Advanced first entry model for surgical simulation

Information

  • Patent Grant
  • 11450236
  • Patent Number
    11,450,236
  • Date Filed
    Thursday, December 20, 2018
    6 years ago
  • Date Issued
    Tuesday, September 20, 2022
    2 years ago
Abstract
The present invention provides a surgical training device for training laparoscopic first entry surgical techniques. The training device includes a simulated abdominal wall that is penetrable with an optical trocar. A receptacle containing a tissue simulation is located inside the receptacle. The tissue simulation is observable via scope placed inside the optical trocar. Upon penetration of the one or more of the simulated abdominal wall and receptacle, the tissue simulation appears to translate distally relative to the simulated abdominal wall. The distal translation is effected by a variety of ways including the release of negative pressure inside the receptacle upon penetration and the expansion of an elastic wall of the receptacle with the introduction of fluid under pressure into the receptacle.
Description
FIELD OF THE INVENTION

This application relates to surgical training tools, and in particular, to simulated tissue structures and models for teaching and practicing surgical procedures.


BACKGROUND OF THE INVENTION

Laparoscopic surgery requires several small incisions in the abdomen for the insertion of trocars or small cylindrical tubes approximately 5 to 10 millimeters in diameter through which surgical instruments and a laparoscope are placed into the abdominal cavity. The laparoscope illuminates the surgical field and sends a magnified image from inside the body to a video monitor giving the surgeon a close-up view of organs and tissues. The surgeon watches the live video feed and performs the operation by manipulating the surgical instruments placed through the trocars.


The first step in laparoscopic surgery is to make a small incision to access the abdomen and create pneumoperitoneum. Pneumoperitoneum is the insufflation of the abdominal cavity with carbon dioxide gas. Insufflation with gas creates a working space in the abdomen necessary for laparoscopy. Once a proper working space has been created, surgical instruments can be inserted for performing a laparoscopic procedure. This process of penetrating the abdomen and creating pneumoperitoneum prior to insertion of other instruments is called first entry. There are many different ways to achieve pneumoperitoneum. One option is using a Veress needle. A Veress needle is approximately 12-15 centimeters long with a diameter of approximately 2 millimeters. The surgeon inserts the spring-loaded needle into the abdomen of the patient after making a small incision. When the needle breaches the inner abdominal space, the spring-loaded inner stylet springs forward to cover the sharp needle in order protect internal organs. The surgeon relies on the feel and sound of the needle and spring for proper placement. Once proper entry is confirmed, carbon dioxide is introduced through the Veress needle and into the abdominal cavity of the patient expanding the abdomen to creating a working space.


Another option is a Hasson technique or cut down technique in which the surgeon makes an initial incision at the umbilicus and the tissue is bluntly dissected. A suture is placed on either side of the incision into the fascia layer to help hold the device in place. The supraperitoneal tissue is dissected away and the peritoneum is incised to enter the abdominal cavity. At this point, a Hasson trocar is inserted into the incision. The Hasson trocar has a blunt tip with suture ties and/or a balloon to hold it in place. After the trocar is placed into the incision, the device is secured with sutures and/or the balloon and carbon dioxide gas is pumped into the patient through the trocar to achieve pneumoperitoneum.


Another option is direct trocar entry. In this option, the surgeon uses a bladed or non-bladed trocar. The trocar can be used optically in which a specialized trocar is configured to receive a laparoscope and a laparoscope is inserted into the trocar before entry in order to view the penetration as it occurs. Also, the trocar may be use non-optically without a laparoscope inside. After the initial incision is made, the trocar is placed through the layers of the abdomen. Since the camera is present, all of the layers of the abdominal wall can be observed during penetration. Once the surgeon sees that he or she has broken through the peritoneum, penetration can halt, the obturator tip of the trocar pulled back slightly or removed entirely and insufflation can commence by pumping carbon dioxide gas in through the cannula to create pneumoperitoneum.


Another option involves a specialized first entry trocar such as the FIOS® first entry trocar made by Applied Medical Resources Corporation in California. Like optical direct trocar entry, a laparoscope is inserted into the FIOS® trocar and the abdominal wall layers are observed during insertion into the abdominal cavity. The specialized FIOS® trocar has a small vent hole in the tip such that instead of requiring that the obturator of the trocar be pulled back or removed completely to introduce carbon dioxide through the cannula, carbon dioxide gas is introduced through the small vent hole in the tip of the obturator with the camera in place. Because carbon dioxide can be introduced through the tip, the FIOS® trocar does not have to penetrate as deeply into the abdominal cavity as a traditional trocar, thereby, affording internal organs greater protection before insufflation can commence. Also, because the obturator does not have to be pulled back or removed, observation via the inserted camera can take place at the point of insufflation.


In addition to the above options for entering the abdominal cavity, generally, there are two common places on the abdomen that a surgeon must know how to enter. The most widely used location for first entry is the umbilicus. The umbilicus is a natural weakening in the abdomen where the umbilical cord was attached in the womb. In this part of the abdomen, there are no rectus muscles, arteries or veins so it is generally easier to reach the abdominal cavity. Additionally, the umbilicus is typically an easy place to hide a scar. When surgeons use the umbilicus as an entry site, particularly for the Hasson technique, clamps are often used to grab the base of the umbilicus and the umbilicus is inverted. At this point, an incision is made and the surgeon cuts down as desired and inserts the trocar or Veress needle. With optical entry, the surgeon is able to see all the layers of the abdominal wall. In this location of penetration, they are able to see the fatty tissue, linea alba, transversalis fascia and, finally, the peritoneum. Additionally, when entering at the umbilicus, the umbilical stalk should also be visible. The stalk is what remains of the umbilical cord and it stretches from the skin making up the umbilicus to the peritoneal layer.


If a patient has had a previous surgery and adhesions are suspected or a hernia is present at the site of the umbilicus, first entry may need to occur at another location. In this case, the surgeon will often enter from the left upper quadrant since there is less chance of damaging a vital organ in this location. The left upper quadrant is different from the umbilicus region in that there are muscle layers. The rectus abdominus muscles run parallel with the patient's abdomen and are found on either side of the patient's midline. Underneath the rectus abdominus muscles run the inferior epigastric veins and arteries which the surgeon must be careful to avoid. When a surgeon is entering the upper quadrant of the abdominal cavity optically, he or she is able to see the skin, fatty tissue, anterior rectus sheath, rectus abdominus, the epigastric vein, which runs through the posterior rectus sheath, and finally, the peritoneum. If the left upper quadrant is not an ideal position for a port, the surgeon may choose to enter at another location such as sub-xiphoid where subcutaneous fat, rectus sheath and peritoneum are present.


Since there are many options for first entry, it is important that surgeons have a way to learn and practice the various techniques. There is a need for an anatomical model of the umbilical region and surrounding abdomen that is anatomically correct and includes all the layers of the abdominal wall as well as the veins and arteries that run through the wall. Not only does the model have to be anatomically correct, but also, the model must provide a realistic aural and tactile sensation. For example, when using a Veress needle, two pops are generally felt as the surgeon pushes the needle through the abdominal wall. For optical entry, the surgeon needs to view all of the appropriate tissue layers in the abdominal wall. For entry through the umbilicus, the surgeon must be able to grasp and invert the umbilicus. Also, the model may be able to be used with all four first entry techniques and at multiple (umbilical and upper left quadrant at minimum) entry sites.


SUMMARY OF THE INVENTION

According to one aspect of the invention, a surgical training device is provided. The training device includes a simulated tissue structure having an upper surface and a lower surface. The tissue structure includes at least one layer that simulates a tissue layer such as that of an abdominal wall. The training device includes a receptacle connected to the lower surface of the simulated tissue structure. The receptacle has a wall that defines an interior and exterior of the receptacle. The training device further includes one or more simulated organs or simulated tissue structures located in the interior of the receptacle. The simulated organs are configured to be located proximally to the simulated tissue structure and when one or more of the simulated tissue structure and receptacle are penetrated by a surgical instrument such as an optical trocar at least part of the one or more simulated organs or simulated tissue structures inside the receptacle translate distally away from the simulated tissue structure to simulate surgical insufflation of an abdominal cavity.


According to another aspect of the invention, a surgical training device is provided. The surgical training device includes a penetrable simulated tissue structure configured to simulate an abdominal wall. As such, the penetrable simulated tissue structure may include a plurality of layers. The training device includes a receptacle connected to the tissue structure. The receptacle has a wall defining an interior and an exterior to the receptacle. The receptacle also has a first configuration and a second configuration. The training device further includes at least one tissue simulation located inside the receptacle. While in the first configuration of the receptacle, the tissue simulation inside the receptacle is located proximally to the simulated tissue structure relative to the second configuration wherein while in the second configuration at least part of the tissue simulation inside the receptacle is located distally from simulated tissue structure relative to the first configuration. The training device is configured such that fluid is transferable into the receptacle to convert the receptacle from a first configuration to a second configuration.


According to another aspect of the invention, a surgical training device for training laparoscopic first entry surgical techniques is provided. The training device includes a simulated abdominal wall that is penetrable with an optical trocar. The surgical training device further includes a receptacle containing a tissue simulation located inside the receptacle. The tissue simulation is observable via scope placed inside the optical trocar. Upon penetration of the one or more of the simulated abdominal wall and receptacle, the training device is configured such that the tissue simulation appears to translate away from distally relative to the simulated abdominal wall. The distal translation is effected by the release of negative pressure inside the receptacle upon penetration or as a result of penetration. The distal translation is also effected by the expansion of an elastic wall of the receptacle with the introduction of fluid under pressure into the receptacle upon penetration or as a result of the penetration.


According to another aspect of the invention, a method for simulating surgical insufflation is provided. The method includes the step of providing a model comprising a penetrable artificial tissue structure configured to simulate an abdominal wall. The model includes a receptacle having a wall connected to the artificial tissue structure. The model includes at least one tissue simulation disposed inside the receptacle and located proximally to the artificial tissue structure. The method includes the step of moving a distal tip of an optical surgical obturator through the artificial tissue structure and into the receptacle. The method includes the step of observing the tissue simulation inside the receptacle through the distal end of the optical obturator. The method includes the step of moving the tissue simulation from a position proximal to the artificial tissue structure to a position relatively distal to the artificial tissue structure to simulate insufflation of an abdominal cavity. The method may further including the step creating a vacuum inside the receptacle and wherein the step of moving the tissue simulation includes breaking the vacuum inside the receptacle. The method may further include the step of providing a receptacle with an elastic wall. The method may further include the step of transferring fluid into the receptacle and wherein the step of moving the tissue simulation includes expanding the elastic wall of the receptacle. The method may further include the steps of providing a laparoscopic trainer having a cavity and a floor for the cavity and suspending the model above the floor of the cavity inside the laparoscopic trainer.


