The invention relates generally to adjuvants for agricultural applications, and more particularly, to adjuvants comprising a salt of N-Lauryl iminopropionic acid and an alkylamide derivative.
An agrochemical formulation conventionally includes an adjuvant to provide optimum activity of the active ingredient contained in the formulation. Adjuvants are used in pesticides to improve application for improved pest control. The addition of adjuvants also helps to reduce the amount of pesticide needed. Adjuvants are also used in plant growth regulators. Many adjuvants commercially available contain compounds that may be irritable to the eyes or skin. There remains a need for adjuvants for agrochemical applications, which avoid the disadvantages known from the state of the art. The problem underlying the present invention has been to develop a new adjuvant composition offering at least comparable performance when added to commercial agrochemical actives, how exhibit improved safety, especially with respect to eye and skin irritation.
A first embodiment of the present invention refers to an adjuvant composition for an agrochemical formulation, comprising:
(i) a salt of N-lauryl iminopropionic acid; and
(ii) an alkylamine derivative.
A second embodiment encompasses also an agrochemical formulation, comprising an active agrochemical substance; and
Surprisingly it has been observed that blends comprising salts of N-lauryl iminopropionic acid an alkylamine derivatives show excellent adjuvant properties, however, are less skin and eye irritating when compared with standard products found in the market.
Agrochemical formulations include any compounds which contain active components from the group of fungicides, fertilizers, herbicides, pesticides, insecticides, plant strengthening agents or other active components for use in horticulture.
The sodium salt of N-lauryl iminopropionic acid (compound a) may be prepared according to the general reaction scheme:
wherein R is a preferably coconut or other fatty acid residue, and the imino di-propionate is preferably partially neutralized (30-50% of imino-dipropionate in water). The alkylamine derivatives correspond to general formula (I):
wherein R1, R4, and R6 each independently represents hydrogen or a C1-30 alkyl or alkenyl group; (OR2)n, (OR3)1, and (OR5)n each independently represents a random polyalkoxide group, a block polyalkoxide group, or a C2-6 linear or branched, alkyl sulf(on)ate; R2, R3, and R5 each independently represents a C2-6 alkyl group; 1, m, and n, each independently represents a number from 1 to 100, r represents a number from 1 to 2; a, b, c, d, and e each independently represents a number from 1-12; and each of x, y, and z independently represent a number from 1-100.
The alkylamine derivatives (Compound b) are obtained, for example, from a reaction of tallow or cocofatty acids with dimethyl amine, and thereafter are ethoxylated. Other methods for obtaining the alkylamine derivatives may also be available. The alkylamine derivatives suitable for the adjuvant compositions according to the invention include, but are not limited to: monoethanol amine, diethanol amine, triethanol amine, and a polyaliphatic amine and/or its derivatives. The salt of N-lauryl iminopropionic acid and an alkylamine derivative are mixed, in a suitable vessel, to form the composition. For example, coconut triglycerides (or fatty acids, inclulding medium chain triglycerides, and long chain fatty acids) are reacted with di-methyl amino propylamine (DMAP) to make a cocamidopropyl amine. The cocamidopropyl amine is further reacted with sodium chloroacetate to form a cocamidopropyl betaine. Advantageously, the adjuvant compositions exhibit reduced eye irritancy. In addition, the use of the adjuvant compositions according to an aspect of the invention provide for increased area per volume of liquid coverage of a selected area for treatment (with reduced need for active ingredient), and also to aid in allowing the active ingredient to wet the surface and penetrate the leaf barrier of a plant pathogen or the protective coating of an insect. Furthermore, the combination of an active ingredient, for example, glyphosate, with the adjuvant composition according to an aspect of the invention, increases the effect of the glyphosate, thus reducing the effective quantity of active ingredient needed. It is readily apparent that the reduced quantity of active ingredient needed has a positive effect on the environment.
The adjuvant compositions may be present in agrochemical formulations in ratios of 1:1 and 2:1, and also in ratios of 3:1 and 4:1, by weight of the adjuvant composition and the total agrochemical formulation. The adjuvant compositions may be used in combination with any active ingredient. The active ingredients which may be included in agrochemical formulations are preferably oil-soluble substances.
The term “active ingredients” is used in the sense of a biocide. A biocide is a chemical substance capable of killing different forms of living organisms used in fields such as medicine, agriculture, forestry, and mosquito control. Usually, biocides are divided into two sub-groups:
Biocides can also be added to other materials (typically liquids) to protect the material from biological infestation and growth. For example, certain types of quaternary ammonium compounds (quats) can be added to pool water or industrial water systems to act as an algicide, protecting the water from infestation and growth of algae.
