120 is different.


In the adjustment device 1 according to embodiments of the present disclosure, by configuring the cross-sectional areas of the plurality of adjustment holes 120 of the adjustment inner gear ring 12 to be different from each other, and by configuring the adjustment shaft 13 to be rotatable to drive the rotation of the adjustment inner gear ring 12 by the adjustment gear 133 to enable the third hole 104 to be communicated with the cavity 101 through one of the plurality of adjustment holes 120, the first hole 102 is communicated with the third hole 104 through the cavity 101 and one of the plurality of adjustment holes 120. The flow rate of the oil which is allowed to pass through different adjustment holes 120 is different, and a compression force and a restoring force of the shock absorber can be adjusted by the different flow rates of the oil, thereby realizing the adjustment for the hardness of the shock absorber. Moreover, since the adjustment inner gear ring 12 has a relatively large diameter, more adjustment holes 120 can be provided in the adjustment inner gear ring 12, and the cross-sectional areas of the plurality of adjustment holes 120 can vary in a wider range, thereby resulting in a wider adjustment range and improving the adjustment effect.


In some specific embodiments, the cross-sectional areas of the plurality of adjustment holes 120 are gradually decreased along the circumferential direction of the adjustment inner gear ring 12. As illustrated in FIG. 7, the cross sections of the adjustment holes 120 are circular, and diameters of the plurality of adjustment holes 120 are gradually decreased along the circumferential direction of the adjustment inner gear ring 12.


In some embodiments, the cavity 101 has a first end 1011 (an upper end of the cavity 101 as shown in FIG. 3) and a second end 1012 (a lower end of the cavity 101 as shown in FIG. 3), and the second end 1012 of the cavity 101 is open.


The first hole 102 extends from a first end face 1110 of the body 11 (an upper end face of the body 11 as shown in FIG. 3) towards a second end 112 of the body 11 (a lower end of the body 11 as shown in FIG. 3) by a first predetermined length. As illustrated in FIG. 3, the first hole 102 extends downwardly from the upper end face of the body 11 by the first predetermined length. The second hole 103 extends from the first end face 1110 of the body 11 towards the second end 112 of the body 11 by a second predetermined length. As illustrated in FIG. 3, the second hole 103 extends downwardly from the upper end face of the body 11 by the second predetermined length.


The first end 131 of the adjustment shaft 13 (an upper end of the adjustment shaft 13 as shown in FIGS. 2-4) extends out of the second hole 103. As illustrated in FIGS. 2-3, the upper end of the adjustment shaft 13 extends out of the second hole 103, that is, an upper end face of the adjustment shaft 13 is located above the second hole 103.


In some embodiments, as illustrated in FIG. 2 and FIGS. 9-11, the adjustment device 1 further includes a valve assembly 14, and the valve assembly 14 includes a valve body 141, a first valve sheet 142, and a second valve sheet 143.


The valve body 141 is provided at the second end 112 of the body 11 to close the second end 1012 of the cavity 101. The valve body 141 is provided with a first valve opening 1413 and a second valve opening 1414, both of which run through the valve body 141 and are communicated with the cavity 101.


As illustrated in FIGS. 9 and 10, three first valve openings 1413 and three second valve openings 1414 are provided. The three first valve openings 1413 are arranged along a circumferential direction of the valve body 141 and spaced apart from each other. The three second valve openings 1414 are arranged along the circumferential direction of the valve body 141 and spaced apart from each other. The first valve openings 1413 and the second valve openings 1414 are alternately arranged one by one. Each of the first valve openings 1413 has an arc cross section, and each of the second valve openings 1414 has a circular cross section. A lower end face of the valve body 141 is further provided with three arc-shaped grooves 1415 spaced apart along the circumferential direction of the valve body 141, and the first valve opening 1413 has a lower end communicated with the arc-shaped groove 1415.


The first valve sheet 142 is provided at a first end 1411 of the valve body 141 (an upper end of the valve body 141 as shown in FIG. 2) and located in the cavity 101, and the first valve sheet 142 is configured to open or close the first valve opening 1413. As illustrated in FIG. 2, the first valve sheet 142 is arranged at the upper end of the valve body 141 and located in the cavity 101, and the first valve sheet 142 can open or close an upper end face of the first valve opening 1413. When the first valve sheet 142 opens the upper end face of the first valve opening 1413, the cavity 101 is communicated with the outside through the first valve opening 1413. When the first valve sheet 142 closes the upper end face of the first valve opening 1413, the cavity 101 is not in communication with the outside.


The second valve sheet 143 is provided at a second end 1412 of the valve body 141 (a lower end of the valve body 141 as shown in FIG. 2) and located outside the cavity 101, and the second valve sheet 143 is configured to open or close the second valve opening 1414. As illustrated in FIG. 2, the second valve sheet 143 is provided at the lower end of the valve body 141 and located outside the cavity 101, and the second valve sheet 143 can open or close a lower end face of the second valve opening 1414. When the second valve sheet 143 opens the lower end face of the second valve opening 1414, the cavity 101 is communicated with the outside through the second valve opening 1414. When the second valve sheet 143 closes the lower end face of the second valve opening 1414, the cavity 101 is not in communication with the outside.


In some specific embodiments, as illustrated in FIG. 2, the first valve sheet 142 is configured as an annular member, has a lower end face capable of closing the first valve opening 1413, and has an inner cavity opposite the second valve opening 1414. The second valve sheet 143 is configured as an annular member, has an upper end face capable of closing the second valve opening 1414, and is offset from the first valve opening 1413 in a radial direction of the body 11.


In some embodiments, the valve assembly 14 further includes a first elastic member 144, and the first elastic member 144 is located in the cavity 101 and configured to press the first valve sheet 142 onto a first end face 14110 of the valve body 141 to close the first valve opening 1413. As illustrated in FIG. 2, the first elastic member 144 is arranged in the cavity 101, the first elastic member 144 has an upper end in contact with a lower end face of a boss 113 and a lower end in contact with an upper end face of the first valve sheet 142, and the first elastic member 144 is in a compressed state, such that the first valve sheet 142 is pressed onto an upper end face of the valve body 141 by means of the first elastic member 144, thereby enabling the first valve sheet 142 to close the first valve opening 1413.


In some embodiments, the second valve sheet 143 is configured as an annular member and has an inner diameter gradually increased along a direction away from the valve body 141 (i.e., an up-to-down direction shown in FIG. 2 and a down-to-up direction shown in FIG. 11). As illustrated in FIG. 2, the inner diameter of the second valve sheet 143 is gradually increased from up to down, and the upper end face of the second valve sheet 143 can close the second valve opening 1414.