According to another aspect of the invention, a model that allows users to practice first entry surgical procedures is provided. The first entry model includes an anatomical portion connected to a support. The anatomical portion includes a plurality of anatomical layers that is captured between two frame elements which can attach to a laparoscopic trainer or as a sales demonstration device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top perspective view of a first entry model according to the present invention.



FIG. 2 is top perspective view of a first entry model according to the present invention.



FIG. 3 is a top perspective view of a laparoscopic trainer for use with a first entry model according to the present invention.



FIG. 4 is a side, exploded view of an anatomical portion of a first entry model according to the present invention.



FIG. 5 is a side view of an anatomical portion of a first entry model according to the present invention.



FIG. 6 is a top planar view that is representative of more than one layer in an anatomical portion of a first entry model according to the present invention.



FIG. 7 is a top planar view that is representative of more than one layer in an anatomical portion of a first entry model according to the present invention.



FIG. 8 is top perspective, exploded view of a mold for a skin layer of a first entry model according to the present invention.



FIG. 9 is a side, cross-sectional view of a mold for a skin layer for a first entry model according to the present invention.



FIG. 10 is a top perspective view of a mold for a skin layer for a first entry model according to the present invention.



FIG. 11 is a cross-sectional, side view of a first entry model connected to an organ receptacle with organs according to the present invention.



FIG. 12 is a cross-sectional, side view of a first entry model connected to an organ receptacle with organs according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Turning now to FIG. 1, there is shown a model 10 of an abdominal region that includes the umbilicus for practicing surgical first entry into the abdominal cavity for performing laparoscopic surgical procedures. Throughout this specification the model 10 will be referred to as the first entry model 10. The model 10 includes an anatomical portion 12 connected to a support 14 to form a substantially planar configuration. The support 14 is a frame that encompasses and connects to the perimeter of the anatomical portion 12 and holds the anatomical portion 12 together. In particular, the support 14 includes a top frame and a bottom frame made of plastic material sufficiently rigid to provide structural support and maintain the planar shape of the model 10 and permit the center-located anatomical portion to be penetrated from one side to the other. In one variation, the model 10 is slightly curved to mimic an outwardly curved abdomen. The top frame and the bottom frame snap together capturing the perimeter of the anatomical portion 12 between the top and bottom frames. The model 10 in FIG. 1 is polygonal having five sides forming a slightly elongated shape wherein one side is curved outwardly in a generally U-shaped configuration. A model 10 having a circular support 14 that frames a circular anatomical portion 12 is shown in FIG. 2. The model 10 can be any shape. The frame 14 includes connecting elements 16 configured for connecting the model 10 to a larger laparoscopic trainer as shown in FIG. 3.


Turning now to FIG. 3, a laparoscopic trainer 20 includes a top cover 22 connected to a base 24 by a pair of legs 26 spacing the top cover 22 from the base 24. The laparoscopic trainer 20 is configured to mimic the torso of a patient such as the abdominal region. The top cover 22 is representative of the anterior surface of the patient and a space 28 defined between the top cover 22 and the base 24 is representative of an interior of the patient or body cavity where organs reside. The laparoscopic trainer 20 is a useful tool for teaching, practicing and demonstrating various surgical procedures and their related instruments in simulation of a patient. When assembled, the top cover 22 is positioned directly above the base 24 with the legs 26 located substantially at the periphery and interconnected between the top cover 22 and base 24. The top cover 22 and base 24 are substantially the same shape and size and have substantially the same peripheral outline. The laparoscopic trainer 20 includes a top cover 22 that angulates with respect to the base 24. The legs 26 are configured to permit the angle of the top cover 22 with respect to the base 24 to be adjusted. FIG. 3 illustrates the trainer 20 adjusted to an angulation of approximately 30-45 degrees with respect to the base 24. A laparoscopic trainer 20 is described in U.S. patent application Ser. No. 13/248,449 entitled “Portable laparoscopic trainer” and filed on Sep. 29, 2011 by Pravong et al. to Applied Medical Resources Corporation and published as U.S. Patent Application Publication No. 2012/0082970, hereby incorporated by reference in its entirety herein.


For practicing various surgical techniques, surgical instruments are inserted into the cavity 28 of the laparoscopic trainer 20 through pre-established apertures 30 in the top cover 22. These pre-established apertures 30 may include seals that simulate trocars or may include simulated tissue that simulates the patient's skin and abdominal wall portions. For example, the circular first entry model 10 depicted in FIG. 2 is connected to the top cover 22 in the location of the central circular aperture 30 that has a conforming circular shape. The top cover 22 of the laparoscopic trainer 20 is configured with a removable insert 32 that is replaceable with the first entry model 10 depicted in FIG. 1. The insert 32 which is provided with apertures 30 has a shape that conforms to an opening in the top cover 22. When the insert 32 is removed, the first entry model 10, such as the one depicted in FIG. 1, having a conforming shape is inserted into the opening in the top cover 20 and the connecting elements 16 on the first entry model 10 aid in securing the model 10 to the trainer 20.


Various tools and techniques may be used to penetrate the top cover 20 as described in the background of this description to perform mock procedures not only on the model 10 but also on additional model organs placed between the top cover 22 and the base 24. When placed inside the cavity 28 of the trainer 20, an organ model is generally obscured from the perspective of the user who can then practice performing surgical techniques laparoscopically by viewing the surgical site indirectly via a video feed displayed on a video monitor 34. The video display monitor 34 is hinged to the top cover 22 and is shown in an open orientation in FIG. 3. The video monitor 34 is connectable to a variety of visual systems for delivering an image to the monitor 34. For example, a laparoscope inserted through one of the pre-established apertures 30 or a webcam located in the cavity 28 and used to observe the simulated procedure can be connected to the video monitor 34 and/or a mobile computing device to provide an image to the user. After first entry procedures are practiced on a first entry model 10 connected to the trainer 20, the first entry model 10 is removed and may be replaced with a new insert or reconstructed and reconnected to the trainer 20 to allow training to continue or be repeated. Of course, the first entry model 10 may be employed independently of the trainer 20 for practicing first entry techniques.


Turning now to FIGS. 4 and 5, the anatomical portion 12 of the first entry model 10 will now be described. The anatomical portion 12 includes a skin layer 40, an umbilical stalk 42, a fat layer 44, an anterior rectus sheath layer 46, a first rectus muscle layer 48, a second rectus muscle layer 50, a third rectus muscle layer 52, a posterior rectus sheath layer 54, a transversalis fascia layer 56, and a peritoneum layer 58. The layers 40, 44, 46, 48, 50, 52, 54, 56, 58 are placed one on top of the other as shown in FIGS. 5-6 with the umbilical stalk 42 penetrating through all of the layers beneath the skin layer 40. The layers 40, 44, 46, 48, 50, 52, 54, 56, 58 are connected together with adhesive or other fastener. In one variation, the layers 40, 44, 46, 48, 50, 52, 54, 56 are connected with at least one price-tag holder punched through the layers and sandwiched between the skin layer 40 and the peritoneum layer 58 before being attached to the frame 14. In another variation, the layers are held together without adhesive or other fastener and clamped between the top frame and bottom frame. An optional inferior epigastric vein and artery layer 60 is included between the posterior rectus sheath layer 54 and the transversalis fascia layer 56 as shown in FIGS. 4-5.


With continued reference to FIG. 4, the skin layer 40 is molded of silicone or thermoplastic elastomer dyed with a flesh color. The skin layer 40 includes a top surface 62 and bottom surface 64 defining a thickness of approximately 0.1 inches. The skin layer 40 includes an integrally formed umbilical stalk portion 42a. The skin layer 40 will be described in greater detail below.


Still referencing FIG. 4, the fat layer 44 is made of cellular polyethylene foam having a yellow color. The cellular foam layer is not solid but textured with air bubbles. The fat layer 44 is approximately 0.625 inches thick. The anterior rectus sheath layer 46 is made of solid ethylene vinyl acetate (EVA) foam having a white color and is approximately 1 millimeter thick. The first rectus muscle layer 48 is made of solid EVA foam and is red in color and approximately 1 millimeter thick. The second rectus muscle layer 50 is made of cellular polyethylene foam having a pink color. The second rectus muscle layer 50 is cellular foam that includes air bubbles that provide a cellular texture and is approximately 0.125 inches thick. The third rectus muscle layer 52 is made of solid EVA foam having a red color and is approximately 1 millimeter thick. The posterior rectus sheath layer 54 is made of solid EVA foam that is white in color and is approximately 1 millimeter thick. The transversalis fascia layer 56 is made of cellular polyethylene foam that is white in color and approximately 0.25 inches thick. The fascia layer 56 has a cellular texture arising from the cellular polyethylene foam as opposed to the solid EVA foam layers. The peritoneum layer 58 is made of solid EVA foam that is white in color and approximately 1 millimeter thick. The inferior epigastric vein and artery layer 60 include solid or hollow elongate cylindrical structures made of silicone or Kraton polymer or other elastomer having a cross-sectional diameter of approximately 0.15 inches. The arteries are red in color and the veins are blue in color. The layers as described above provide an optical entry with a very realistic appearance to the end user.


Turning now to FIG. 6, there is shown a top planar view that is representative of the fat layer 44, the posterior rectus sheath layer 54, the transversalis fascia layer 56 and the peritoneum layer 58. These layers are approximately six inches wide and six and a half inches long. The fat layer 44, the posterior rectus sheath layer 54, the transversalis fascia layer 56 and the peritoneum layer 58 all have a circular aperture 66 that is approximately one inch in diameter. The aperture 66 is located approximately two inches from one side and is in the same place in all of these layers 44, 54, 56, 58 such that when overlaid the apertures 66 line up to provide a pathway for the umbilical stalk 42 across these layers.


Turning now to FIG. 7, there is shown a top planar view that is representative of the anterior rectus sheath layer 46, first rectus muscle layer 48, the second rectus muscle layer 50 and the third rectus muscle layer 52. These layers are approximately six inches wide and six and a half inches long. The anterior rectus sheath layer 46, first rectus muscle layer 48, the second rectus muscle layer 50 and the third rectus muscle layer 52 all have an elongate opening 68. The elongate opening 68 extends along the center line of the layers and is shown in FIG. 7 to be a rectangular cut out that is approximately one inch wide and 5.75 inches long. When the layers 46, 48, 50, 52 are overlaid, one on top of the other, all of the respective openings 68 are aligned. When the layers 46, 48, 50, 52 are overlaid with the other layers 44, 54, 56, 58, the apertures 66 are in communication or alignment with the elongate openings 68. The elongate opening 68 represents the linea alba of the abdomen.


