1. Field of the Invention
The invention relates generally to cutting structures used to drill wells in the earth. More specifically, the invention relates to PDC cutting structures for expandable downhole reaming tools.
2. Background Art
Polycrystalline diamond compact (PDC) cutters have been used in industrial applications including rock drilling and metal machining for many years. In these applications, a compact of polycrystalline diamond (or other superhard material such as cubic boron nitride) is bonded to a substrate material, which is typically a sintered metal-carbide, to form a cutting structure. A compact is a polycrystalline mass of diamonds (typically synthetic) that are bonded together to form an integral, tough, high-strength mass.
An example of a use of PDC cutters is in a rock bit for earth formation drilling as disclosed in U.S. Pat. No. 5,186,268. FIG. 1 from that patent shows a cross section of a rotary drill bit having a bit body 10. A lower face of the bit body 10 is formed with a plurality of blades (blade 22 is shown in FIG. 1) that extend generally outwardly away from a rotational axis 15 of the drill bit. A plurality of PDC cutters 26 are disposed side by side along the length of each blade. The number of PDC cutters 26 carried by each blade may vary. The PDC cutters 26 are brazed to a stud-like carrier, which may also be formed from tungsten carbide, and is received and secured within a socket in the respective blade.
When drilling a typical well, a PDC bit is run on the end of a bottom hole assembly (BHA) and the PDC bit drills a wellbore with a selected diameter. However, there are limitations on the diameter of a wellbore that may be drilled with a conventional drill bit. For example, a wellbore may comprise steel casing that has already been set in the well. Therefore, the diameter of the drill bit attached to the BHA is limited by a “pass-though” diameter (e.g., a minimum required diameter through which the drill bit may pass, such as the internal diameter of the steel casing). Accordingly, several attempts have been made to design drill bits and downhole tools that can effectively “drill out” or “underream” a wellbore below, for example, casing that has been set in the wellbore.
Prior art underreamers are typically separate tools that are run into the wellbore in a separate trip. These underreamers require that the BHA (e.g., the BHA with the drill bit) be brought to the surface and exchanged with an underreaming BHA. This is a costly operation because of the time required to make an additional trip in and out of the well to exchange the standard BHA for the underreaming BHA, especially in offshore operations. Accordingly, efforts have been made to design downhole tools that could be run into the wellbore on a standard BHA and effectively “underream while drilling.” Underreaming while drilling eliminates extra trips in and out of the wellbore and the associated rig downtime.
An example of such an attempt to develop an underreaming capable BHA is the development of the bi-center drill bit. A typical bi-center bit comprises a pilot section having an axis of rotation substantially coaxial with a rotational axis of the BHA. The bi-center bit also includes a reaming section, typically characterized by a blade arrangement that has a center of rotation that is offset from the rotational axis of the BHA. Rotation of the reaming section about the bit axis enables the bi-center bit to drill a larger diameter hole than would ordinarily be drilled by the gage diameter of the pilot bit section alone. Moreover, a particular advantage of the bi-center drill bit is that it has a pass-through diameter that is less than a drill diameter of the reaming section so that the bi-center bit can be passed through casing with a diameter smaller than a desired reamed diameter and then rotated so as to underream the formation beneath the casing. An example of a bi-center bit is shown in U.S. Pat. No. 6,039,131 issued to Beaton.
Another device that has been developed is the near-bit reamer. Near-bit reamers may be run into a wellbore with typical steerable BHAs, and the near-bit reamers are generally activated downhole by, for example, hydraulic pressure. When activated, a pressure differential is created between an internal diameter of the reamer and a wellbore annulus. The higher pressure inside the reamer activates pistons that radially displace a reamer cutting structure. The reamer cutting structure is typically symmetrical about a wellbore axis, including, for example, expandable pads that comprise cutting elements. The cutting elements are moved into contact with formations already drilled by the drill bit, and the near-bit reamer expands the diameter of the wellbore by a preselected amount defined by a drill diameter of the expanded reamer outing structure.