The valve assembly 14 further includes a gasket 145 and a fastener 146, and the gasket 145 is located at a side of the second valve sheet 143 away from the valve body 141 (a lower end of the second valve sheet 143 as shown in FIG. 2) and abuts against an inner peripheral surface of the second valve sheet 143. As illustrated in FIG. 2, the gasket 145 is located at the lower end of the second valve sheet 143, and an outer peripheral surface of the gasket 145 abuts against the inner peripheral surface of the second valve sheet 143.


The fastener 146 connects the valve body 141 and the gasket 145 to position the second valve sheet 143 at the second end 1412 of the valve body 141. As illustrated in FIG. 2, the fastener 146 connects the valve body 141 and the gasket 145, and positions the second valve sheet 143 at the lower end of the valve body 141 by the gasket 145 abutting against the inner peripheral surface of the second valve sheet 143. It could be understood that one or a plurality of gaskets 145 can be provided, and the number of the gaskets 145 can be determined in the light of specific conditions.


In some embodiments, the fastener 146 is configured as a T-shaped bolt 1461 and a nut 1462. The bolt 1461 has a first end located in the cavity 101, and the first elastic member 144 is fitted over the first end of the bolt 1461 (an upper end of the bolt 1461 as shown in FIG. 2), such that the first elastic member 144 is positioned. The bolt 1461 has a second end (a lower end of the bolt 1461 as shown in FIG. 2) penetrating the first valve sheet 142, the valve body 141, the second valve sheet 143 and the gasket 145 and extending out of the cavity 101, and the nut 1462 is fitted with the second end of the bolt 1461, such that the valve body 141 and the gasket 145 are connected by the fitting between the bolt 1461 and the nut 1462.


In some embodiments, the body 11 includes a solid section 111 and a cylindrical section 112 connected to a second end of the solid section 111 (a lower end of the solid section 111 as shown in FIG. 3). The first hole 102 and the second hole 103 run through the solid section 111 along an axial direction of the body 11 (an up-and-down direction as shown in FIG. 3), and an inner cavity of the cylindrical section 112 is formed as the cavity 101. As illustrated in FIG. 3, the body 11 includes the solid section 111 and the cylindrical section 112 connected with each other, in which the solid section 111 exhibits a cylindrical shape and has an axial direction consistent with an axial direction of the cylindrical section 112.


In some embodiments, a second end face of the solid section 111 (a lower end face of the solid section 111 as shown in FIG. 2) is provided with the boss 113 extending into the cavity 101, the first hole 102 and the second hole 103 run through the boss 113, and an annular groove 105 is defined between an outer peripheral surface of the boss 113 and an inner peripheral surface of the cylindrical section 112. As illustrated in FIG. 3, the lower end face of the solid section 111 is provided with the boss 113 extending downwards and extending into the cavity 101, the first hole 102 and the second hole 103 run through the solid section 111 and the boss 113, and the annular groove 105 is defined between the outer peripheral surface of the boss 113 and the inner peripheral surface of the cylindrical section 112.


As illustrated in FIGS. 2 and 3, the adjustment inner gear ring 12 is fitted in the annular groove 105.


The second hole 103 includes a first hole segment 1031 and a second hole segment 1032. The first hole segment 1031 extends from a first end face of the solid section 111 (an upper end face of the solid section 111 as shown in FIG. 3) towards the boss 113. The second hole segment 1032 runs through the boss 113 and is communicated with the first hole segment 1031. The second hole segment 1032 has a larger cross-sectional area than the first hole segment 1031. A peripheral wall of the second hole segment 1032 has an opening portion 10320. The adjustment gear 133 is located in the second hole segment 1032 and meshes with the adjustment inner gear ring 12 through the opening portion 10320.


In some embodiments, the plurality of adjustment holes 120 are arranged in a half circle of the adjustment inner gear ring 12. In other words, the half circle of the adjustment inner gear ring 12 is provided with the adjustment holes 120.


The adjustment device 1 further includes a limiting member 15 provided in the body 11. The adjustment inner gear ring 12 has an end face provided with a limiting guide slot 121 extending along the circumferential direction of the adjustment inner gear ring 12. The limiting member 15 is slidably fitted in the limiting guide slot 121. As illustrated in FIGS. 2, 5 and 7, the lower end face of the solid section 111 is provided with an orifice 106 extending downwards, an upper end face of the adjustment inner gear ring 12 is provided with the limiting guide slot 121, and the limiting guide slot 121 extends along the circumferential direction of the adjustment inner gear ring 12 and extends by the half circle of the adjustment inner gear ring 12. The limiting member 15 has an upper end provided in the orifice 106 and a lower end slidably fitted in the limiting guide slot 121. For the adjustment device 1 according to embodiments of the present disclosure, the rotation of the adjustment inner gear ring 12 can be limited to a range having the adjustment holes 120 by means of the limiting member 15 and the limiting guide slot 121, thereby improving the adjustment efficiency.


In some embodiments, as illustrated in FIGS. 3 and 12, the adjustment device 1 further includes a knob 16 and a positioning assembly 17. The knob 16 is mounted on the first end 131 of the adjustment shaft 13 to drive the adjustment shaft 13 to rotate, and an end face of the knob 16 adjacent to the body 11 (a lower end face of the knob 16 as shown in FIG. 3) is provided with a plurality of positioning grooves 161 arranged along a circumferential direction of the knob 16 and spaced apart from each other.


The first end face 1110 of the body 11 is provided with a counter bore 107, and the positioning assembly 17 has a first end (an upper end of the positioning assembly 17 as shown in FIG. 3) arranged in the counter bore 107 and a second end (a lower end of the positioning assembly 17 as shown in FIG. 3) selectively fitted in one of the plurality of positioning grooves 161.


For the adjustment device 1 according to embodiments of the present disclosure, the adjustment shaft 13 can be driven to rotate by rotating the knob 16, such that the adjustment inner gear ring 12 is driven to rotate by means of the adjustment gear 133. By providing the plurality of positioning grooves 161 in the lower end face of the knob 16 and providing the positioning assembly 17 on the adjustment device 1, the knob 16 can be maintained in position when the knob 16 has been rotated by a certain degree to communicate one of the adjustment holes 120 with the third hole 104.


In some specific embodiments, the positioning assembly 17 includes a second elastic member 171 and a positioning ball 172. The second elastic member 171 is provided in the counter bore 107. The positioning ball 172 is provided at an end of the second elastic member 171 (an upper end of the second elastic member 171 as shown in FIG. 3), and the positioning ball 172 is selectively fitted in one of the plurality of positioning grooves 161.


In some embodiments, an outer peripheral surface of the body 11 is fitted with an inner peripheral surface of the first cylinder body 2 and is provided with a recess 108, and the third hole 104 is communicated with the first inner cavity 21 through the recess 108. Thus, a flow space of the oil entering the first inner cavity 21 through the third hole 104 is increased, so as to facilitate smooth flowing of the oil between the third hole 104 and the first inner cavity 21.