With reference back to FIG. 4 and additional reference to FIGS. 8-10, the skin layer 40 is formed by pouring the uncured and dyed silicone or thermoplastic elastomer into a special mold 70. An exploded, top perspective view of the mold 70 is shown in FIG. 8. The mold 70 includes a base 72, a top 74, and a core 76. The base 72 of the mold 70 includes a cavity 78 for receiving the plastic material. The cavity 78 is polygonal and substantially rectangular in shape. The cavity 78 includes a first floor 79 that surrounds a well 80 having a second floor 82. The second floor 82 of the well 80 is approximately 1 inch below the first floor 79 and includes a hole for inserting the core 76 inside the well 80. The cross-section of the well 80 is elliptical in shape having a long axis of approximately 1 inch and a short axis of approximately half an inch. The cross-section of the core 76 is also elliptical in shape, complementary to the well 80. The core 76 has a long axis of approximately 0.75 inches and a short axis of approximately 0.25 inches. With the core 76 in place inside the well 80 a space of approximately ⅛ inch is formed all around the core 76 between the outer surface of the core 76 and the inner surface of the well 80 into which silicone or thermoplastic elastomer is poured to form a tubular structure of the umbilical stalk 42a having an opening 92. The core 76 is approximately one inch and a half in length and extends above the pour line when inside the well 80.


The mold cavity 78 further includes a circumferential well 84 that is formed circumferentially around the first well 80. The circumferential well 84 has a concave or curved floor 86 that is approximately ⅛ inch deeper from the first floor 79. When silicone or thermoplastic elastomer is poured, an elliptical toroidal shape with a flat top is formed in the plastic material resulting in an increased thickness of material of approximately 0.25 inch in the area of the circumferential well 84 in the final product. The circumferential well 84 has an inner perimeter 88 that coincides with the wall of the first well 80. The annular distance from the inner perimeter 88 of the circumferential well 84 to the outer perimeter or end of circumferential well 84 is approximately 0.75 inches. The base 72 of the mold 70 further includes a plurality of pegs 90 upstanding from the first floor 79 to form holes in the resulting molded material. Although the first well 80 is described to have an elliptical shape, in another variation it is circular in shape with a corresponding circular core and circular circumferential well.


The core 76 is first inserted into the well 80 and silicone or thermoplastic elastomer is poured into the base 72 of the mold 70. The silicone or thermoplastic elastomer will run into the well 80 forming a tubular structure defined by the space between the core 76 and wall of the well 80. The silicone or thermoplastic elastomer will also run into the circumferential well 84 and cover the concave floor 86 forming a substantially toroidal shape of increased thickness of approximately 0.25 inch. The circumferential portion of increased thickness 94 is visible in FIGS. 4 and 5. The silicone or thermoplastic elastomer in its liquid state will cover the first floor 79 forming a planar area having a thickness of approximately ⅛ inch. The top 74 of the mold 70 will be placed over the base 72 of the mold 70. The top 74 is configured to cover only the perimeter of the poured silicone or thermoplastic elastomer to reduce the thickness of the silicone around the perimeter.


After the silicone or thermoplastic elastomer has solidified, the top 74 of the mold is removed and the molded silicone or thermoplastic elastomer is removed from the mold 70. The core 76 is also removed from the material leaving an elliptical opening 92 through the skin layer 40. The tubular structure or umbilical stalk 42a that is integrally formed by the well 80 with the rest of the skin layer 40 defines an opening 92 and is elliptical in shape having long axis of approximately 0.75 inches and a short axis of approximately 0.25 inches with a wall thickness of approximately ⅛ inch. The tubular structure 42a is inverted, that is, it is pushed through the opening 92 such that the surface in contact with the floor 79 of the mold 70 becomes the skin layer top surface 62. This advantageously permits the floor 79 of the mold to include texturing that would impart skin-like texture to the skin layer top surface 62. Also, by inverting the tubular structure 42a, not only an umbilical stalk is formed, but also, the portion of increased thickness 94 of the skin layer 40 will advantageously create a raised surface at the skin layer top surface 62 which is clearly visible in FIGS. 4 and 5. This raised portion 94 advantageously provides extra thickness of material for drawing sutures through and maintaining them in position without pulling through the silicone or thermoplastic material. Also, a circumferential raised portion 94 that surrounds the opening 92 creates a realistic belly-button effect that can be seen in FIG. 1. A variation of the skin layer 40 without the raised circumferential portion 94 is shown in FIG. 2. Although the umbilical stalk is approximately one inch long, it may be molded to be longer, approximately 1.25 inches to approximately 2.0 inches long. The skin layer 40 is planar sheet of molded material having a top surface 62 and a bottom surface 64 defining a skin layer thickness of approximately 0.1 inches. The skin layer 40 further includes an opening 92 with a tubular extension 42 integrally formed at opening 92 and interconnected with the rest of the layer 40. Surrounding the opening 92 is a circumferential raised portion 94 of increased thickness of approximately 0.2 inches. The raised portion 94 provides a convex outer surface that transitions into the remainder of the top surface 62 of the skin layer 40.


The mold 70 is 3D printed from Vero White Plus Fullcure 835 material. The distance from the pour line to the floor 79 is approximately 0.1 inches to create a skin layer thickness of approximately 0.1 inches. Around the perimeter, the thickness beneath the top 74 of the mold 70 is reduced to approximately 0.05 inches for a resulting skin layer thickness at the perimeter having a reduced thickness of approximately 0.05 inches which facilitates connection to the frame support 14. At the circumferential well 84 location, the thickness of the resulting skin layer 40 is approximately 0.2 inches. First, the mold 70 is sprayed with mold release solution and allowed to dry. In one variation, approximately 5 grams of Dragon Skin Silicone comprising 2.5 grams of part A and 2.5 grams of part B is mixed. Alternatively, a thermoplastic elastomer such as Kraton CL2003X is used for its cost savings and its ability to be sutured. Approximately 20 microliters of fleshtone color is mixed into the silicone. The core 76 is inserted into the well 80 and the silicone mixture is poured into the mold base 72. The mixture is spread evenly up to a pour line making sure all the wells are filled. The top 74 is placed over the base 72 of the mold 70. Excess silicone mixture is cleaned away and the silicone inside the mold 70 is allowed to dry for approximately one hour under a heat lamp or for two hours without a heat lamp.


After the silicone mixture has dried, the top 74 is removed and the formed skin layer 40 is peeled and removed from the base 72. The core 76 is also removed. The integrally formed umbilical stalk 42 is inverted by passing it through a formed opening 92. Silicone adhesive is provided and delivered using a syringe to the inside of the tube of the umbilical stalk 42. One or more clamps and in one variation, three clamps, such as binder clips, are used to clamp the inverted umbilical stalk 42 closed and sealed to create a bellybutton shape having a star or Y-shaped closure as shown in FIG. 1 or 2. The bottom-most part of the umbilical stalk 42 is clamped to create a deep umbilicus as opposed to clamping closer to the skin layer bottom surface 64. The skin layer 40 is turned over and excess glue that may have seeped out of the umbilicus 42 is removed. The adhesive is allowed to dry for approximately one hour and the clamps are removed. In one variation, an umbilical shaft 42b is provided. The umbilical shaft 42b is tubular having a central lumen and made of a thin layer of white silicone that is approximately 1 mm thick. The umbilical shaft 42b is glued to the umbilical stalk 42a to extend the umbilicus deeper into the layers and create a more realistic look and feel. The umbilical shaft 42b is glued to the umbilical stalk 42a such that the lumens interconnect. The proximal end of the umbilical shaft 42b is place over the stalk 42a and glued thereto and the distal end of the umbilical shaft 42b is free. In another variation, the distal end of the umbilical shaft is glued or integrally formed with the peritoneum layer 58.


All of the layers are properly oriented in the same direction and aligned such that the apertures 66 and openings 68 are superimposed. Then, with the skin layer 40 inverted and the umbilical stalk 42a either alone or with an extended umbilical shaft 42b is passed through the circular aperture 66 of the fat layer 44 and through the elongate openings 68 of the anterior rectus sheath layer 46, the first rectus muscle layer 48, the second rectus muscle layer 50, and the third rectus muscle layer 52 and then through the circular apertures 66 of the posterior rectus sheath layer 54, the transversalis fascia layer 56 and the peritoneum layer 58 as shown in FIG. 5. In one variation, the umbilicus 42 is left meeting the peritoneum layer 58 or in another variation, the umbilicus 42 is attached with adhesive to the peritoneum layer 58 and yet in another variation, integrally molded with the peritoneum layer 58. The inferior epigastric vein and artery layer 60 is also included. This layer 60 can be formed as layer having a circular aperture 66 with embedded arteries and veins or simply comprise a pair of cylindrical silicone structures, one red and one blue, placed on one side of the midline and another pair of cylindrical silicone structures, one red and one blue in color, placed on the other side of the midline as shown in FIG. 4. The cylindrical silicone structures representing the epigastric veins and arteries are glued to at least one of the adjacent posterior rectus sheath layer 54 and the transversalis fascia layer 56. A price tag holder or other fastener can then be used to connect the layers together as shown in FIG. 5 with the umbilicus 42 shown protruding from the aperture 66 in the bottom-most peritoneum layer 58.


As can be seen in FIG. 5, the skin layer 50 and the peritoneum layer 58 is slightly larger than the other internal layers 44, 46, 48, 50, 52, 54, 56. In particular, the skin layer 50 and peritoneum layer 58 are larger by approximately 1.25 inches in length and width. Whereas the internal layers are approximately 6.5 inches long and 6 inches wide, the peritoneum layer 58 and skin layer 40 is approximately 8 inches long and 7.5 inches wide. These extra length and width portions are captured between the top and bottom frames of the support 14, pegs in one of the top or bottom frames are passed through apertures in the skin layer 40 formed by mold pegs 90. The peritoneum layer 58 may also include apertures for passing of frame pegs. The top frame and bottom frame are then heat staked together capturing the anatomical portion 12. The resulting model 10 is approximately 1.5 inches thick.


The first entry model 10 is then placed inside an opening in the top cover 22 of a laparoscopic trainer 20 and securely attached. Laparoscopic first entry procedures such as the ones discussed in the background of this specification are then practiced on the model 10 employing one or more of the trocar instruments described above creating first entry in any of the locations described above including first entry directly through the umbilicus. Another location for first entry could be within a half inch on either side of the midline. Although such first entry is not preferred, the practitioner will advantageously and quickly recognize a mistaken first approach when only the skin layer 42, the fat layer 44 and posterior rectus sheath 54 and peritoneum 58 layers are observed at the linea alba. The absence of a pink-colored first rectus muscle layer 48 should immediately alarm the practitioner during practice that penetration is at a wrong location. Another location for first entry penetration can take place at the left upper quadrant or right upper quadrant. As mentioned above, the left upper quadrant is different from the umbilicus region in that there are muscle layers. While penetrating at the upper right or left quadrants, the practitioner will observe the following layers: the skin layer 40, the fat layer 44, the anterior rectus sheath layer 46, the first rectus muscle layer 48, the second rectus muscle layer 50, the third rectus muscle layer 52, the posterior rectus sheath layer 54, the transversalis fascia layer 56 and the peritoneum layer 58.


