This application is a National Stage Application of PCT/EP2013/051371, filed 24 Jan. 2013, which claims benefit of serial No. 20120085, filed 26 Jan 2012 in Norway and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
The present invention concerns bindings for snowboards, where the bindings come in pairs which are attached to fixation devices in the snowboard, and more particularly the present invention concerns how such bindings can be adjusted.
Because different snowboard riders have different types and sizes of boots, and also different riding styles, they have different wishes for how the binding on their board should be adjusted in order to provide the best riding experience for them. Almost all types of bindings allow for some adjustments of highback, binding straps etc. Most commonly the rider will loosen one or more screws with a screwdriver and then move and/or adjust one or more parts of the binding, and then tighten the screw(s) again, thus having made the desired adjustment.
An object of the present invention is to provide a binding for a snowboard which can be adjusted in an easy way.
It is further an object of the present invention to provide a binding for a snowboard which is economical and simple to manufacture.
These objectives are achieved with a binding for a snowboard provided with an adjustment system for straps on a snowboard binding according to the invention as defined in the enclosed independent claim, where embodiments of the invention are given in independent claims.
The present invention seeks new ways to achieve adjustments of the binding straps for the desired position on a binding frame of the binding without the need of a screwdriver or any other tools. The invention consist of the combination of 3 elements,
One may assume that the press in system, for instance press-button/pin locking systems are less secure than screws. However, screws tend to come loose over time by vibrations during use, and the press-button/pin locking systems described by our invention takes measures to ensure the durability of the locking position. The one or more press-buttons that are used and the corresponding hole or holes in the binding have certain locking mechanisms by themselves, and in addition to that they are blocked from popping out while the boot is strapped in its normal riding position. This will prevent the locking-button from falling out during use, which is the most critical since it concerns the safety of the rider.
The press-button locking system of this making can be applied for both toe-straps and wrist-straps.
For wrist-straps the press-button/pin systems offers an additional safety feature against the press-button(s) popping out. The one or more press-buttons are put in place while the highback of the binding is moved forward from its normal position, i.e. a position where the highback is arranged to be resting on a heel stay of the binding. When the highback has been put back in place, it covers the press-button(s) and will prevent the press-button from falling out, even if there is no boot present, and the system is then further stabilized when the boot is being strapped tightly into the binding, allowing very little space for any movement of the press-button(s). Such a combined enhanced secure locking system at the wrist-strap is seen as clearly advantageous, and it only requires flipping the highback forwards, so it comes at no extra effort when changing the wrist-strap's position.
For toe-straps the press-button/pin systems may offer an additional safety feature against press-button(s) popping out. The hole or holes for the press-buttons/pins may be placed rather close to the bottom of the binding frame, and the press-button(s) are then put in place while a floor plate of the binding is moved out from its normal position. When the floor plate has been put back in place, it covers partly the one or more press-buttons and will prevent the button(s) from falling out, even if there is no boot present, and the system is then further stabilized when the boot is being strapped tightly into the binding, allowing very little space for any movement of the press-button(s). Such a combined enhanced secure locking system at the toe-strap is seen as advantageous, even though it require the removal of the base-plate while adjusting the toe-strap's position. This solution may also require a slight modification of a base plate of the binding to make it cover a part of the press button(s) if the hole(s) cannot be placed low enough.
There are safety aspects with straps that the present invention does not address, like straps simply breaking, or buckles that opens during riding. The goal of the present invention is to secure the aspect where the changes occur relative to existing systems.
The straps themselves may be made as most straps are made in order to fit the position when they are closed in over the boot in order to lock the boot in this position. However, we find it beneficial to make a special profile in the straps which make them bend away from the bindings when open. The reason for this is to make it easier to put the bindings back on for the next ride, and especially it is easier for the rider to put his free boot in the binding while riding out of the ski-lift. Straps that bend outwards are known, but we here introduce a special profiled reinforcement of the strap which to a greater extent makes the strap stay in the desired position without having to use extra amounts of material. It is also a point that the straps must not be too strongly bent outwards, since when the boot is buckled in, the straps must fold nicely over the boot without causing problems because of its special shape. It is especially the wrist-strap which holds the wrist-padding that gives the most benefits to bend out, but also the wrists tooth-strap on the opposite side and the toe-straps can be bent out to allow easier access to the binding.