In some embodiments, when the oil flows from the second inner cavity 51 through the connecting pipe 4 into the first inner cavity 21, the first valve opening 1413 is closed, and the second valve opening 1414 is opened, such that part of the oil entering the cavity 101 through the first hole 102 enters the first inner cavity 21 through the second valve opening 1414, and another part of the oil entering the cavity 101 through the first hole 102 enters the first inner cavity 21 through the adjustment holes 120 and the third hole 104.


As illustrated in FIGS. 13, 14 and 2, when the oil flows into the first inner cavity 21 from the second inner cavity 51 via the connecting pipe 4, the oil enters the cavity 101 via the connecting pipe 4 and the first hole 102. Under the pressure of the oil in the cavity 101, the second valve sheet 143 opens the second valve opening 1414, and part of the oil in the cavity 101 enters the first inner cavity 21 through the second valve opening 1414, while another part of the oil entering the cavity 101 through the first hole 102 enters the first inner cavity 21 through the adjustment holes 120 and the third hole 104.


When the oil flows into the second inner cavity 51 from the first inner cavity 21 via the connecting pipe 4, the first valve opening 1413 is opened, and the second valve opening 1414 is closed, such that part of the oil in the first inner cavity 21 flows into the second inner cavity 51 through the first valve opening 1413, the cavity 101, the first hole 102, and the connecting pipe 4 sequentially, and another part of the oil in the first inner cavity 21 flows into the second inner cavity 51 through the third hole 104, the adjustment holes 120, the cavity 101, the first hole 102, and the connecting pipe 4 sequentially.


As illustrated in FIGS. 15, 16 and 2, when the oil flows into the second inner cavity 51 from the first inner cavity 21 via the connecting pipe 4, under the pressure of the oil in the first inner cavity 21, the first valve sheet 142 opens the first valve opening 1413, such that part of the oil in the first inner cavity 21 flows into the second inner cavity 51 through the first valve opening 1413, the cavity 101, the first hole 102, and the connecting pipe 4 sequentially, and another part of the oil in the first inner cavity 21 flows into the second inner cavity 51 through the third hole 104, the adjustment holes 120, the cavity 101, the first hole 102, and the connecting pipe 4 sequentially.


In some embodiments, the first piston 3 divides the first inner cavity 21 into an inner cavity adjacent to a first end of the first cylinder body 2 (a right end of the first cylinder body 2 as shown in FIG. 13) and an inner cavity adjacent to a second end of the first cylinder body 2 (a left end of the first cylinder body 2 as shown in FIG. 13). The inner cavity adjacent to the second end of the first cylinder body 2 contains gas, while the inner cavity adjacent to the first end of the first cylinder body 2 can contain oil. In other words, as illustrated in FIG. 13, the first piston 3 divides the first inner cavity 21 into a right inner cavity which can contain oil and a left inner cavity which can contain gas.


In some embodiments, when the oil flows into the first inner cavity 21 from the second inner cavity 51, the oil in the second inner cavity 51 flows into the inner cavity adjacent to the first end of the first cylinder body 2 through the connecting pipe 4 and the adjustment device 1 sequentially to push the first piston 3 to move in a direction from the first end of the first cylinder body 2 toward the second end of the first cylinder body 2 (from right to left as shown in FIG. 13), so as to compress the gas. As illustrated in FIGS. 13 and 14, when the oil flows into the first inner cavity 21 from the second inner cavity 51, the oil in the second inner cavity 51 flows into the right inner cavity through the connecting pipe 4 and the adjustment device 1 sequentially to push the first piston 3 to move from right to left, so as to compress the gas.


When the oil flows into the second inner cavity 51 from the first inner cavity 21, the gas in the inner cavity adjacent to the second end of the first cylinder body 2 is released to push the first piston 3 to move in a direction from the second end of the first cylinder body 2 to the first end of the first cylinder body (from left to right as shown in FIG. 15), such that the oil flows into the second inner cavity 51 through the adjustment device 1 and the connecting pipe 4 sequentially. As illustrated in FIGS. 15 and 16, when the oil flows into the second inner cavity 51 from the first inner cavity 21, the gas in the left inner cavity is released to push the first piston 3 to move from left to right, such that the oil flows into the second inner cavity 51 through the adjustment device 1 and the connecting pipe 4 sequentially.


The first cylinder body 2, the first piston 3, and the adjustment device 1 in the shock absorber according to embodiments of the present disclosure constitute an adjustor according to embodiments of the present disclosure.


In some embodiments, when the oil flows into the first inner cavity 21 from the outside, the first valve opening 1413 is closed and the second valve opening 1414 is opened, such that part of the oil entering the cavity 101 through the first hole 102 enters the first inner cavity 21 through the second valve opening 1414, and another part of the oil entering the cavity 101 through the first hole 102 enters the first inner cavity 21 through the adjustment holes 120 and the third hole 104.


As illustrated in FIGS. 13, 14 and 2, when the oil flows into the first inner cavity 21 from the outside, the oil enters the cavity 101 via the connecting pipe 4 and the first hole 102. Under the pressure of the oil in the cavity 101, the second valve sheet 143 opens the second valve opening 1414, and part of the oil in the cavity 101 enters the first inner cavity 21 through the second valve opening 1414, while another part of the oil entering the cavity 101 through the first hole 102 enters the first inner cavity 21 through the adjustment holes 120 and the third hole 104.


When the oil flows to the outside from the first inner cavity 21, the first valve opening 1413 is opened, and the second valve opening 1414 is closed, such that part of the oil in the first inner cavity 21 flows to the outside through the first valve opening 1413, the cavity 101, the first hole 102, and the connecting pipe 4 sequentially, and another part of the oil in the first inner cavity 21 flows to the outside through the third hole 104, the adjustment holes 120, the cavity 101, the first hole 102, and the connecting pipe 4 sequentially.


As illustrated in FIGS. 15, 16 and 2, when the oil flows to the outside from the first inner cavity 21, under the pressure of the oil in the first inner cavity 21, the first valve sheet 142 opens the first valve opening 1413, such that part of the oil in the first inner cavity 21 flows to the outside through the first valve opening 1413, the cavity 101, and the first hole 102 sequentially, and another part of the oil in the first inner cavity 21 flows to the outside through the third hole 104, the adjustment holes 120, the cavity 101, and the first hole 102 sequentially.


Reference throughout this specification to “an embodiment,” “some embodiments,” “an example,” “a specific example,” or “some examples,” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. Additionally, different embodiments or examples, as well as features in different embodiments or examples described in the present disclosure, can be combined by those skilled in the art without any contradiction.


In the present disclosure, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections or mutual communication; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements or mutual interaction of two elements, which can be understood by those skilled in the art according to specific situations.