The first entry model 10 of the present invention is particularly suited for laparoscopic procedures and may be employed with a laparoscopic trainer 20; however, the invention is not so limited and the first entry model 10 of the present invention can be used alone to practice first entry surgical procedures equally effectively.


Turning now to FIG. 11, a first entry system 100 will now be described wherein like parts are designated with like reference numerals. The first entry system 100 includes a first entry model 10 of the like described above. The first entry model 10 may include one or more of the layers described above and may or may not include openings 66, 68 and/or umbilicus 42. The first entry model 10 is connected to an organ receptacle 102. The organ receptacle 102 contains one or more live or simulated organs or tissue structures 104. The first entry system 100 may be inserted into a laparoscopic trainer 20 of the like described above. The first entry system 100 is configured to simulate insufflation of the abdominal space to provide a realistic insufflation training experience to the surgical trainee as will be described herein below.


The first entry model 10 includes at least a first simulated tissue layer 40 such as a skin layer 40 at a first end and a second simulated tissue layer 58 such as the peritoneum layer 58 at a second end. Between the first and second simulated tissue layers 40, 58, any number of additional simulated tissue layers and structures may be included as described above. The first entry model 10 includes a lower surface and an upper surface. Typically, the upper surface includes the top surface 62 of the skin layer 40 and the lower surface includes the outer-facing surface of the peritoneum layer 58.


The organ receptacle 102 includes a base 106 interconnected to one or more sidewalls 108 to define an interior 110 with an open top. The organs 104 are disposed inside the interior 110. The receptacle 102 need not have a defined base 106 and defined sidewalls 108. Instead, the base 106 may form an amorphous, bladder-like container with no distinguishable sides with the base 106 defining an interior 110 having an open top or mouth. In such a variation, the open top is sealingly connected to lower surface of the model 10 which typically is the peritoneum layer 58. Alternatively, the open top is connected to or captured between the frame elements of the support 14. In another variation, the receptacle 102 may include a radially outwardly extending flange around the open top. The flange is configured to be captured within the frame elements of the support 14 in order to be connected to the model 10. In another variation, the base 106 is rigid and substantially flat or planar suitable for supporting simulated organs 104 and connected to flexible sidewalls 108. In another variation, the receptacle 102 is at least one layer of elastomeric material having an upper surface and a lower surface defining a thickness. The layer comprises the receptacle 102. The upper surface of the layer is sealingly attached to the lower surface of the first entry model 10. It may be attached with or without adhesive. For example, without adhesive the receptacle 102 layer is capture within the frame support 14 about its perimeter and adjacent to the plurality of layers simulating the abdominal wall. Adhesive may be employed to sealingly attach to the lower surface of the model 10 such that a portion of unadhered or unattached layer is surrounded or encompassed by a portion of the layer that is attached creating an expandable separation or pocket between the model 10 and the layer of the receptacle 102. The wall/layer of the receptacle 102 may be made of transparent material.


The receptacle 102 is sealingly connected to the first entry model 10 such that the interior 110 of the receptacle 102 is sealed against the first entry model 10 leaving a central portion that is unsealed. The central portion or pocket is surrounded by the sealed portion. The receptacle 102 is a pocket. In one variation, the organ receptacle 102 is connected to the first entry model 10 such that the open top is sealed closed against the lowest simulated tissue layer 58. In another variation, the organ receptacle 102 is connected to the support or frame 14 of the first entry model 10. The organ receptacle 102 is connected such that the interior 110 is sealed from the exterior by at least a portion of the first entry model 10 and, in one variation, by the second simulated tissue layer 58 such that the second simulated tissue layer 58 closes or covers at least a portion of the open top of the receptacle 102.


In one variation, the receptacle 102 is completely enclosed and does not have an open top. In such a variation, at least one side surface of the receptacle 102 is adjacent to the first entry model 10 or the at least one side surface of the receptacle 102 itself comprises one of the layers of the first entry model 10 such as the second simulated peritoneum tissue layer 58. In this variation, the receptacle 102 may also include a flange element about its perimeter and configured to be capture within the frame elements of the support 14. In another variation, other fastening means for connecting the receptacle 102 to the model 102 are employed including but not limited to magnets, hook-and-loop type fastener, snaps, flanges, screws, pegs, and friction fit configurations.


The receptacle 102 can be made of any suitable material such as an elastic polymer, elastomer, polymer, silicone, Kraton, latex, rubber, gel, transparent gel, transparent silicone and the like. The receptacle 102 is elastic and can expand when inflated and contract is size when deflated. As such, the receptacle 102 is a balloon-like object. Simulated organs 104 that are placed inside the receptacle 102 can be made of any material such as silicone, Kraton, elastomer, polymer, plastic, rubber, hydrogel, mesh material and made include fillings of liquid, water, conductive material, filament and the like. In one variation, the simulated organs 104 include a two dimensional image attached to a three dimensional shape to provide a realistic appearance of the interior of the abdomen. In another variation, the simulated organs 104 comprise only a two dimensional image attached to the inner surface of the receptacle 102 that is smooth. The two dimensional image may be a picture, photograph, drawing of the interior of a patient including organs, tissues and colors. In yet another variation, the simulated organs 104 comprise a two dimensional image attached to the inner surface of the receptacle 102 that is contoured. It is understood that the simulated organs 104 are not limited to the depiction or simulation of organs but may include tissues in general, partial organs and/or colorations that are not readily identifiable as organs or tissue but depict the color of blood, fat, muscle, and/or tumors and the like.


Furthermore, upon sealing the receptacle 102 to the first entry model 10 or prior to attachment of a closed receptacle 102, a negative pressure is created within the interior 110 of the receptacle 102 relative to the exterior. A valve 112 may be provided across the receptacle 102 to create a vacuum inside the receptacle 102. The valve 112 is configured to be connectable to a vacuum source, for example, a mechanical, electro-mechanical and/or hand pump and the like. The receptacle 102 is configured such that with the application of negative pressure, the volume of the interior 110 is reduced as shown in FIG. 11. The reduction in volume of the interior 110 is accomplished by making at least the sidewalls of receptacle 102 from an elastic or flexible plastic material such that the sides of the receptacle 102 are drawn up closer to the first entry model 10, and, in particular, closer to the second simulated tissue layer 58 when a vacuum is applied. Of course, the entire receptacle 102 can be made of an elastic, flexible plastic, or balloon-like material such that the entirety of the receptacle 102 is permitted to be drawn closer to the first entry model 10 in an undeformed condition or upon application of negative pressure. Alternatively, only the sidewalls 108 are retracted under negative pressure with the base 106 being substantially rigid relative to the sidewalls 108. In such a variation, the sidewalls 108 are configured to contract resulting in the base 106 being pulled closer to the first entry model 10 under a vacuum. In any variation, as a result of the application of negative pressure, the simulated organs 104 that are located inside the receptacle 102 will also be drawn closer to the first entry model 10 along with the base 106 as shown in FIG. 11. Hence, the distance between the second simulated tissue layer 58 and the base 106 is reduced.


Since the first entry model 10 is located above the organ receptacle 102, penetration of the first simulated tissue layer 40 by a trocar or other instrument will be followed by penetration of the second simulated tissue layer 58 with continued advancement of the trocar or other instrument. Such penetration will include penetration of any additional intervening layers such as any one or more of the fat layer 44, anterior rectus sheath 46, second rectus muscle layer 48, second rectus muscle layer 50, third rectus muscle layer 52, posterior rectus sheath layer 54, transversalis fascia layer 56, and inferior epigastric vein and artery layer 60 that may be part of the model 10. Upon penetration of the second simulated tissue layer 58 or lowest layer, the vacuum will be broken and the pressure of the interior 110 will equalize with the exterior pressure either through the puncture itself or through an aperture in the distal tip of the trocar or other instrument. The FIOS® trocar manufactured by Applied Medical Resources, Inc. in California advantageously includes a distally located vent hole in the penetrating, transparent tip of the trocar which provides fluid communication between the interior 110 of the receptacle 102 and the exterior or other fluid source. In one variation, the trocar or other instrument includes a stopcock valve at the proximal end of the trocar which the user would open in order to equalize pressure with the interior 110. When the seal of the receptacle 102 is broken by the penetrating trocar or other instrument, or otherwise the pressure is equalized, such as by the penetration of the receptacle 102, the volume of the interior 110 will increase. As the volume of the interior 110 increases, the flexible or elastic sidewalls 102 and/or base 106 will unfurl and the distance between the base 106 and the first entry model 10 will increase. A camera such as a laparoscope disposed inside the trocar or other instrument, will provide to the user a live visualization of the penetration via a video feed connected to a display monitor 34. The penetration of the seal and/or equalization of the pressure will provide a dynamic visual to the user of the organs 104 appearing to drop relative to the first entry model 10 to an insufflated condition of the receptacle 102 shown in FIG. 12. Hence, the present invention provides a simulation of insufflation without the use of insufflation gas.


If the receptacle 102 includes an open top or mouth connected to the model 10 or if the receptacle 102 is an enclosed container, a negative pressure may be generated inside the interior 110 across a valve 112 just prior to demonstration or at the factory before shipment. The user may attach a pump to remove air and create the first configuration. In one variation, the valve 112 is a check valve permitting flow in one direction. In another variation, the valve 112 is a one-way pressure valve that opens to release air from the interior of the receptacle 102 when the receptacle 102 is subjected to sufficient compression pressure to open the valve. When the pressure on the receptacle is released, the valve 112 closes. Hence, prior to use, the user can squeeze the receptacle to release air from the interior of the receptacle 102 across the one-way pressure valve which closes and seals the receptacle 102 after the squeezing on the receptacle 102 is stopped. With the excess air removed from the receptacle 102 the interior volume of the receptacle 102 is reduced from a first volume to a second volume. The sidewall of the receptacle 102 is scrunched around the simulated organs 104 inside the receptacle 102. When the receptacle 102 is punctured, the volume of air in the receptacle returns to the first volume which is larger than the second volume. As the volume of the interior increases, typically under the influence of gravity. The weight of the receptacle 102 and/or simulated organs 104 will be pulled by gravity downwardly away from the model 10. In such a configuration, the receptacle 102 is suspended or hanging from the model 10 with space beneath the receptacle 102 such as inside the laparoscopic trainer 20. The expansion in volume of the interior of the receptacle 102 is a result of stretching of the sidewall of the receptacle 102 or by an unfoldment, unfurling, unwrinkling of the receptacle 102 sidewall in one or more locations. Because the simulated organs 104 are heavier than the receptacle 104, the simulated organs 104 will drop under the influence of gravity from a prior position being drawn up closer to the model 10. The puncture permits air to enter the interior 110 of the receptacle 102 and the receptacle 102 expands downwardly assuming a natural configuration. In essence, air is removed or evacuated from the receptacle 102, for example via a one way valve or other opening, creating a situation wherein the contents of the receptacle 102 are held in place close to the model 10 or lowermost layer of simulated tissue 58 until the user creates an air passageway into the interior 110 of the receptacle 102 at which point the interior opens due to the force of gravity acting on the receptacle and/or simulated organs 104. The air passageway into the interior 110 of the receptacle 102 is created by the insertion of a trocar across the model 10 and into the interior of the receptacle 102 in a simulated medical procedure. The receptacle 102 may include a zipper for accessing the interior 110 for the customized selection and placement of simulated organs 104 inside the receptacle 102 by the user. The simulated organs 104 may be pre-loaded into the receptacle 102 or loaded by the user just prior to use. Also, the pressure differential inside the receptacle 102 may be created by the user on site using a various pumps or, alternatively, the receptacle 102 is sealed and shipped in a ready-to-use state to the user.