The U.S Environmental Protection Agency (EPA) defines a pesticide as “any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest”.[1] A pesticide may be a chemical substance or biological agent (such as a virus or bacteria) used against pests including insects, plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms) and microbes that compete with humans for food, destroy property, spread disease or are a nuisance. In the following examples, pesticides suitable for the agrochemical compositions according to the present invention are given:
Fungicides. A fungicide is one of three main methods of pest control—the chemical control of fungi in this case. Fungicides are chemical compounds used to prevent the spread of fungi in gardens and crops. Fungicides are also used to fight fungal infections. Fungicides can either be contact or systemic. A contact fungicide kills fungi when sprayed on its surface. A systemic fungicide has to be absorbed by the fungus before the fungus dies. Examples for suitable fungicides, according to the present invention, encompass the following species: (3-ethoxypropyl)mercury bromide, 2-methoxyethylmercury chloride, 2-phenylphenol, 8-hydroxyquinoline sulfate, 8-phenylmercurioxyquinoline, acibenzolar, acylamino acid fungicides, acypetacs, aldimorph, aliphatic nitrogen fungicides, allyl alcohol, amide fungicides, ampropylfos, anilazine, anilide fungicides, antibiotic fungicides, aromatic fungicides, aureofungin, azaconazole, azithiram, azoxystrobin, barium polysulfide, benalaxyl, benalaxyl-M, benodanil, benomyl, benquinox, bentaluron, benthiavalicarb, benzalkonium chloride, benzamacril, benzamide fungicides, benzamorf, benzanilide fungicides, benzimidazole fungicides, benzimidazole precursor fungicides, benzimidazolylcarbamate fungicides, benzohydroxamic acid, benzothiazole fungicides, bethoxazin, binapacryl, biphenyl, bitertanol, bithionol, blasticidin-S, Bordeaux mixture, boscalid, bridged diphenyl fungicides, bromuconazole, bupirimate, Burgundy mixture, buthiobate, butylamine, calcium polysulfide, captafol, captan, carbamate fungicides, carbamorph, carbanilate fungicides, carbendazim, carboxin, carpropamid, carvone, Cheshunt mixture, chinomethionat, chlobenthiazone, chloraniformethan, chloranil, chlorfenazole, chlorodinitronaphthalene, chloroneb, chloropicrin, chlorothalonil, chlorquinox, chlozolinate, ciclopirox, climbazole, clotrimazole, conazole fungicides, conazole fungicides (imidazoles), conazole fungicides (triazoles), copper(II) acetate, copper(II) carbonate, basic, copper fungicides, copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper(II) sulfate, copper sulfate, basic, copper zinc chromate, cresol, cufraneb, cuprobam, cuprous oxide, cyazofamid, cyclafuramid, cyclic dithiocarbamate fungicides, cycloheximide, cyflufenamid, cymoxanil, cypendazole, cyproconazole, cyprodinil, dazomet, DBCP, debacarb, decafentin, dehydroacetic acid, dicarboximide fungicides, dichlofluanid, dichlone, dichlorophen, dichlorophenyl, dicarboximide fungicides, dichlozoline, diclobutrazol, diclocymet, diclomezine, dicloran, diethofencarb, diethyl pyrocarbonate, difenoconazole, diflumetorim, dimethirimol, dimethomorph, dimoxystrobin, diniconazole, dinitrophenol fungicides, dinobuton, dinocap, dinocton, dinopenton, dinosulfon, dinoterbon, diphenylamine, dipyrithione, disulfuram, ditalimfos, dithianon, dithiocarbamate fungicides, DNOC, dodemorph, dodicin, dodine, DONATODINE, drazoxolon, edifenphos, epoxiconazole, etaconazole, etem, ethaboxam, ethirimol, ethoxyquin, ethylmercury 2,3-dihydroxypropyl mercaptide, ethylmercury acetate, ethylmercury bromide, ethylmercury chloride, ethylmercury phosphate, etridiazole, famoxadone, fenamidone, fenaminosulf, fenapanil, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenitropan, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fentin, ferbam, ferimzone, fluazinam, fludioxonil, flumetover, flumorph, fluopicolide, fluoroimide, fluotrimazole, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, formaldehyde, fosetyl, fuberidazole, furalaxyl, furametpyr, furamide fungicides, furanilide fungicides, furcarbanil, furconazole, furconazole-cis, furfural, furmecyclox, furophanate, glyodin, griseofulvin, guazatine, halacrinate, hexachlorobenzene, hexachlorobutadiene, hexachlorophene, hexaconazole, hexylthiofos, hydrargaphen, hymexazol, imazalil, imibenconazole, imidazole fungicides, iminoctadine, inorganic fungicides, inorganic mercury fungicides, iodomethane, ipconazole, iprobenfos, iprodione, iprovalicarb, isoprothiolane, isovaledione, kasugamycin, kresoxim-methyl, lime sulphur, mancopper, mancozeb, maneb, mebenil, mecarbinzid, mepanipyrim, mepronil, mercuric chloride, mercuric oxide, mercurous