In the present disclosure, unless specified or limited otherwise, a structure in which a first feature is “on” or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween. Furthermore, a first feature “on,” “above,” or “on top of” a second feature may include an embodiment in which the first feature is right or obliquely “on,” “above,” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below,” “under,” or “on bottom of” a second feature may include an embodiment in which the first feature is right or obliquely “below,” “under,” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.


Although embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, modifications, alternatives, and variations can be made in the above embodiments without departing from the scope of the present disclosure.


It is intended that the specification, together with the drawings, be considered exemplary only, where exemplary means an example. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or,” unless the context clearly indicates otherwise.


While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.


Only a few implementations and examples are described, and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.

Claims
  • 1. An adjustment device, comprising: a body having a cavity therein, a first end comprising a first hole and a second hole, and a peripheral wall comprising a third hole, all of the first hole, the second hole, and the third hole being connected with the cavity;an adjustment inner gear ring fitted in the cavity, and having a peripheral wall comprising a plurality of adjustment holes running through the peripheral wall, the plurality of adjustment holes being arranged along a circumferential direction of the adjustment inner gear ring and spaced apart from each other, and the plurality of adjustment holes having cross-sectional areas different from each other; andan adjustment shaft having a first end and a second end, the second end of the adjustment shaft having an adjustment gear and passing through the second hole into the cavity, the adjustment gear meshing with the adjustment inner gear ring, and the adjustment shaft being rotatable to drive rotation of the adjustment inner gear ring by the adjustment gear so as to enable the third hole to be connected with the cavity through one of the plurality of adjustment holes.
  • 2. The adjustment device according to claim 1, wherein the cavity further includes a second end, the second end of the cavity is open, the first hole extends from a first end face of the body towards a second end of the body by a first predetermined length, the second hole extends from the first end face of the body towards the second end of the body by a second predetermined length, and the first end of the adjustment shaft extends out of the second hole.
  • 3. The adjustment device according to claim 2, further comprising a valve assembly, wherein the valve assembly comprises: a valve body provided at the second end of the body to close the second end of the cavity, and comprising a first valve opening and a second valve opening, both of the first valve opening and the second valve opening running through the valve body and being connected with the cavity;a first valve sheet provided at a first end of the valve body and located in the cavity, and configured to open or close the first valve opening; anda second valve sheet provided at a second end of the valve body and located outside the cavity, and configured to open or close the second valve opening.
  • 4. The adjustment device according to claim 3, wherein the valve assembly further comprises a first elastic member located in the cavity and configured to press the first valve sheet onto a first end face of the valve body to close the first valve opening.
  • 5. The adjustment device according to claim 4, wherein the second valve sheet is configured as an annular member and has an inner diameter gradually increased along a direction away from the valve body; the valve assembly further comprises a gasket and a fastener, the gasket is located at a side of the second valve sheet away from the valve body and abuts against an inner peripheral surface of the second valve sheet, and the fastener connects the valve body and the gasket to position the second valve sheet at the second end of the valve body.
  • 6. The adjustment device according to claim 5, wherein the fastener is configured as a T-shaped bolt and a nut, the bolt has a first end located in the cavity, the first elastic member is fitted over the first end of the bolt to position the first elastic member, the bolt has a second end penetrating the first valve sheet, the valve body, the second valve sheet, and the gasket and extending out of the cavity, and the nut is fitted with the second end of the bolt.
  • 7. The adjustment device according to claim 2, wherein the cross-sectional areas of the plurality of adjustment holes are gradually decreased along the circumferential direction of the adjustment inner gear ring.
  • 8. The adjustment device according to claim 2, wherein the body comprises a recess in an outer peripheral surface thereof, and the third hole is connected with the recess.
  • 9. The adjustment device according to claim 1, wherein the plurality of adjustment holes are arranged in a half circle of the adjustment inner gear ring; the adjustment device further comprises a limiting member in the body, the adjustment inner gear ring has an end face comprising a limiting guide slot extending along the circumferential direction of the adjustment inner gear ring, and the limiting member is slidably fitted in the limiting guide slot.