In another variation of the first entry system 100, no vacuum or pressure differential across the receptacle 102 is employed. Instead, actual insufflation fluid is delivered via the penetrating trocar or other instrument at the penetration site, or other location, into the interior 110 of the receptacle 102. The penetrating trocar is connected at the proximal to a source of fluid such as air under pressure to be delivered out through a vent-hole located in the distal end of the trocar after penetration has occurred. The source of fluid may be, for example, a gas tank, a balloon filled with air, an electrical or mechanical pump such as a hand pump. In such a variation, the receptacle 102 is made of balloon-like material. The receptacle 102 is configured such that the sidewalls 108 and/or base 106 expand under the insufflation pressure from a first small-volume condition to an enlarged volume insufflated condition. In such a variation, the volume of the interior 110 of the receptacle 102 is increased. This increase in volume can be created by expansion of the receptacle walls such as by the stretching of the elastic material as in a balloon-like configuration or by an unfoldment, unfurling, unwrinkling of the receptacle 102 sidewall in one or more locations. The change in volume provides the visual of a simulated insufflation to the trainee observing the procedure via the video monitor 34.


In yet another variation of the first entry system 100, a valve 112 is provided across the receptacle 102 such that pressure is equalized or insufflation fluid is provided via the valve instead of via the trocar or other instrument. The valve can be opened/closed by the user or other operator to increase the volume of the receptacle 102 to simulate insufflation.


In another variation, the distance between the base 106 and the first entry model 10 is increased by mechanical means such as hydraulics, levers or balloons upon penetration of the first entry model 10 and activated automatically upon penetration of the second simulated tissue layer 58 or activated manually by the user or teacher as desired. In one variation, the receptacle 102 does not contain the simulated organs 104 inside the interior 110. Instead, the simulated organs 104 are placed on the exterior surface of the receptacle 102 next to the model 10 such that the simulated organs 104 are located between the receptacle 102 and the model 10. In such a variation, the receptacle 102 such as a balloon includes an expanded configuration such that the outer surface of the receptacle 102 pushes and locates the simulated organs 104 into juxtaposition to the lower surface of the model 10. When at least one information is received that the lower surface of the model 10 such as the peritoneum layer 58 has been surgically penetrated by the trocar or other surgical instrument in the performance of a surgical procedure, the at least one information is communicated to a processor that instructs a the mechanical or electro-mechanical deflation of the receptacle 102 to occur. The deflating receptacle 102 moves the simulated organs 104 that are located on the outer surface of the receptacle 102 downwardly such that the visual that is received from the vantage point of the penetrating instrument, such as an optical obturator/trocar, is receding simulated organs or simulated organs that moving distally away from the penetrating instrument or otherwise away from the model 10. In such a variation, the simulated organs 104 may be connected by adhesive to the outer surface of the receptacle 102. In another variation of the simulated organs 104 residing exterior to the receptacle 102, the simulated organs 104 include a two-dimensional image with or without a three-dimensional underlay. For example, an image of simulated organs is provided by an image attached to the exterior of the receptacle 102 such that upon deflation of the receptacle the image moves distally away from the model 10. In another variation, the image is attached to a rigid flat or contoured surface that is attached to the exterior surface of the receptacle 102.


In another variation, the negative pressure of the interior 110 relative to the exterior may be restored either through a valve 112 across the receptacle 102 or through the inserted trocar in order to simulate a loss of pneumoperitoneum during the course of a procedure. The restoration of negative pressure may be activated by a teacher while the student is practicing surgical procedures to train the student on how to handle the loss of pressure during a surgical procedure.


In another variation of the first entry system 100, the first entry system 100 includes a penetrable tissue structure comprising a plurality of layers that simulates an abdominal wall such as the first entry model 10 or anatomical portion 12 described above. The system 100 includes a receptacle connected to the penetrable tissue structure. The receptacle 102 includes a wall that is configured as at least one layer of elastomeric material. The at least one layer comprises the receptacle. The receptacle layer has an upper surface and a lower surface. The receptacle layer is attached to the penetrable tissue structure such that the upper surface of the receptacle layer is in juxtaposition adjacent to the penetrable tissue structure. The upper surface of the receptacle layer is sealingly attached to the lower surface of the penetrable tissue structure. It may be attached with or without adhesive. For example, without adhesive the receptacle 102 layer is captured along its perimeter within the frame support 14 between the frame elements described above. As such the perimeter and adjacent to the plurality of layers simulating the abdominal wall. Adhesive may be employed to sealingly attach the receptacle layer to the lower surface of the penetrable tissue structure such that a portion of unadhered or unattached receptacle layer is surrounded or encompassed by a portion of the receptacle layer that is attached creating an expandable separation or at least one pocket between penetrable tissue structure and the receptacle layer. The receptacle layer may be made of transparent material such as clear gel, transparent silicone, or any transparent elastomer including rubber, polymer and the like. Adhesive may be employed to sealingly connect the receptacle layer to the penetrable tissue structure in the similar manner to create at least one pocket. The receptacle layer is sealed against the penetrable tissue structure leaving a central portion that is unsealed. The unsealed central portion of the receptacle layer is surrounded by the portion of the receptacle layer that is sealed to the penetrable tissue structure. The unseal central portion forms a pocket that is seal so as to prevent the passage of fluid including gas into and out of the central portion. As such, deliberate introduction of fluid under pressure into the central portion will expand and inflate the elastomeric wall which will provide a visual to the user that simulates abdominal insufflation. The receptacle 102 is a pocket. The system includes at least one tissue simulation of the like described above including but not limited to two-dimensional constructs such as images or three-dimensional structures that simulate tissue, organs with textures, contours and colors. The tissue simulation is located inside the receptacle pocket may include simulated vasculature, fat, organs, intestines etc. In another variation, the tissue simulation is integrally formed with the receptacle layer. For example, the receptacle layer is formed from a plurality of layers with each layer having the desired size and shape and transparency to simulate tissues and organs encountered in the abdomen of a human being. The tissue simulation may or may not be attached to the receptacle layer/wall. In one variation, the tissue simulation is attached to the lower surface of the receptacle layer. In such a variation, the attached tissue simulation is visible through a transparent receptacle layer. The receptacle layer has a first configuration and a second configuration. While in the first configuration of the receptacle, the tissue simulation inside the receptacle is located proximally to the simulated tissue structure relative to the second configuration wherein while in the second configuration at least part of the tissue simulation inside the receptacle is located distally from simulated tissue structure relative to the first configuration. Fluid is transferable into the receptacle pocket to convert the receptacle from a first configuration to a second configuration. This can be accomplished in several ways. One way is removing air from the pocket creating a vacuum or partial vacuum such that the receptacle pocket layer is withdrawn closer to the penetrable simulated tissue structure. When the penetrable simulated tissue structure is penetrated with a distal tip of a surgical instrument such as the distal tip of an optical obturator, the vacuum is release and pressure is equalized causing the receptacle layer/wall to sag or move away from the penetrable simulated tissue structure especially under weight of the tissue simulations located in the receptacle. In another variation, the second configuration is achieved by delivering fluid such as air under pressure directly through the tip of the penetrating surgical device such as an optical obturator having a vent hole in the tip at the distal end and a fluid port at the proximal end for connecting to a source of fluid under pressure. The fluid port includes a luer-lock for turning on and off the insufflation gas. Fluid may be delivered via a mechanical hand pump connected to the fluid port of the obturator. Fluid may also be delivered from an inflated bladder such as a balloon or other canister. The fluid source is connected via tubing to the fluid port on the obturator. The fluid port is opened and fluid from a source is delivered into the obturator and out the vent hole in the tip and with the tip localized inside the pocket fluid is delivered into the pocket. Since the receptacle layer is elastic, it will expand with the delivery of gas moving the simulation tissue away from the penetrable simulated tissue structure and as a result providing a visual from the viewpoint of the obturator that simulates insufflation of a real abdominal cavity. In one variation, the first entry system 100 described above is configured as a hand-held model for sales demonstration purposes as well as for training first entry surgical techniques. The tubing that connects the fluid source to the fluid port may serve as a hand piece or handle for holding and carrying the system. The hand-held model is also sized and configured such as with a handle to be easily held in one hand and easily turned over. Therefore, the system is ergonomically designed and is approximately 3-6 inches in diameter. The penetrable simulated tissue structure and receptacle are contained inside a support with frame elements exposing the proximal skin side of the abdominal wall as well as the distal receptacle pocket layer that is transparent. As mentioned previously, the tissue simulation may include images of simulated or actual vasculature and the like disposed on the pocket. The salesperson or practitioner can employ an obturator that is connected to a fluid source and begin penetrating the system from the skin-side or top side of the model. With continued penetration into the plurality of layers, the user may then turn the fluid port on to allow fluid to flow into the obturator. If the vent hole in the tip of the obturator is covered with the layers of the penetrable tissue structure as it is making its way through the layers, fluid will not flow and the receptacle layer will not expand. Only when the final layer, such as the peritoneum layer, in the penetrable tissue structure is penetrated in the location of the pocket will the receptacle layer will expand as fluid from the fluid source is now free to flow into the pocket without being obstructed by tissue layers. The user will, thereby, be able to demonstrate and teach how much penetration with the obturator is required to effect insufflation. The observer or student will quickly see the transparent receptacle layer expand providing a visual indication that insufflation is taking place. The point of penetration can also be noted when the hand-held model is easily turned upside-down to see if any of the tissue simulation has been contacted with the distal tip when entering the pocket. The system further includes plugs such as dowel pins sized to fit into the openings created by any previous penetrations so that the system is reusable and subsequent multiple penetrations and demonstrations are possible. Also, one of the layers, preferably one simulating the adipose fat layer, inside the penetrable simulated tissue structure is made of self-sealing foam to help plug the previous penetrations making the structure reusable. In one variation, the tubing connecting the fluid source to the obturator includes a fluid flow regulator to adjust the amount and flow rate of fluid entering the obturator. The flow-regulator may include a clip-type flow restrictor having one or more settings such as for low, medium and high flow rates.