Prior art near-bit reamers generally include cutting structures that are fairly rudimentary in design. While PDC cutters are commonly used with near-bit reamers, the PDC cutters are generally arranged in a relatively simplistic fashion. Therefore, it would be advantageous to produce near-bit reamer cutting structures that incorporate, for example, advanced cutting structures used on PDC drill bits.
In one aspect, the invention comprises an expandable reaming tool comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one spiral blade is formed on at least one reamer pad, and a plurality of cutting elements are disposed on the at least one spiral blade.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade is formed on the at least two reamer pads and a plurality of cutting elements are disposed on the at least one blade. At least one gage protection element is disposed on a gage surface of the at least one blade, and the plurality of cutting elements are arranged so as to enable the expandable reaming tool to backream a formation in a wellbore.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on the blades. The plurality of cutting elements are arranged so as to substantially balance axial forces between the at least two reamer pads.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on the blades. The plurality of cutting elements are arranged so that a net lateral force acting on the at least two reamer pads is substantially zero.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on the blades. The plurality of cutting elements are arranged so as to substantially balance work performed between the at least two reamer pads.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on the blades. The at least two reamer pads are adapted to substantially mass balance the reaming tool about an axis of rotation thereof.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on the blades. The plurality of cutting elements are positioned to each have a backrake angle of greater than 20 degrees.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on the blades. Each of the plurality of cutting elements has a diameter of less than 13 mm or greater than 13 mm.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on selected surfaces of the blades. The selected surfaces are shaped so that a cutting element exposure is equal to at least half of a diameter of the cutting element.
In another aspect, the invention comprises an expandable reaming tool, comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade formed on each of the at least two reamer pads and a plurality of cutting elements disposed on the blades. Selected ones of the plurality of cutting elements disposed on one of the at least two reamer pads are positioned so as to form a redundant cutting arrangement with other selected ones of the plurality of cutting elements disposed on a different one of the at least two reamer pads.
In another aspect, the invention comprises an expandable reaming tool comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade is formed on each of the at least two reamer pads and a plurality of cutting elements are disposed on the blades. The at least two reamer pads and the at least one blade are formed from a non-magnetic material.
In another aspect, the invention comprises an expandable reaming tool comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade is formed on each of the at least two reamer pads and a plurality of cutting elements are disposed on the blades. The at least two reamer pads and the at least one blade are formed from a matrix material infiltrated with a binder alloy.
In another aspect, the invention comprises an expandable reaming tool comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade is formed on each of the at least two reamer pads and a plurality of cutting elements are disposed on the blades. A perpendicular distance measured from a surface of the at least two reamer pads to an outermost extent of a gage cutting element disposed on the at least one spiral blade is equal to at least twice a diameter of the gage cutting element.
In another aspect, the invention comprises an expandable reaming tool comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade is formed on each of the at least two reamer pads and a plurality of cutting elements are disposed on the blades. The at least one blade comprises a hardfacing material.
In another aspect, the invention comprises an expandable reaming tool comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade is formed on each of the at least two reamer pads and a plurality of cutting elements are disposed on the blades. The at least one blade comprises a diamond impregnated material.
In another aspect, the invention comprises an expandable reaming tool comprising at least two reamer pads operatively coupled to a tool body and adapted to be displaced between a retracted position and an expanded position. At least one blade is formed on each of the at least two reamer pads and a plurality of cutting elements are disposed on the blades. The plurality of cutting elements are arranged so as to form a tapered cutting structure.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
When the reamer pad 32A contacts a formation 36 at a wall of the wellbore 38, cutting elements on the cutting structure 34 on the reamer pad 32A underreams the wellbore 38 to a reamed diameter D2. The reamed diameter D2 is generally larger than, for example, a previously drilled diameter D1 (wherein, for example, the previously drilled diameter D1 is defined by a gage diameter of a drill bit (not shown) positioned some axial distance ahead of the reaming tool 30). The previously drilled diameter D1 may be approximately equal to an internal diameter ID of a length of casing 40 positioned in the wellbore 38 above the underreamed portion of the wellbore 38.