  • 10. The adjustment device according to claim 1, further comprising: a knob mounted on the first end of the adjustment shaft to drive the adjustment shaft to rotate, an end face of the knob adjacent to the body comprising a plurality of positioning grooves arranged along a circumferential direction of the knob and spaced apart from each other; anda positioning assembly having a first end arranged in a counter bore in a first end face of the body, and a second end selectively fitted in one of the plurality of positioning grooves.
  • 11. The adjustment device according to claim 10, wherein the positioning assembly comprises a second elastic member and a positioning ball, the second elastic member is in the counter bore, and the positioning ball is provided at an end of the second elastic member and selectively fitted in one of the plurality of positioning grooves.
  • 12. The adjustment device according to claim 1, wherein the cross-sectional areas of the plurality of adjustment holes are gradually decreased along the circumferential direction of the adjustment inner gear ring.
  • 13. The adjustment device according to claim 1, wherein the body comprises a recess in an outer peripheral surface thereof, and the third hole is connected with the recess.
  • 14. The adjustment device according to claim 1, wherein the body comprises a solid section and a cylindrical section connected to a second end of the solid section, the first hole and the second hole run through the solid section along an axial direction of the body, and an inner cavity of the cylindrical section is formed as the cavity.
  • 15. The adjustment device according to claim 14, wherein a second end face of the solid section comprises a boss extending into the cavity, the first hole and the second hole run through the boss, an annular groove is defined between an outer peripheral surface of the boss and an inner peripheral surface of the cylindrical section, and the adjustment inner gear ring is fitted in the annular groove; the second hole comprises a first hole segment extending from a first end face of the solid section towards the boss, and a second hole segment running through the boss and connected with the first hole segment, the second hole segment has a larger cross-sectional area than the first hole segment, the second hole segment has an opening portion in a peripheral wall thereof, and the adjustment gear is located in the second hole segment and meshes with the adjustment inner gear ring through the opening portion.
  • 16. An adjustor, comprising: a first cylinder body having a first inner cavity;a first piston movably provided in the first inner cavity; andan adjustment device coupled to a first end of the first cylinder body,wherein the adjustment device, comprising: a body having a cavity therein, a first end comprising a first hole and a second hole, and a peripheral wall comprising a third hole, all of the first hole, the second hole, and the third hole being connected with the cavity,an adjustment inner gear ring fitted in the cavity, and having a peripheral wall comprising a plurality of adjustment holes running through the peripheral wall, the plurality of adjustment holes being arranged along a circumferential direction of the adjustment inner gear ring and spaced apart from each other, and the plurality of adjustment holes having cross-sectional areas different from each other, andan adjustment shaft having a first end and a second end, the second end of the adjustment shaft having an adjustment gear and passing through the second hole into the cavity, the adjustment gear meshing with the adjustment inner gear ring, and the adjustment shaft being rotatable to drive rotation of the adjustment inner gear ring by the adjustment gear so as to enable the third hole to be connected with the cavity through one of the plurality of adjustment holes.
  • 17. A shock absorber, comprising: a first cylinder body having a first inner cavity;a first piston movably provided in the first inner cavity;a second cylinder body having a second inner cavity;a second piston movably provided in the second inner cavity;an adjustment device; anda connecting pipe connected with the second inner cavity, and connected with the first inner cavity by means of the adjustment device,wherein the adjustment device, comprising: a body having a cavity therein, a first end comprising a first hole and a second hole, and a peripheral wall comprising a third hole, all of the first hole, the second hole, and the third hole being connected with the cavity,an adjustment inner gear ring fitted in the cavity, and having a peripheral wall comprising a plurality of adjustment holes running through the peripheral wall, the plurality of adjustment holes being arranged along a circumferential direction of the adjustment inner gear ring and spaced apart from each other, and the plurality of adjustment holes having cross-sectional areas different from each other, andan adjustment shaft having a first end and a second end, the second end of the adjustment shaft having an adjustment gear and passing through the second hole into the cavity, the adjustment gear meshing with the adjustment inner gear ring, and the adjustment shaft being rotatable to drive rotation of the adjustment inner gear ring by the adjustment gear so as to enable the third hole to be connected with the cavity through one of the plurality of adjustment holes.
  • 18. The shock absorber according to claim 17, wherein an outer peripheral surface of the body is fitted with an inner peripheral surface of the first cylinder body and comprises a recess, and the third hole is connected with the first inner cavity through the recess.