chloride, mercury fungicides, metalaxyl, metalaxyl-M, metam, metazoxolon, metconazole, methasulfocarb, methfuroxam, methyl bromide, methyl isothiocyanate, methylmercury benzoate, methylmercury dicyandiamide, methylmercury pentachlorophenoxide, metiram, metominostrobin, metrafenone, metsulfovax, milneb, morpholine fungicides, myclobutanil, myclozolin, N-(ethylmercury)-p-toluenesulphonanilide, nabam, natamycin, nitrostyrene, nitrothal-isopropyl, nuarimol, OCH, octhilinone, ofurace, organomercury fungicides, organophosphorus fungicides, organotin fungicides, orysastrobin, oxadixyl, oxathiin fungicides, oxazole fungicides, oxine copper, oxpoconazole, oxycarboxin, pefurazoate, penconazole, pencycuron, pentachlorophenol, penthiopyrad, phenylmercuriurea, phenylmercury acetate, phenylmercury chloride, phenylmercury derivative of pyrocatechol, phenylmercury nitrate, phenylmercury salicylate, phenylsulfamide fungicides, phosdiphen, phthalide, phthalimide fungicides, picoxystrobin, piperalin, polycarbamate, polymeric dithiocarbamate fungicides, polyoxins, polyoxorim, polysulfide fungicides, potassium azide, potassium polysulfide, potassium thiocyanate, probenazole, prochloraz, procymidone, propamocarb, propiconazole, propineb, proquinazid, prothiocarb, prothioconazole, pyracarbolid, pyraclostrobin, pyrazole fungicides, pyrazophos, pyridine fungicides, pyridinitril, pyrifenox, pyrimethanil, pyrimidine fungicides, pyroquilon, pyroxychlor, pyroxyfur, pyrrole fungicides, quinacetol, quinazamid, quinconazole, quinoline fungicides, quinone fungicides, quinoxaline fungicides, quinoxyfen, quintozene, rabenzazole, salicylanilide, silthiofam, simeconazole, sodium azide, sodium orthophenylphenoxide, sodium pentachlorophenoxide, sodium polysulfide, spiroxamine, streptomycin, strobilurin fungicides, sulfonanilide fungicides, sulfur, sultropen, TCMTB, tebuconazole, tecloftalam, tecnazene, tecoram, tetraconazole, thiabendazole, thiadifluor, thiazole fungicides, thicyofen, thifluzamide, thiocarbamate fungicides, thiochlorfenphim, thiomersal, thiophanate, thiophanate-methyl, thiophene fungicides, thioquinox, thiram, tiadinil, tioxymid, tivedo, tolclofos-methyl, tolnaftate, tolylfluanid, tolylmercury acetate, triadimefon, triadimenol, triamiphos, triarimol, triazbutil, triazine fungicides, triazole fungicides, triazoxide, tributyltin oxide, trichlamide, tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine, triticonazole, unclassified fungicides, undecylenic acid, uniconazole, urea fungicides, validamycin, valinamide fungicides, vinclozolin, zarilamid, zinc naphthenate, zineb, ziram, zoxamide and their mixtures.
Herbicides. An herbicide is a pesticide used to kill unwanted plants. Selective herbicides kill specific targets while leaving the desired crop relatively unharmed. Some of these act by interfering with the growth of the weed and are often based on plant hormones. Herbicides used to clear waste ground are nonselective and kill all plant material with which they come into contact. Herbicides are widely used in agriculture and in landscape turf management. They are applied in total vegetation control (TVC) programs for maintenance of highways and railroads. Smaller quantities are used in forestry, pasture systems, and management of areas set aside as wildlife habitat. In the following, a number of suitable herbicides are compiled:
Insecticides. An insecticide is a pesticide used against insects in all developmental forms. They include ovicides and larvicides used against the eggs and larvae of insects. Insecticides are used in agriculture, medicine, industry and the household. In the following, suitable insecticides are mentioned:
Rodenticides. Rodenticides are a category of pest control chemicals intended to kill rodents. Rodents are difficult to kill with poisons because their feeding habits reflect their place as scavengers. They would eat a small bit of something and wait, and if they do not get sick, they would continue eating. An effective rodenticide must be tasteless and odorless in lethal concentrations, and have a delayed effect. In the following, examples for suitable rodenticides are given:
Vitamin K1 has been suggested and successfully used as an antidote for pets or humans, which/who were either accidentally or intentionally (poison assaults on pets, suicidal attempts) exposed to anticoagulant poisons. In addition, since some of these poisons act by inhibiting liver functions and in progressed stages of poisoning, several blood-clotting factors as well as the whole volume of circulating blood lacks, a blood transfusion (optionally with the clotting factors present) can save a person's life who inadvertently takes them, which is an advantage over some older poisons.