One embodiment of the invention is shown in FIG. 3. The cutting structure 34 comprises a spiral blade 50 configuration. A plurality of cutting elements 52 are positioned on the blade 50 and are arranged to underream the wellbore (38 in
In one aspect, the invention comprises at least one spiral blade (a single spiral blade 50 is shown in the Figure) formed on at least one of the reamer pads (e.g., reamer pad 32A). However, more than one spiral blade may be disposed on any one or all of the reamer pads. For example, each reamer pad may comprise two azimuthally spaced apart spiral blades. Further, in other embodiments according to this aspect of the invention, any other blade may be straight, and any one of the reamer pads 32A may include more than one straight blade thereon. Accordingly, the embodiment shown in
In some embodiments, the reamer pad 32A may further comprise at least one gage protection insert on a gage diameter surface thereof, and preferably includes a plurality of gage inserts, as shown generally at 54. In the embodiment of
In another embodiment, at least one and preferably a plurality of vibration damping inserts (53 in
In other embodiments, the cutting elements 52 may comprise different diameter cutting elements. For example, 13 mm cutting elements are commonly used with PDC drill bits. The cutting elements disposed on the reamer pads may comprise 13 mm cutters or any other diameter cutting element known in the art (e.g., other cutting element sizes include 9 mm, 11 mm, 16 mm, 19 mm, 22 mm, and/or 25 mm cutters, among other diameters). Further, different diameter cutting elements may be used on a single reamer pad (e.g., the diameter of cutting elements maybe selectively varied along a length of a blade).
The cutting elements 52 may be positioned at selected backrake angles according to another aspect of the invention. A common backrake angle used in prior art PDC reamers is about 20 degrees. However, the cutting elements in various embodiments according to this aspect of the invention may be positioned a backrake angles of greater than 20 degrees. Moreover, the backrake angle of the cutting elements may be varied. In one embodiment, the backrake angle is variable along the length of the blade. In a particular embodiment, the backrake angle of each cutting element is related to the axial position of the particular cutting element along the length of the blade.
In some embodiments, the reamer pads and the blades may be formed from non-magnetic materials (e.g., such as monel, etc.). In other embodiments, the reamer pads and blades may be formed from materials that comprise a matrix infiltrated with binder materials. Examples of these infiltrated materials may be found in, for example, U.S. Pat. No. 4,630,692 issued to Ecer and U.S. Pat. No. 5,733,664 issued to Kelley et al. These materials are advantageous because they are highly resistant to erosive and abrasive wear, yet are tough enough to withstand shock and stresses associated harsh drilling conditions.
In some embodiments, a distance (58 in
In other embodiments of the invention, a geometric configuration of the blade (50 in
An example of shaped blade surface is shown in
In another embodiment of the invention shown in
The embodiment shown in
Referring to
Cutting elements may be positioned on the respective reamer pads so as to balance a force or work distribution and provide a force or work balanced cutting structure. “Force balance” refers to a substantial balancing of axial force during drilling between cutting elements on the reaming pads, and force balancing has been described in detail in, for example, T. M. Warren et al., Drag Bit Performance Modeling, paper no. 15617, Society of Petroleum Engineers, Richardson, Tex., 1986. Similarly, “work balance” refers to a substantial balancing of work performed between the reamer pads and between cutting elements on the reamer pads.
The term “work” used to describe this aspect of the invention is defined as follows. A cutting clement on the reamer pads during underreaming cuts the earth formation through a combination of axial penetration and lateral scraping. The movement of the cutting element through the formation can thus be separated into a “lateral scraping” component and an “axial crushing” component. The distance that the cutting element moves laterally, that is, in the plane of the bottom of the wellbore, is called the lateral displacement. The distance that the cutting element moves in the axial direction is called the vertical displacement. The force vector acting on the cutting element can also be characterized by a lateral force component acting in the plane of the bottom of the wellbore and a vertical force component acting along the axis of the drill bit. The work done by a cutting element is defined as the product of the force required to move the cutting element and the displacement of the cutting element in the direction of the force.