  • 19. The shock absorber according to claim 17, wherein the first piston divides the first inner cavity into an inner cavity adjacent to a first end of the first cylinder body and an inner cavity adjacent to a second end of the first cylinder body, wherein the inner cavity adjacent to the second end of the first cylinder body contains gas, while the inner cavity adjacent to the first end of the first cylinder body contains oil.
  • 20. The shock absorber according to claim 19, wherein when the oil flows into the first inner cavity from the second inner cavity, the oil in the second inner cavity flows into the inner cavity adjacent to the first end of the first cylinder body through the connecting pipe and the adjustment device sequentially, to push the first piston to move in a direction from the first end of the first cylinder body toward the second end of the first cylinder body, so as to compress the gas; when the oil flows into the second inner cavity from the first inner cavity, the gas in the inner cavity adjacent to the second end of the first cylinder body is released to push the first piston to move in a direction from the second end of the first cylinder body to the first end of the first cylinder body, such that the oil flows into the second inner cavity through the adjustment device and the connecting pipe sequentially.
Priority Claims (6)
Number Date Country Kind
201910180966.0 Mar 2019 CN national
201910180983.4 Mar 2019 CN national
201910180984.9 Mar 2019 CN national
201920304957.3 Mar 2019 CN national
201920306364.0 Mar 2019 CN national
201920306365.5 Mar 2019 CN national
US Referenced Citations (414)
Number Name Date Kind
7591 Burdett Aug 1850 A
634385 Wolfe et al. Oct 1899 A
724155 Besse Mar 1903 A
752031 Chadwick Feb 1904 A
817224 Clifford Apr 1906 A
955658 Mitchell et al. Apr 1910 A
1063643 Blake et al. Jun 1913 A
1169140 Fassett et al. Jan 1916 A
1176538 Warner Mar 1916 A
1182169 Hansen May 1916 A
1222127 Perri Apr 1917 A
1239892 Dunderdale Sep 1917 A
1242828 Lyle Oct 1917 A
1250604 Lorenc Dec 1917 A
1268335 Fairchild Jun 1918 A
1364697 Branch Jan 1921 A
1437648 Gore Dec 1922 A
1449031 Blake Mar 1923 A
1471972 Miller Oct 1923 A
1621479 Cleveland et al. Mar 1927 A
1755942 Woolson Apr 1930 A
1800162 Stroud Apr 1931 A
2029745 Stiner Feb 1936 A
2041640 Goss May 1936 A
2118557 Hamilton May 1938 A
2122040 Machovec Jun 1938 A
2125085 Pool Jul 1938 A
2197266 Fredell Apr 1940 A
2209576 McDonald Jul 1940 A
2246986 Pellegrini Jun 1941 A
2436961 Gabriel Mar 1948 A
2487921 Culver Nov 1949 A
2492068 Schofield et al. Dec 1949 A
2566401 Bustin Sep 1951 A
2575615 Crump Nov 1951 A
2583894 Shuck Jan 1952 A
2645504 Branstrator et al. Jul 1953 A
2669613 Despard Feb 1954 A
2678832 Wright May 1954 A
2682671 Faure Jul 1954 A
2764422 McDonald Sep 1956 A
2774494 Malmström Dec 1956 A
2825582 McDonald Mar 1958 A
2921643 Vanderveld Jan 1960 A
2925876 Wagner Feb 1960 A
2998265 Kozicki Aug 1961 A
3008533 Haberle Nov 1961 A
3012633 Magee Dec 1961 A
3039562 Wagner Jun 1962 A
3095216 Browne et al. Jun 1963 A
3164394 Husko Jan 1965 A
3172499 Stairs Mar 1965 A
3266594 Antosh et al. Aug 1966 A
3329443 Lowder et al. Jul 1967 A
3392990 Wolf Jul 1968 A
3488066 Hansen Jan 1970 A
3494634 De Paula Feb 1970 A
3515406 Endsley Jun 1970 A
3517942 Cuffe et al. Jun 1970 A
3522396 Norden Jul 1970 A
3528574 Denner et al. Sep 1970 A
3572754 Fowler Mar 1971 A
3608957 Maneck Sep 1971 A
3650423 O'Brien Mar 1972 A
3671058 Kent Jun 1972 A
3745595 Nagy Jul 1973 A
3756622 Pyle et al. Sep 1973 A
3762742 Bucklen Oct 1973 A
3784227 Rogge Jan 1974 A
3799288 Manuel Mar 1974 A
3807757 Carpenter et al. Apr 1974 A
3833240 Weiler Sep 1974 A
3853369 Holden Dec 1974 A
3863890 Ruffing Feb 1975 A
3865399 Way Feb 1975 A
3869022 Wallk Mar 1975 A
3869169 Johnson et al. Mar 1975 A
3887217 Thomas Jun 1975 A
3889997 Schoneck Jun 1975 A
3891261 Finneman Jun 1975 A
3913497 Maroshick Oct 1975 A
3915475 Casella et al. Oct 1975 A
3957284 Wright May 1976 A
3961809 Clugston Jun 1976 A
3980319 Kirkpatrick Sep 1976 A
3981515 Rosborough Sep 1976 A
3986724 Rivinius Oct 1976 A
3997211 Graves Dec 1976 A
4020920 Abbott May 1977 A
4053172 McClure Oct 1977 A
4058228 Hall Nov 1977 A
4068542 Brand et al. Jan 1978 A
4073502 Frank et al. Feb 1978 A
4089538 Eastridge May 1978 A
4098346 Stanfill Jul 1978 A
4106790 Weiler Aug 1978 A
4110673 Nagy et al. Aug 1978 A
4116457 Nerem et al. Sep 1978 A
4124099 Dudynskyj Nov 1978 A
4145066 Shearin Mar 1979 A
4164292 Karkau Aug 1979 A
4168764 Walters Sep 1979 A
4174021 Barlock Nov 1979 A
4180143 Clugston Dec 1979 A
4185849 Jaeger Jan 1980 A
4188889 Favrel Feb 1980 A
4194754 Hightower Mar 1980 A
4205862 Tarvin Jun 1980 A
4219104 MacLeod Aug 1980 A
4231583 Learn Nov 1980 A
4275664 Reddy Jun 1981 A
4325668 Julian et al. Apr 1982 A
4369984 Hagen Jan 1983 A
4424751 Blochlinger Jan 1984 A
4440364 Cone et al. Apr 1984 A
4462486 Dignan Jul 1984 A
4536004 Brynielsson et al. Aug 1985 A
4542805 Hamlin et al. Sep 1985 A
4570962 Chavira Feb 1986 A
4623160 Trudell Nov 1986 A
D287001 Jarvie et al. Dec 1986 S
4676013 Endo Jun 1987 A
4679810 Kimball Jul 1987 A
4696349 Harwood et al. Sep 1987 A
D292904 Bielby Nov 1987 S
4708355 Tiede Nov 1987 A
4711613 Fretwell Dec 1987 A
4720116 Williams et al. Jan 1988 A
4733752 Sklar Mar 1988 A
4757876 Peacock Jul 1988 A
4846487 Criley Jul 1989 A
4858888 Cruz et al. Aug 1989 A
4909700 Fontecchio et al. Mar 1990 A
4911264 McCafferty Mar 1990 A
4926965 Fox May 1990 A
4930973 Robinson Jun 1990 A
4958979 Svensson Sep 1990 A
4982974 Guidry Jan 1991 A
4991890 Paulson Feb 1991 A
D316394 Carr Apr 1991 S
5005667 Anderson Apr 1991 A
5005850 Baughman Apr 1991 A
5007654 Sauber Apr 1991 A
5028063 Andrews Jul 1991 A
5039119 Baughman Aug 1991 A
5085450 DeHart, Sr. Feb 1992 A
5137294 Martin Aug 1992 A
5154125 Renner et al. Oct 1992 A
5195609 Ham et al. Mar 1993 A
5199731 Martin Apr 1993 A
5228707 Yoder Jul 1993 A
5228761 Huebschen et al. Jul 1993 A
5238300 Slivon et al. Aug 1993 A
5253973 Fretwell Oct 1993 A
D340905 Orth et al. Nov 1993 S
5257767 McConnell Nov 1993 A