In the following examples, antimicrobials suitable for agrochemical compositions according to the present invention are given. Bactericidal disinfectants mostly used are those applying
As antiseptics (i.e., germicide agents that can be used on human or animal body, skin, mucoses, wounds and the like), few of the above mentioned disinfectants can be used under proper conditions (mainly concentration, pH, temperature and toxicity toward man/animal). Among them, important are
Bactericidal antibiotics kill bacteria; bacteriostatic antibiotics only slow down their growth or reproduction. Penicillin is a bactericide, as are cephalosporins. Aminoglycosidic antibiotics can act in both a bactericidic manner (by disrupting cell wall precursor leading to lysis) or bacteriostatic manner (by connecting to 30s ribosomal subunit and reducing translation fidelity leading to inaccurate protein synthesis). Other bactericidal antibiotics according to the present invention include the fluoroquinolones, nitrofurans, vancomycin, monobactams, co-trimoxazole, and metronidazole.
The preferred agrochemical actives, however, is Glyphosate (═N-(phosphonomethyl)glycine), C3H8NO5P, MW 169.07, melting point 200° C., LD50 (rat, oral) 4320 mg/kg (WHO), a nonselective systemic leaf herbicide which is used in the form of its isopropylamine salt for the total and semitotal control of unwanted grasses and weeds, including deep-rooting several-year-old species, among all agricultural crops, in orchards and vineyards. The structure of glyphosate is as follows:
It should be understood that the term glyphosate includes all glyphosate derivatives, including mono- or diethanolamine salts of glyphosate. Sodium and potassium are also suitable cations. The isopropylamine salt of glyphosate is particularly suitable. In addition, mixtures of these compounds may also be used for the purposes of the invention.
The agrochemical formulations may contain auxiliaries and additives. Additional adjuvants may also be present. For example, the nonionic surfactants selected from at least one of the following groups are suitable according to an aspect of the invention:
Suitable emulsifiers can be derived from the following groups of non-ionic surfactants.
Non-polar solvents may also be added, particularly with respect to pesticides or other agrochemical compounds that are solid at room temperature. Suitable non-polar solvents include, but are not limited to: mineral oils, aromatic alkyl compounds and the hydrocarbons marketed, for example, under the name of Solvesso® by Exxon, fatty acid lower alkyl esters, for example, methyl, ethyl, propyl and/or butyl esters, of caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid; myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and technical mixtures thereof. Other suitable solvents include vegetable triglycerides, for example, coconut oil, palm oil, palm kernel oil, sunflower oil, and olive oil. Another suitable solvent includes polyethylene glycol, preferably with molecular weights ranging from 90 to 600, and also ranging from 120 to 250.
Ready-to-use agrochemical formulations generally have water content of on average 10 to 90% by weight and more particularly 30 to 60% by weight. The formulations may include the active component in quantities of 0.01 to 5% by weight, preferably in quantities of 0.1 to 2.5% by weight and more particularly in quantities of 0.1 to 1.5% by weight. The agrochemical formulations may also be formulated as concentrates, for example containing 10 to 90% by weight of the active component, whereby the actual in-use concentration is selected by diluting the concentrate. The water content in such concentrates may be between about 1 and 30% by weight. The adjuvant composition may also include an ethoxylated alcohol or alkylamine, a polyhydric alcohol, and defoamer. Other conventional additives that do not materially affect the basic characteristics and efficacy of the composition may also be present. Unless otherwise defined, all technical and scientific terms used herein have the same meaning commonly understood by one of ordinary skill in the art to which the invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, suitable methods and materials are described below. The materials, methods and examples are illustrative only, and are not intended to be limiting.
The present invention also encompasses a method for making an adjuvant composition for an agrochemical formulation, comprising the steps of:
In a preferred embodiment an active ingredient is added to the adjuvant composition.
The following compositions were tested for efficacy as enhancers of weed control when formulated with Glyphosate herbicide. These formulas were tested by spraying 10 foot by 30 foot plots of ground that had been seeded with both weed seeds as well as soybeans. After approximately 20 days after germination, the entire plots were sprayed with a glyphosate/surfactant/water solution. The effect of the spray solution on weed control was documented by visual observations made by trained field biologists at 7, 14 and 28 days after treatment. All formulas below provided weed control equal to the standard RoundUp® Ultra spray solutions, available from Monsanto. The compositions are compiled in Table 1.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/010571 | 12/12/2008 | WO | 00 | 8/30/2010 |
Number | Date | Country | |
---|---|---|---|
61015723 | Dec 2007 | US |