It is understood that various modifications may be made to the embodiments of the first entry model 10 and/or first entry system 100 disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims
  • 1. A surgical training device for practicing laparoscopic first entry surgical procedures, the surgical training device comprising: a simulated abdominal wall configured to be penetrable with an optical trocar;a receptacle containing one or more simulated organs; the one or more simulated organs being observable via a scope placed inside the optical trocar;wherein the receptacle is made of at least one layer of elastomeric material having an upper surface and a lower surface defining a thickness therebetween; the receptacle being configured to retain a negative pressure inside the receptacle such that the one or more simulated organs are located proximate to the simulated abdominal wall,wherein the surgical training device is configured such that penetration of the one or more of the simulated abdominal wall and receptacle releases the negative pressure, resulting in at least part of the one or more simulated organs to translate distally away from the simulated abdominal wall, andwherein the upper surface of the at least one layer of elastomeric material is attached at its perimeter to a lower surface of the simulated abdominal wall leaving an unattached central portion; the unattached central portion being surrounded by a portion of the at least one layer of elastomeric material that is attached to the simulated abdominal wall, forming an expandable separation or a pocket between the simulated abdominal wall and the at least one layer of elastomeric material.
  • 2. The surgical training device of claim 1 wherein the receptacle is attached to the simulated abdominal wall such that the upper surface of the at least one layer of elastomeric material is located in juxtaposition adjacent to the simulated abdominal wall.
  • 3. The surgical training device of claim 1 wherein the at least one layer of elastomeric material is sealed against the simulated abdominal wall at its perimeter.
  • 4. The surgical training device of claim 1 wherein the one or more simulated organs are located within the expandable separation or pocket.
  • 5. The surgical training device of claim 1 wherein the one or more simulated organs are formed integrally with the at least one layer of elastomeric material; the at least one layer of elastomeric material being formed from a plurality of layers; wherein each of the plurality of layers having a desired size, shape and transparency to simulate tissues and organs encountered within abdomen of a human being.
  • 6. The surgical training device of claim 1 wherein the receptacle is drawn toward the simulated abdominal wall when the pressure inside the receptacle is negative, whereas the receptacle is stretched away from the simulated abdominal wall once the negative pressure is released.
  • 7. The surgical training device of claim 1 wherein the simulated abdominal wall comprises a plurality of substantially planar layers.
  • 8. The surgical training device of claim 1 wherein the surgical training device is further configured to restore the negative pressure inside the receptacle to simulate a loss of pneumoperitoneum during a surgical procedure; the negative pressure being restored via a valve located across the receptacle or through the optical trocar when inserted into the simulated abdominal wall.
  • 9. A surgical training device, comprising: a penetrable simulated tissue structure having an upper surface and a lower surface and comprising at least one layer that simulates a tissue layer;a receptacle connected to the penetrable simulated tissue structure; the receptacle being made of at least one layer of elastomeric material forming a receptacle layer;one or more simulated organs disposed between the receptacle layer and the penetrable simulated tissue structure; the one or more simulated organs being configured to be located proximate to the penetrable simulated tissue structure;wherein the surgical training device is configured such that penetration of one or more of the penetrable simulated tissue structure and receptacle results in at least part of the one or more simulated organs to translate distally away from the penetrable simulated tissue structure to simulate surgical insufflation of an abdominal cavity, andwherein the receptacle layer is attached at its perimeter to the lower surface of the penetrable simulated tissue structure leaving an unattached central portion of the receptacle layer; the unattached central portion being surrounded by a portion of the receptacle layer that is attached to the penetrable simulated tissue structure, forming an expandable separation or a pocket between the penetrable simulated tissue structure and the receptacle layer.
  • 10. The surgical training device of claim 9 wherein the receptacle layer has an upper surface and a lower surface defining a thickness therebetween.
  • 11. The surgical training device of claim 9 wherein the receptacle layer is attached to the penetrable simulated tissue structure such that an upper surface of the receptacle layer is located in juxtaposition adjacent to the penetrable simulated tissue structure.
  • 12. The surgical training device of claim 9 wherein the penetrable simulated tissue structure is configured to simulate an abdominal wall.
  • 13. The surgical training device of claim 12 wherein the receptacle layer is sealed against the simulated abdominal wall at its perimeter.
  • 14. The surgical training device of claim 9 wherein the one or more simulated organs are located within the expandable separation or pocket.
  • 15. The surgical training device of claim 9 wherein the one or more simulated organs are formed integrally with the receptacle layer.
  • 16. The surgical training device of claim 9 wherein the receptacle layer is formed from a plurality of layers; each of the plurality of layers having a desired size, shape and transparency to simulate tissues and organs encountered within the abdomen of a human body.
  • 17. The surgical training device of claim 9 wherein the receptacle layer is configured to retain a negative pressure inside the expandable separation or pocket.
  • 18. The surgical training device of claim 17 wherein penetration of the expandable separation or pocket releases the negative pressure.
  • 19. The surgical training device of claim 9 wherein transfer of fluid into the expandable separation or pocket results in increasing a volume of an interior of said expandable separation or pocket.
  • 20. The surgical training device of claim 19 wherein the at least one layer of elastomeric material comprises a valve for fluidic communication between the interior and exterior of the expandable separation or pocket.
  • 21. The surgical training device of claim 9 wherein the expandable separation or pocket is expandable by mechanical or electro-mechanical inflation of the receptacle layer.
  • 22. The surgical training device of claim 21 wherein the mechanical or electro-mechanical inflation of the receptacle layer is reached by mechanical driving means.
  • 23. The surgical training device of claim 22 wherein the mechanical driving means comprises hydraulics, levers or balloons.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/657,925 entitled “Advanced first entry model for surgical simulation” filed on Mar. 13, 2015; this application claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/952,289 entitled “Advanced first entry model for surgical simulation” filed on Mar. 13, 2014; this application also claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/971,714 entitled “First entry model” filed on Mar. 28, 2014; and this application is a continuation-in-part of U.S. patent application Ser. No. 14/340,234 entitled “First entry model” filed on Jul. 24, 2014 which claims benefit and priority to U.S. Provisional Patent Application Ser. No. 61/857,982 entitled “First entry model” filed on Jul. 24, 2013, all of which are incorporated herein by reference in their entireties.