5257847 Yonehara Nov 1993 A
5261779 Goodrich Nov 1993 A
5280934 Monte Jan 1994 A
5284349 Bruns et al. Feb 1994 A
5286049 Khan Feb 1994 A
5342073 Poole Aug 1994 A
5358268 Hawkins Oct 1994 A
5375864 McDaniel Dec 1994 A
5423463 Weeks Jun 1995 A
5425615 Hall et al. Jun 1995 A
5439342 Hall et al. Aug 1995 A
5462302 Leitner Oct 1995 A
5478124 Warrington Dec 1995 A
5498012 McDaniel et al. Mar 1996 A
5501475 Bundy Mar 1996 A
5505476 Maccabee Apr 1996 A
5513866 Sisson May 1996 A
5538100 Hedley Jul 1996 A
5538265 Chen et al. Jul 1996 A
5538269 McDaniel et al. Jul 1996 A
5547040 Hanser et al. Aug 1996 A
5549312 Garvert Aug 1996 A
5584493 Demski et al. Dec 1996 A
5601300 Fink et al. Feb 1997 A
5624127 Arreola et al. Apr 1997 A
5697623 Bermes et al. Dec 1997 A
5697626 McDaniel Dec 1997 A
5727840 Ochiai et al. Mar 1998 A
5779208 McGraw Jul 1998 A
5842709 Maccabee Dec 1998 A
5876051 Sage Mar 1999 A
5897125 Bundy Apr 1999 A
5937468 Wiedeck et al. Aug 1999 A
5941342 Lee Aug 1999 A
5957237 Tigner Sep 1999 A
5980449 Benson et al. Nov 1999 A
5988970 Holtom Nov 1999 A
6012545 Faleide Jan 2000 A
6027090 Liu Feb 2000 A
6042052 Smith et al. Mar 2000 A
6055780 Yamazaki May 2000 A
6065924 Budd May 2000 A
6082693 Benson et al. Jul 2000 A
6082751 Hanes et al. Jul 2000 A
6112152 Tuttle Aug 2000 A
6135472 Wilson et al. Oct 2000 A
6149172 Pascoe et al. Nov 2000 A
6158756 Hansen Dec 2000 A
6168176 Mueller Jan 2001 B1
6170842 Mueller Jan 2001 B1
6179312 Paschke et al. Jan 2001 B1
6179546 Citrowske Jan 2001 B1
6203040 Hutchins Mar 2001 B1
6213486 Kunz et al. Apr 2001 B1
6224317 Kann May 2001 B1
6264222 Johnston et al. Jul 2001 B1
6270099 Farkash Aug 2001 B1
6325397 Pascoe Dec 2001 B1
6352295 Leitner Mar 2002 B1
6357992 Ringdahl et al. Mar 2002 B1
6375207 Dean et al. Apr 2002 B1
6412799 Schrempf Jul 2002 B1
6422342 Armstrong et al. Jul 2002 B1
6425572 Lehr Jul 2002 B1
6430164 Jones et al. Aug 2002 B1
6435534 Stone Aug 2002 B1
6439342 Boykin Aug 2002 B1
6460915 Bedi et al. Oct 2002 B1
6471002 Weinermen Oct 2002 B1
6511086 Schlicht Jan 2003 B2
6511402 Shu Jan 2003 B2
6513821 Heil Feb 2003 B1
6533303 Watson Mar 2003 B1
6536790 Ojanen Mar 2003 B1
6588783 Fichter Jul 2003 B2
6612596 Jeon et al. Sep 2003 B2
6641158 Leitner Nov 2003 B2
6659484 Knodle et al. Dec 2003 B2
6663125 Cheng Dec 2003 B1
6746033 McDaniel Jun 2004 B1
6769704 Cipolla Aug 2004 B2
6810995 Warford Nov 2004 B2
6812466 O'Connor et al. Nov 2004 B2
6830257 Leitner Dec 2004 B2
6834875 Leitner Dec 2004 B2
6840526 Anderson et al. Jan 2005 B2
6874801 Fichter Apr 2005 B2
6880843 Greer, Jr. Apr 2005 B1
6912912 Reichinger et al. Jul 2005 B2
6918624 Miller et al. Jul 2005 B2
6926295 Berkebile et al. Aug 2005 B2
6938909 Leitner Sep 2005 B2
6942233 Leitner et al. Sep 2005 B2
6942272 Livingston Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6951357 Armstrong et al. Oct 2005 B2
6955370 Fabiano et al. Oct 2005 B2
6959937 Schneider et al. Nov 2005 B2
6966597 Tegtmeier Nov 2005 B2
6971652 Bobbert et al. Dec 2005 B2
6997469 Lanoue et al. Feb 2006 B2
7000932 Heil et al. Feb 2006 B2
7007961 Leitner Mar 2006 B2
7017927 Henderson et al. Mar 2006 B2
7055839 Leitner Jun 2006 B2
7090276 Bruford et al. Aug 2006 B1
7111859 Kim et al. Sep 2006 B2
7118120 Lee et al. Oct 2006 B2
7163221 Leitner Jan 2007 B2
7258386 Leitner Aug 2007 B2
7287771 Lee et al. Oct 2007 B2
7360779 Crandall Apr 2008 B2
7367574 Leitner May 2008 B2
7380807 Leitner Jun 2008 B2
7398985 Leitner et al. Jul 2008 B2
7413204 Leitner Aug 2008 B2
7416202 Fichter Aug 2008 B2
7487986 Leither et al. Feb 2009 B2
7516703 Tazreiter Apr 2009 B2
7566064 Leitner et al. Jul 2009 B2
7584975 Leitner Sep 2009 B2
7637519 Leitner et al. Dec 2009 B2
7673892 Kuntze et al. Mar 2010 B2
7717444 Fichter May 2010 B2
7793596 Hirtenlehner Sep 2010 B2
7823896 VanBelle Nov 2010 B2
7874565 Duncan Jan 2011 B2
D634687 Vukel Mar 2011 S
7900944 Watson Mar 2011 B2
7909344 Bundy Mar 2011 B1
7934737 Okada May 2011 B2
7976042 Watson et al. Jul 2011 B2
8038164 Stahl et al. Oct 2011 B2
8042818 Yamawaki Oct 2011 B2
8042821 Yang et al. Oct 2011 B2
D649100 Cheng Nov 2011 S
8052162 Yang et al. Nov 2011 B2
8056913 Kuntze et al. Nov 2011 B2
8070173 Watson Dec 2011 B2
8136826 Watson Mar 2012 B2
8146935 Adams Apr 2012 B1
8157277 Leitner et al. Apr 2012 B2
8177247 Carr May 2012 B1
8205901 Yang et al. Jun 2012 B2
D665713 Pochurek et al. Aug 2012 S
8262113 Chafey et al. Sep 2012 B1
8297635 Agoncillo et al. Oct 2012 B2
D671874 Kekich et al. Dec 2012 S
8342550 Stickles et al. Jan 2013 B2
8342551 Watson et al. Jan 2013 B2
8360455 Leitner et al. Jan 2013 B2
8408571 Leitner et al. Apr 2013 B2
8419034 Leitner et al. Apr 2013 B2
8469380 Yang et al. Jun 2013 B2
8516914 Osterlanger Aug 2013 B2
8602431 May Dec 2013 B1
8641052 Kondo Feb 2014 B2
8827294 Leitner et al. Sep 2014 B1
8833782 Huotari et al. Sep 2014 B2
8844957 Leitner et al. Sep 2014 B2
D720674 Stanesic et al. Jan 2015 S
8936266 Leitner et al. Jan 2015 B2
8944451 Leitner et al. Feb 2015 B2
9156406 Stanesic et al. Oct 2015 B2
9272667 Smith Mar 2016 B2
9302626 Leitner et al. Apr 2016 B2
9346404 Bundy May 2016 B1
9346405 Leitner et al. May 2016 B2
9511717 Smith Dec 2016 B2
9522634 Smith Dec 2016 B1
9527449 Smith Dec 2016 B2
9550458 Smith et al. Jan 2017 B2
9561751 Leitner et al. Feb 2017 B2
9573467 Chen et al. Feb 2017 B2
9656609 Du et al. May 2017 B2
9669766 Du et al. Jun 2017 B2
9669767 Du et al. Jun 2017 B2
9688205 Du et al. Jun 2017 B2
9701249 Leitner et al. Jul 2017 B2
9764691 Stickles et al. Sep 2017 B2
9809172 Stanesic et al. Nov 2017 B2
9834147 Smith Dec 2017 B2
9902328 Mazur Feb 2018 B1
9944231 Leitner et al. Apr 2018 B2
10053017 Leitner et al. Aug 2018 B2
10065486 Smith et al. Sep 2018 B2
10077016 Smith et al. Sep 2018 B2
10081302 Frederick et al. Sep 2018 B1
10106069 Rasekhi Oct 2018 B2
10106086 Eckstein et al. Oct 2018 B1