Generally about straps that are used in connection with bindings: each binding comprises usually four straps, corresponding left and right wrist-straps, and corresponding left and right toe-straps, whereby a pair of bindings then has 8 straps. Between a pair of corresponding straps is arranged a padding. One of the straps of the corresponding left and right wrist-straps and toe-straps will then be permanently fixed to one end of the padding (the strap may still be adjustable, but not adjusted every time the rider buckles in). On its opposite side, towards its end the padding has a buckle into which the rider puts the other corresponding strap and tightens it with the buckle. The strap which goes into the buckle is usually a tooth-strap in order to allow the buckle to tighten it. A person skilled in the art would know how the different straps and buckle should be designed, and this is therefore not discussed further herein.
An important element of the present invention is how the one or more holes in the binding frame and the one or more locking-buttons them self are designed to assure that they stay in position during riding. One aspect is the profiles of the press-button(s) being slightly larger than the corresponding hole(S) in the binding frame.
Another aspect that helps keep the press-button(s) in place is that one may make the radius of the press-button smaller than the hole just where the strap fits in. Then when the strap is tightened, it will keep the press-button(s) in place. The reduction in radius can be rather moderate and still achieve a significant difference. To prevent breaking issues, it is also an option that the core of the press-button(s), normally being made of plastic, may be made of metal.
The invention shall now be described further through a few of several possible examples which fit the above description. Whether one uses this system just for wrist-straps or just for toe-straps or for both on a specific binding is a matter of choice. Press-buttons/pins for more than 3 holes are also possible.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred non-limiting embodiments of the invention, as illustrated in the accompanying drawings where:
In
As can be seen, this prior art binding will provide a strap system where the wrist-strap when not in use, will fall into the binding frame 101. This will result in that it will be difficult to set a boot into the binding B again, without removing the wrist-strap 103 from the binding frame 101.
In
In
On right sides of
In
The present invention has now been explained by means of preferred embodiment. Only elements connected to the invention are described and a person skilled in the art will appreciate that the press-button element(s), attachment point and wrist-straps and toe-straps etc. are to be adapted to the specific use of the binding. The person skilled in the art will also understand that several changes and/or modifications may be made to the described and illustrated embodiments which are within the scope of invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
20120085 | Jan 2012 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/051371 | 1/24/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/110725 | 8/1/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5143396 | Shaanan et al. | Sep 1992 | A |
5758895 | Bumgarner | Jun 1998 | A |
6056300 | Carpenter et al. | May 2000 | A |
6113114 | Zemke et al. | Sep 2000 | A |
6283491 | Bush et al. | Sep 2001 | B1 |
6416075 | Laughlin et al. | Jul 2002 | B1 |
6604746 | Sato et al. | Aug 2003 | B1 |
6773020 | Gonthier | Aug 2004 | B2 |
6974149 | Naito | Dec 2005 | B2 |
7232147 | Couderc | Jun 2007 | B2 |
7374194 | Naito et al. | May 2008 | B2 |
7614638 | Cunningham et al. | Nov 2009 | B2 |
20010009320 | Couderc et al. | Jul 2001 | A1 |
20020190502 | Naito et al. | Dec 2002 | A1 |
20020190503 | Laughlin et al. | Dec 2002 | A1 |
20030098569 | Gonthier | May 2003 | A1 |
Number | Date | Country |
---|---|---|
5877 | Jan 2003 | AT |
20 2005 019273 | Mar 2006 | DE |
202005019273 | Mar 2006 | DE |
2 879 940 | Jun 2006 | FR |
Entry |
---|
International Search Report for corresponding International Patent Application No. PCT/EP2013/051371 mailed Apr. 17, 2013. |
International Preliminary Report on Patentability for corresponding International Patent Application No. PCT/EP2013/051371 mailed May 13, 2014. |
Norwegian Search Report for Norwegian Patent Application No. 20120085 mailed Jul. 2, 2012. |
Number | Date | Country | |
---|---|---|---|
20150028553 A1 | Jan 2015 | US |