US Referenced Citations (494)
Number Name Date Kind
184573 Becker Nov 1876 A
2127774 Jacobson Aug 1938 A
2284888 Arnell, Jr. Jun 1942 A
2324702 Hoffman et al. Jul 1943 A
2345489 Lord Mar 1944 A
2495568 Coel Jan 1950 A
3766666 Stroop Oct 1973 A
3775865 Rowan Dec 1973 A
3789518 Chase Feb 1974 A
3921311 Beasley et al. Nov 1975 A
3991490 Markman Nov 1976 A
4001951 Fasse Jan 1977 A
4001952 Kleppinger Jan 1977 A
4321047 Landis Mar 1982 A
4323350 Bowden, Jr. Apr 1982 A
4332569 Burbank Jun 1982 A
4371345 Palmer et al. Feb 1983 A
4386917 Forrest Jun 1983 A
4459113 Boscaro Gatti et al. Jul 1984 A
4481001 Graham et al. Nov 1984 A
4596528 Lewis et al. Jun 1986 A
4726772 Amplatz Feb 1988 A
4737109 Abramson Apr 1988 A
4789340 Zikria Dec 1988 A
4832978 Lesser May 1989 A
4867686 Goldstein Sep 1989 A
4907973 Hon Mar 1990 A
4938696 Foster et al. Jul 1990 A
4940412 Blumenthal Jul 1990 A
5061187 Jerath Oct 1991 A
5083962 Pracas Jan 1992 A
5104328 Lounsbury Apr 1992 A
5149270 McKeown Sep 1992 A
5180308 Garito et al. Jan 1993 A
5230630 Burgett Jul 1993 A
5273435 Jacobson Dec 1993 A
5295694 Levin Mar 1994 A
5310348 Miller May 1994 A
5318448 Garito et al. Jun 1994 A
5320537 Watson Jun 1994 A
5358408 Medina Oct 1994 A
5368487 Medina Nov 1994 A
5380207 Siepser Jan 1995 A
5403191 Tuason Apr 1995 A
5425644 Szinicz Jun 1995 A
5425731 Daniel et al. Jun 1995 A
5472345 Eggert Dec 1995 A
5518406 Waters May 1996 A
5518407 Greenfield et al. May 1996 A
5520633 Costin May 1996 A
5541304 Thompson Jul 1996 A
5620326 Younker Apr 1997 A
5720742 Zacharias Feb 1998 A
5722836 Younker Mar 1998 A
5727948 Jordan Mar 1998 A
5743730 Clester et al. Apr 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5775916 Cooper et al. Jul 1998 A
5785531 Leung Jul 1998 A
5800178 Gillio Sep 1998 A
5803746 Barrie et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5810880 Jensen et al. Sep 1998 A
5814038 Jensen et al. Sep 1998 A
5850033 Mirzeabasov et al. Dec 1998 A
5855583 Wang et al. Jan 1999 A
5873732 Hasson Feb 1999 A
5873863 Komlosi Feb 1999 A
5908302 Goldfarb Jun 1999 A
5947743 Hasson Sep 1999 A
5951301 Younker Sep 1999 A
6080181 Jensen et al. Jun 2000 A
6083008 Yamada et al. Jul 2000 A
6113395 Hon Sep 2000 A
6234804 Yong May 2001 B1
6336812 Cooper et al. Jan 2002 B1
6398557 Hoballah Jun 2002 B1
6413264 Jensen et al. Jul 2002 B1
6474993 Grund et al. Nov 2002 B1
6485308 Goldstein Nov 2002 B1
6488507 Stoloff et al. Dec 2002 B1
6497902 Ma Dec 2002 B1
6511325 Lalka et al. Jan 2003 B1
6517354 Levy Feb 2003 B1
6568941 Goldstein May 2003 B1
6589057 Keenan et al. Jul 2003 B1
6620174 Jensen et al. Sep 2003 B2
6654000 Rosenberg Nov 2003 B2
6659776 Aumann et al. Dec 2003 B1
6773263 Nicholls et al. Aug 2004 B2
6780016 Toly Aug 2004 B1
6817973 Merril et al. Nov 2004 B2
6820025 Bachmann et al. Nov 2004 B2
6854976 Suhr Feb 2005 B1
6857878 Chosack et al. Feb 2005 B1
6863536 Fisher et al. Mar 2005 B1
6866514 Von Roeschlaub et al. Mar 2005 B2
6887082 Shun May 2005 B2
6929481 Alexander et al. Aug 2005 B1
6939138 Chosack et al. Sep 2005 B2
6950025 Nguyen Sep 2005 B1
6960617 Omidian et al. Nov 2005 B2
6997719 Wellman et al. Feb 2006 B2
7008232 Brassel Mar 2006 B2
7018327 Conti Mar 2006 B1
7025064 Wang et al. Apr 2006 B2
7056123 Gregorio et al. Jun 2006 B2
7080984 Cohen Jul 2006 B1
7118582 Wang et al. Oct 2006 B1
7255565 Keegan Aug 2007 B2
7269532 David et al. Sep 2007 B2
7272766 Sakezles Sep 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7364582 Lee Apr 2008 B2
7404716 Gregorio et al. Jul 2008 B2
7419376 Sarvazyan et al. Sep 2008 B2
7427199 Sakezles Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7465168 Allen et al. Dec 2008 B2
7467075 Humphries et al. Dec 2008 B2
7544062 Hauschild et al. Jun 2009 B1
7549866 Cohen et al. Jun 2009 B2
7553159 Arnal et al. Jun 2009 B1
7575434 Palakodeti Aug 2009 B2
7594815 Toly Sep 2009 B2
7621749 Munday Nov 2009 B2
7646901 Murphy et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7648513 Green et al. Jan 2010 B2
7651332 Dupuis et al. Jan 2010 B2
7677897 Sakezles Mar 2010 B2
7775916 Mahoney Aug 2010 B1
7780451 Willobee et al. Aug 2010 B2
7802990 Korndorffer et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806696 Alexander et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7833018 Alexander et al. Nov 2010 B2
7837473 Koh Nov 2010 B2
7850454 Toly Dec 2010 B2
7850456 Chosack et al. Dec 2010 B2
7854612 Frassica et al. Dec 2010 B2
7857626 Toly Dec 2010 B2
7866983 Hemphill et al. Jan 2011 B2
7931470 Alexander et al. Apr 2011 B2
7931471 Senagore et al. Apr 2011 B2
7988992 Omidian et al. Aug 2011 B2
7993140 Sakezles Aug 2011 B2
7997903 Hasson et al. Aug 2011 B2
8007281 Toly Aug 2011 B2
8007282 Gregorio et al. Aug 2011 B2
8016818 Ellis et al. Sep 2011 B2
8017107 Thomas et al. Sep 2011 B2
8021162 Sui Sep 2011 B2
8048088 Green et al. Nov 2011 B2
8083691 Goldenberg et al. Dec 2011 B2
8116847 Gattani et al. Feb 2012 B2
8137110 Sakezles Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8197464 Krever et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8221129 Parry et al. Jul 2012 B2
8297982 Park et al. Oct 2012 B2
8308817 Egilsson et al. Nov 2012 B2
8323028 Matanhelia Dec 2012 B2
8323029 Toly Dec 2012 B2
8328560 Niblock et al. Dec 2012 B2
8342851 Speeg et al. Jan 2013 B1
8403674 Feygin et al. Mar 2013 B2
8403675 Stoianovici et al. Mar 2013 B2
8403676 Frassica et al. Mar 2013 B2
8408920 Speller Apr 2013 B2
8425234 Sakezles Apr 2013 B2
8439687 Morriss et al. May 2013 B1
8442621 Gorek et al. May 2013 B2
8454368 Ault et al. Jun 2013 B2
8459094 Yanni Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8460002 Wang et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8469715 Ambrozio Jun 2013 B2
8469716 Fedotov et al. Jun 2013 B2
8480407 Campbell et al. Jul 2013 B2
8480408 Ishii et al. Jul 2013 B2
8491309 Parry et al. Jul 2013 B2
8500753 Green et al. Aug 2013 B2
8512044 Sakezles Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8521252 Diez Aug 2013 B2
8535062 Nguyen Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8556635 Toly Oct 2013 B2
8608483 Trotta et al. Dec 2013 B2
8613621 Henderickson et al. Dec 2013 B2
8636520 Iwasaki et al. Jan 2014 B2
D699297 Bahsooun et al. Feb 2014 S
8641423 Gumkowski Feb 2014 B2
8647125 Johns et al. Feb 2014 B2
8678831 Trotta et al. Mar 2014 B2
8679279 Thompson et al. Mar 2014 B2
8696363 Gray et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8708707 Hendrickson et al. Apr 2014 B2
8764449 Rios et al. Jul 2014 B2
8764452 Pravong et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8801437 Mousques Aug 2014 B2
8801438 Sakezles Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808004 Misawa et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814573 Nguyen Aug 2014 B2
8827988 Belson et al. Sep 2014 B2
8840628 Green et al. Sep 2014 B2
8870576 Millon et al. Oct 2014 B2
8888498 Bisaillon et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8911238 Forsythe Dec 2014 B2
8915742 Hendrickson et al. Dec 2014 B2
8945095 Blumenkranz et al. Feb 2015 B2
8961190 Hart et al. Feb 2015 B2
8966954 Ni et al. Mar 2015 B2
8968003 Hendrickson et al. Mar 2015 B2
9008989 Wilson et al. Apr 2015 B2
9017080 Placik Apr 2015 B1
9026247 White May 2015 B2
9050201 Egilsson et al. Jun 2015 B2
9056126 Hersel et al. Jun 2015 B2
9070306 Rappel et al. Jun 2015 B2
9087458 Shim et al. Jul 2015 B2
9096744 Wan et al. Aug 2015 B2
9117377 Shim et al. Aug 2015 B2
9119572 Gorek et al. Sep 2015 B2
9123261 Lowe Sep 2015 B2
9129054 Nawana et al. Sep 2015 B2
9196176 Hager et al. Nov 2015 B2
9226799 Lightcap et al. Jan 2016 B2
9257055 Endo et al. Feb 2016 B2
9265587 Vancamberg et al. Feb 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9351714 Ross et al. May 2016 B2
9336694 Shim et al. Jun 2016 B2
9358682 Ruiz Morales Jun 2016 B2
9364224 Nicholas et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370361 Viola et al. Jun 2016 B2
9373270 Miyazaki Jun 2016 B2
9387276 Sun et al. Jul 2016 B2
9427496 Sun et al. Aug 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439733 Ha et al. Sep 2016 B2
9449532 Black et al. Sep 2016 B2
9468438 Baber et al. Oct 2016 B2
20010019818 Yong Sep 2001 A1
20020168619 Provenza Nov 2002 A1
20030031993 Pugh Feb 2003 A1
20030091967 Chosack et al. May 2003 A1
20030176770 Merril et al. Sep 2003 A1
20040005423 Dalton et al. Jan 2004 A1
20040101814 Morris May 2004 A1
20040126746 Toly Jul 2004 A1
20040248072 Gray et al. Dec 2004 A1
20050008997 Herman Jan 2005 A1
20050026125 Toly Feb 2005 A1
20050064378 Toly Mar 2005 A1
20050084833 Lacey et al. Apr 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050142525 Cotin et al. Jun 2005 A1
20050192595 Green et al. Sep 2005 A1
20050196739 Moriyama Sep 2005 A1
20050196740 Moriyana Sep 2005 A1
20050214727 Stoianovici Sep 2005 A1
20060046235 Alexander et al. Mar 2006 A1
20060232664 Toly Oct 2006 A1
20060252019 Burkitt et al. Nov 2006 A1
20060275741 Chewning et al. Dec 2006 A1
20070074584 Talarico et al. Apr 2007 A1
20070077544 Lemperle et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070135803 Belson Jun 2007 A1
20070148626 Ikeda Jun 2007 A1
20070166682 Yarin et al. Jul 2007 A1
20070197895 Nycz et al. Aug 2007 A1
20070225734 Bell et al. Sep 2007 A1
20070238081 Koh Oct 2007 A1
20070255267 Diederich Nov 2007 A1
20070275359 Rotnes et al. Nov 2007 A1
20080032272 Palakodeti Feb 2008 A1
20080032273 Macnamara et al. Feb 2008 A1
20080052034 David et al. Feb 2008 A1
20080058851 Edelstein Mar 2008 A1
20080064017 Grundmeyer, III Mar 2008 A1
20080076101 Hyde et al. Mar 2008 A1
20080097501 Blier Apr 2008 A1
20080108869 Sanders et al. May 2008 A1
20080187895 Sakezles Aug 2008 A1
20080188948 Flatt Aug 2008 A1
20080299529 Schaller Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090068627 Toly Mar 2009 A1
20090142739 Wang et al. Jun 2009 A1
20090142741 Ault et al. Jun 2009 A1
20090143642 Takahashi et al. Jun 2009 A1