10106087 Stojkovic et al. Oct 2018 B2
10106088 Smith Oct 2018 B2
10118557 Pribisic Nov 2018 B2
10124839 Povinelli et al. Nov 2018 B2
10144345 Stinson et al. Dec 2018 B2
10150419 Derbis et al. Dec 2018 B2
10155474 Salter et al. Dec 2018 B2
10173595 Ulrich Jan 2019 B1
10183623 Kirshnan et al. Jan 2019 B2
10183624 Leitner et al. Jan 2019 B2
10189517 Povinelli et al. Jan 2019 B2
10195997 Smith Feb 2019 B2
10207598 Reynolds et al. Feb 2019 B2
10214963 Simula et al. Feb 2019 B2
10384614 Du et al. Aug 2019 B1
10618472 Du Apr 2020 B2
20030011164 Cipolla Jan 2003 A1
20030038446 Anderson et al. Feb 2003 A1
20030090081 Oakley May 2003 A1
20030094781 Jaramillo et al. May 2003 A1
20030132595 Fabiano et al. Jul 2003 A1
20030200700 Leitner Oct 2003 A1
20040100063 Henderson et al. May 2004 A1
20040108678 Berkebile et al. Jun 2004 A1
20040135339 Kim Jul 2004 A1
20050035568 Lee et al. Feb 2005 A1
20050146157 Leitner Jul 2005 A1
20050280242 Fabiano et al. Dec 2005 A1
20060214386 Watson Sep 2006 A1
20060219484 Ogura Oct 2006 A1
20060284440 Leitner Dec 2006 A1
20080042396 Watson Feb 2008 A1
20080100023 Ross May 2008 A1
20090250896 Watson Oct 2009 A1
20090295114 Yang et al. Dec 2009 A1
20100044993 Watson Feb 2010 A1
20110115187 Leitner et al. May 2011 A1
20110215550 Shirai Sep 2011 A1
20120025485 Yang et al. Feb 2012 A1
20130154230 Ziaylek Jun 2013 A1
20150097353 Rasmussen et al. Apr 2015 A1
20150197199 Kuo Jul 2015 A1
20150321612 Leitner et al. Nov 2015 A1
20150321613 Leitner et al. Nov 2015 A1
20160039346 Yang et al. Feb 2016 A1
20160193964 Stanesic et al. Jul 2016 A1
20170008459 Leitner et al. Jan 2017 A1
20170036607 Du et al. Feb 2017 A1
20170144606 Smith May 2017 A1
20170190308 Smith Jun 2017 A1
20170246993 Smith Aug 2017 A1
20170267182 Leitner Sep 2017 A1
20170355315 Leitner Dec 2017 A1
20180141497 Smith May 2018 A1
20180201194 Stanesic Jul 2018 A1
20180257572 Du et al. Sep 2018 A1
20180281687 Derbis et al. Oct 2018 A1
20180326911 Leitner Nov 2018 A1
20190009725 Stojkovic et al. Jan 2019 A1
20190047477 Crandall Feb 2019 A1
20190054961 Ngo Feb 2019 A1
20190071021 Pribisic Mar 2019 A1
20190071042 Smith Mar 2019 A1
20190084482 Long et al. Mar 2019 A1
20190084628 Povinelli et al. Mar 2019 A1
20200023779 Du et al. Jan 2020 A1
20200023780 Du et al. Jan 2020 A1
20200047674 Du et al. Feb 2020 A1
Foreign Referenced Citations (106)
Number Date Country
1021826 Nov 1977 CA
2082177 May 1994 CA
2218280 Jun 1999 CA
2332193 Sep 2001 CA
2370618 Nov 2007 CA
2174368 Aug 1994 CN
2806241 Aug 2006 CN
1976833 Jun 2007 CN
101279594 Oct 2008 CN
202806579 Mar 2013 CN
103507719 Jan 2014 CN
203728468 Jul 2014 CN
104192070 Dec 2014 CN
2044474223 Jul 2015 CN
105083136 Nov 2015 CN
105083137 Nov 2015 CN
105128751 Dec 2015 CN
106122348 Nov 2016 CN
106249641 Dec 2016 CN
106499293 Mar 2017 CN
108263303 Jul 2018 CN
108454518 Aug 2018 CN
108468739 Aug 2018 CN
207758678 Aug 2018 CN
108583446 Sep 2018 CN
108791086 Nov 2018 CN
208037900 Nov 2018 CN
108973868 Dec 2018 CN
208232903 Dec 2018 CN
109253888 Jan 2019 CN
208325054 Jan 2019 CN
208344082 Jan 2019 CN
1042403 Oct 1958 DE
1220276 Jun 1966 DE
2555468 Jun 1977 DE
7922488 Jul 1982 DE
3151621 Jul 1983 DE
3932142 Apr 1990 DE
8910933 Oct 1990 DE
0066493 Dec 1982 EP
373842 Jun 1990 EP
0418615 Mar 1991 EP
0559624 Aug 1995 EP
0966367 Sep 1998 EP
0901783 Mar 1999 EP
1116840 Jul 2001 EP
1213185 Dec 2004 EP
3002157 Apr 2016 EP
3176038 Jan 2019 EP
3237254 Feb 2019 EP
1271901 Sep 1961 FR
1350593 Dec 1963 FR
2225612 Aug 1974 FR
2651739 Mar 1991 FR
2764254 Dec 1998 FR
191315077 Aug 1913 GB
254426 Jul 1926 GB
340162 Dec 1930 GB
381672 Oct 1932 GB
745918 Mar 1956 GB
934387 Aug 1963 GB
936846 Sep 1963 GB
987846 Mar 1965 GB
1430813 Apr 1976 GB
1471256 Apr 1977 GB
2045699 Nov 1980 GB
2055705 Mar 1981 GB
2129378 May 1984 GB
2201511 Sep 1988 GB
2288014 Oct 1995 GB
201741011829 Oct 2018 IN
63-255144 Oct 1988 JP
H04138944 May 1992 JP
H04339040 Nov 1992 JP
H04342629 Nov 1992 JP
H05310061 Nov 1993 JP
H05310081 Nov 1993 JP
H08132967 May 1996 JP
H10287182 Oct 1998 JP
2018-177089 Nov 2018 JP
2019-001222 Jan 2019 JP
2000-0003099 Feb 2000 KR
2017001699 Aug 2018 MX
2017001700 Aug 2018 MX
2017006328 Aug 2018 MX
2017008032 Sep 2018 MX
2017010183 Sep 2018 MX
403594 Nov 1973 SU
783097 Nov 1980 SU
198805759 Aug 1988 WO
199500359 Jan 1995 WO
1997027139 Jul 1997 WO
199843856 Oct 1998 WO
2000047449 Aug 2000 WO
2001000441 Jan 2001 WO
2003039910 May 2003 WO
2003039920 May 2003 WO
2003066380 Aug 2003 WO
2003069294 Aug 2003 WO
2006050297 May 2006 WO
2009103163 Aug 2009 WO
2017176226 Oct 2017 WO
2018148643 Aug 2018 WO
2018197393 Nov 2018 WO
2019009131 Jan 2019 WO
2019034493 Feb 2019 WO
Non-Patent Literature Citations (10)
Entry
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2015/097930 dated May 10, 2016.
U.S. Office Action dated Nov. 18, 2019 for U.S. Appl. No. 16/510,775, filed Jul. 12, 2019. (9 pages).
U.S. Office Action dated Dec. 20, 2019 for U.S. Appl. No. 16/655,149, filed Oct. 16, 2019. (11 pages).
International Search Report of the International Searching Authority for PCT International Application No. PCT/CN2019/077842 dated Oct. 12, 2019. (English Translation, p. 1-20).
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2019/082919 dated Oct. 11, 2019. (English Translation, p. 1-20).
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2019/075535 dated Nov. 11, 2019. (English translation, p. 1-21).
U.S. Office Action dated Jun. 9, 2020 for U.S. Appl. No. 16/826,094, filed Mar. 20, 2020 (10 pages).
U.S. Office Action dated Jun. 9, 2020 for U.S. Appl. No. 15/931,474, filed May 13, 2020 (12 pages).
U.S. Notice of Allowance for U.S. Appl. No. 16/510,775 dated Feb. 3, 2020 (5 pages).
U.S. Notice of Allowance for U.S. Appl. No. 16/655,149 dated Feb. 20, 2020 (8 pages).
Related Publications (1)
Number Date Country
20200290424 A1 Sep 2020 US