Thus, the lateral work done by the cutting element is the product of the lateral force and the lateral displacement. Similarly, the vertical (axial) work done is the product of the vertical force and the vertical displacement. The total work done by each cutting element can be calculated by summing the vertical work and the lateral work. Summing the total work done by each cutting element on any one reamer pad will provide the total work done by that reamer pad. In this aspect of the invention, the numbers of, and/or placement or other aspect of the arrangement of the cutting elements on each of the reamer pads can be adjusted to provide the reaming tool with a substantially balanced amount of work performed by each reamer pad.
Force balancing and work balancing may also refer to a substantial balancing of forces and work between cutting elements, between redundant cutting elements, etc. Balancing may also be performed over the entire reaming tool (e.g., over the entire cutting structure). In other embodiments, forces may be balanced so that there is a substantially zero net lateral force acting on the reaming tool (e.g., on the reamer pads) during drilling operations. Balancing to establish a substantially zero net lateral force helps ensure that the reaming tool maintains a desired trajectory without substantial lateral deviation when operating in a wellbore.
In other embodiments of the invention, reaming pads are adapted to substantially mass balance the reaming tool about an axis of rotation of the reaming tool. For example, substantially identical reamer pads may be arranged symmetrically about the axis of rotation. In other embodiments, asymmetric and/or non-identical blade arrangements and/or asymmetric reamer pad arrangements may be used to achieve mass balance about the axis of rotation. Mass balancing helps ensure that the reaming tool is dynamically stable and maintains a desired drilling and/or reaming trajectory.
Another embodiment of the invention shown in
Alternatively, the reaming tool 70 may be run into the wellbore (38 in
In other embodiments (as shown in FIG. 6), the cutting elements 72, 74 disposed on reamer pads 78 of a reaming tool 70 are arranged to form tapered cutting profiles 82, 84. In some embodiments, the cutting profiles 82, 84 may be substantially conical or substantially hemispherical. However, other tapered shapes may be used in other embodiments of the invention. For example, some embodiments comprise tapers wherein diameters of the reaming tool 70 subtended by cutting elements 72, 74 disposed on the reamer pads 78 are dependent upon an axial position of the cutting elements 72, 74 with respect to an axis of the reaming tool 70. Arrangement of the cutting elements 72, 74 in tapered cutting profiles 82, 84 enables the reaming tool 70 to gradually underream the formation (38 in
Advantageously, the advanced PDC cutting structures described above enable an expandable reaming tool to efficiently underream formations below, for example, casing set in a wellbore. Moreover, the advanced PDC cutting structures may optimize reaming parameters (such as rate of penetration) and decrease the time required to underream a wellbore to a desired diameter.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
This application is a divisional application of U.S. patent application Ser. No. 09/924,961, entitled “Advanced Expandable Reaming Tool” filed on Aug. 8, 2001, by Carl Hoffmaster et al., which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1485249 | Craig | Feb 1924 | A |
2644670 | Baker et al. | Jul 1953 | A |
2657907 | Cochran et al. | Nov 1953 | A |
3237705 | Williams, Jr. | Mar 1966 | A |
4589504 | Simpson | May 1986 | A |
4630692 | Ecer | Dec 1986 | A |
5070952 | Neff | Dec 1991 | A |
5174374 | Hailey | Dec 1992 | A |
5186268 | Clegg | Feb 1993 | A |
5242017 | Hailey | Sep 1993 | A |
5341888 | Deschutter | Aug 1994 | A |
5368114 | Tandberg et al. | Nov 1994 | A |
5402856 | Warren et al. | Apr 1995 | A |
5733664 | Kelley et al. | Mar 1998 | A |
5853054 | McGarian et al. | Dec 1998 | A |
6006845 | Illerhaus et al. | Dec 1999 | A |
6039131 | Beaton | Mar 2000 | A |
6206117 | Tibbitts et al. | Mar 2001 | B1 |
6302223 | Sinor | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
0972908 | Jan 2000 | EP |
2351513 | Jan 2001 | GB |
2355035 | Apr 2001 | GB |
WO 0031371 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040159468 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09924961 | Aug 2001 | US |
Child | 10773502 | US |