20090176196 Niblock et al. Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090192444 Albrecht Jul 2009 A1
20090246747 Buckman, Jr. Oct 2009 A1
20090298034 Parry et al. Dec 2009 A1
20090314550 Layton Dec 2009 A1
20100047752 Chan et al. Feb 2010 A1
20100094312 Ruiz Morales et al. Apr 2010 A1
20100099067 Agro Apr 2010 A1
20100167248 Ryan Jul 2010 A1
20100167249 Ryan Jul 2010 A1
20100167250 Ryan et al. Jul 2010 A1
20100167253 Ryan et al. Jul 2010 A1
20100167254 Nguyen Jul 2010 A1
20100196867 Geerligs et al. Aug 2010 A1
20100204713 Ruiz Morales Aug 2010 A1
20100209899 Park Aug 2010 A1
20100248200 Ladak Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100273136 Kandasami et al. Oct 2010 A1
20100279263 Duryea Nov 2010 A1
20100285094 Gupta Nov 2010 A1
20100324541 Whitman Dec 2010 A1
20110020779 Hannaford et al. Jan 2011 A1
20110046637 Patel et al. Feb 2011 A1
20110046659 Ramstein et al. Feb 2011 A1
20110087238 Wang et al. Apr 2011 A1
20110091855 Miyazaki Apr 2011 A1
20110137337 van den Dool et al. Jun 2011 A1
20110200976 Hou et al. Aug 2011 A1
20110207104 Trotta Aug 2011 A1
20110218550 Ma Sep 2011 A1
20110244436 Campo Oct 2011 A1
20110269109 Miyazaki Nov 2011 A2
20110281251 Mousques Nov 2011 A1
20110301620 Di Betta et al. Dec 2011 A1
20120015337 Hendrickson et al. Jan 2012 A1
20120015339 Hendrickson et al. Jan 2012 A1
20120016362 Heinrich et al. Jan 2012 A1
20120028231 Misawa et al. Feb 2012 A1
20120034587 Toly Feb 2012 A1
20120045743 Misawa et al. Feb 2012 A1
20120065632 Shadduck Mar 2012 A1
20120082970 Pravong et al. Apr 2012 A1
20120100217 Green et al. Apr 2012 A1
20120115117 Marshall May 2012 A1
20120115118 Marshall May 2012 A1
20120116391 Houser et al. May 2012 A1
20120148994 Hori et al. Jun 2012 A1
20120164616 Endo et al. Jun 2012 A1
20120165866 Kaiser et al. Jun 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120179072 Kegreiss Jul 2012 A1
20120202180 Stock et al. Aug 2012 A1
20120214144 Trotta Aug 2012 A1
20120264096 Taylor et al. Oct 2012 A1
20120264097 Newcott et al. Oct 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120282584 Millon et al. Nov 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120288839 Crabtree Nov 2012 A1
20120308977 Tortola Dec 2012 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130101973 Hoke et al. Apr 2013 A1
20130105552 Weir et al. May 2013 A1
20130108999 Gillies May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130157240 Hart Jun 2013 A1
20130171288 Harders Jul 2013 A1
20130177890 Sakezles Jul 2013 A1
20130192741 Trotta et al. Aug 2013 A1
20130218166 Elmore Aug 2013 A1
20130224709 Riojas et al. Aug 2013 A1
20130245681 Straehnz et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130267876 Leckenby et al. Oct 2013 A1
20130282038 Dannaher et al. Oct 2013 A1
20130288216 Parry, Jr. et al. Oct 2013 A1
20130302771 Alderete Nov 2013 A1
20130324991 Clem et al. Dec 2013 A1
20130324999 Price et al. Dec 2013 A1
20140011172 Lowe Jan 2014 A1
20140017651 Sugimoto et al. Jan 2014 A1
20140024004 Tvermoes Jan 2014 A1
20140030682 Thilenius Jan 2014 A1
20140038151 Hart Feb 2014 A1
20140051049 Jarc et al. Feb 2014 A1
20140051050 Fradette Feb 2014 A1
20140072941 Hendrickson et al. Mar 2014 A1
20140087345 Breslin et al. Mar 2014 A1
20140087346 Breslin et al. Mar 2014 A1
20140087347 Tracy et al. Mar 2014 A1
20140087348 Tracy et al. Mar 2014 A1
20140088413 Von Bucsh et al. Mar 2014 A1
20140093852 Poulsen et al. Apr 2014 A1
20140093854 Poulsen et al. Apr 2014 A1
20140099858 Hernandez Apr 2014 A1
20140106328 Loor Apr 2014 A1
20140107471 Haider et al. Apr 2014 A1
20140156002 Thompson et al. Jun 2014 A1
20140162016 Matsui et al. Jun 2014 A1
20140170623 Jarstad et al. Jun 2014 A1
20140186809 Hendrickson et al. Jul 2014 A1
20140187855 Nagale et al. Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140212861 Romano Jul 2014 A1
20140220527 Li et al. Aug 2014 A1
20140220530 Merkle et al. Aug 2014 A1
20140220532 Ghez et al. Aug 2014 A1
20140242564 Pravong et al. Aug 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140248596 Hart et al. Sep 2014 A1
20140263538 Leimbach et al. Sep 2014 A1
20140272878 Shim et al. Sep 2014 A1
20140272879 Shim et al. Sep 2014 A1
20140275795 Little et al. Sep 2014 A1
20140275981 Selover et al. Sep 2014 A1
20140276532 Zook Sep 2014 A1
20140277017 Leimbach et al. Sep 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140303646 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140308643 Trotta et al. Oct 2014 A1
20140342334 Black et al. Nov 2014 A1
20140349266 Choi Nov 2014 A1
20140350530 Ross et al. Nov 2014 A1
20140357977 Zhou Dec 2014 A1
20140370477 Black et al. Dec 2014 A1
20140371761 Juanpera Dec 2014 A1
20140378995 Kumar et al. Dec 2014 A1
20150031008 Black et al. Jan 2015 A1
20150037773 Quirarte Catano Feb 2015 A1
20150038613 Sun et al. Feb 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150086955 Poniatowski et al. Mar 2015 A1
20150132732 Hart et al. May 2015 A1
20150132733 Garvik et al. May 2015 A1
20150135832 Blumenkranz et al. May 2015 A1
20150148660 Weiss et al. May 2015 A1
20150164598 Blumenkranz et al. Jun 2015 A1
20150187229 Wachli et al. Jul 2015 A1
20150194075 Rappel et al. Jul 2015 A1
20150202299 Burdick et al. Jul 2015 A1
20150209035 Zemlock Jul 2015 A1
20150209059 Trees et al. Jul 2015 A1
20150209078 Nevler Jul 2015 A1
20150209573 Hibner et al. Jul 2015 A1
20150228206 Shim et al. Aug 2015 A1
20150262511 Lin et al. Sep 2015 A1
20150265431 Egilsson et al. Sep 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272574 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272581 Leimbach et al. Oct 2015 A1
20150272583 Leimbach et al. Oct 2015 A1
20150272604 Chowaniec et al. Oct 2015 A1
20150332609 Alexander Nov 2015 A1
20150358426 Kimball et al. Dec 2015 A1
20150371560 Lowe Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20160000437 Giordano et al. Jan 2016 A1
20160022374 Haider et al. Jan 2016 A1
20160030240 Gonenc et al. Feb 2016 A1
20160031091 Popovic et al. Feb 2016 A1
20160058534 Derwin et al. Mar 2016 A1
20160066909 Baber et al. Mar 2016 A1
20160070436 Thomas et al. Mar 2016 A1
20160073928 Soper et al. Mar 2016 A1
20160074103 Sartor Mar 2016 A1
20160098933 Reiley et al. Apr 2016 A1
20160104394 Miyazaki Apr 2016 A1
20160117956 Larsson et al. Apr 2016 A1
20160125762 Becker et al. May 2016 A1
20160133158 Sui et al. May 2016 A1
20160140876 Jabbour et al. May 2016 A1
20160194378 Cass et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160220150 Sharonov Aug 2016 A1
20160220314 Huelman et al. Aug 2016 A1
20160225288 East et al. Aug 2016 A1
20160232819 Hofstetter et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262736 Ross et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160293055 Hofstetter Oct 2016 A1
20160296144 Gaddam et al. Oct 2016 A1
Foreign Referenced Citations (85)
Number Date Country
2 293 585 Dec 1998 CA
2421706 Feb 2001 CN
2751372 Jan 2006 CN
2909427 Jun 2007 CN
101313842 Dec 2008 CN
101528780 Sep 2009 CN
201364679 Dec 2009 CN
201955979 Aug 2011 CN
102458496 May 2012 CN
202443680 Sep 2012 CN
202563792 Nov 2012 CN
202601055 Dec 2012 CN
202694651 Jan 2013 CN
103050040 Apr 2013 CN
203013103 Jun 2013 CN
203038549 Jul 2013 CN
203338651 Dec 2013 CN
203397593 Jan 2014 CN
203562128 Apr 2014 CN
10388679 Jun 2014 CN
102596275 Jun 2014 CN
103845757 Jun 2014 CN
103396562 Jul 2015 CN
105194740 Dec 2015 CN
105504166 Apr 2016 CN
9102218 May 1991 DE
41 05 892 Aug 1992 DE
93 20 422 Jun 1994 DE
44 14 832 Nov 1995 DE
19716341 Sep 2000 DE
1 024 173 Aug 2000 EP
L 609 431 Dec 2005 EP
2 068 295 Jun 2009 EP
2 218 570 Aug 2010 EP
2 691 826 Dec 1993 FR
2 917 876 Dec 2008 FR
2488994 Sep 2012 GB
10 211160 Aug 1998 JP
2001005378 Jan 2001 JP
2006187566 Jul 2006 JP
2009063787 Mar 2009 JP
2009236963 Oct 2009 JP
3162161 Aug 2010 JP
2011113056 Jun 2011 JP
2013127496 Jun 2013 JP
101231565 Feb 2013 KR
PA 02004422 Nov 2003 MX
106230 Sep 2013 PT
WO 199406109 Mar 1994 WO
WO 1996042076 Feb 1996 WO
WO 9858358 Dec 1998 WO
WO 199901074 Jan 1999 WO
WO 200036577 Jun 2000 WO
WO 200238039 May 2002 WO
WO 2002038039 May 2002 WO
WO 2004032095 Apr 2004 WO
WO 2004082486 Sep 2004 WO
WO 2005071639 Aug 2005 WO
WO 2005083653 Sep 2005 WO
WO 2006083963 Aug 2006 WO
WO 2007068360 Jun 2007 WO
WO 2008021720 Feb 2008 WO
WO 2008103383 Aug 2008 WO
WO 2009000939 Dec 2008 WO
WO 2009089614 Jul 2009 WO
WO 2010094730 Aug 2010 WO
WO 2011035410 Mar 2011 WO
WO 2011046606 Apr 2011 WO
WO 2011127379 Oct 2011 WO
WO 2011151304 Dec 2011 WO
WO 2012149606 Nov 2012 WO
WO 2012168287 Dec 2012 WO
WO 2012175993 Dec 2012 WO
WO 2013048978 Apr 2013 WO
WO 2013103956 Jul 2013 WO
WO 2014022815 Feb 2014 WO
WO 2014093669 Jun 2014 WO
WO 2014197793 Dec 2014 WO
WO 2015148817 Oct 2015 WO
WO 2016138528 Sep 2016 WO
WO 2016183412 Nov 2016 WO
WO 2016198238 Dec 2016 WO
WO 2016201085 Dec 2016 WO
WO 2017031214 Feb 2017 WO
WO 2017042301 Mar 2017 WO
Non-Patent Literature Citations (93)
Entry
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Aug. 7, 2017, 13 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated May 17, 2018, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/062669, entitled “Simulated Dissectible Tissue,” dated May 31, 2018, 11 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Jun. 8, 2018, 13 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18177751.7, titled “Portable Laparoscopic Trainer,” dated Jul. 13, 2018, 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/034705, entitled “Laparoscopic Training System,” dated Aug. 20, 2018, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/020389, entitled “Simulated Tissue Cartridge,” dated Sep. 13, 2018, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18184147.9, titled “First Entry Model,” dated Nov. 7, 2018, 7 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Jan. 10, 2019, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18210006.5, titled “Surgical Training Model for Laparoscopic Procedures,” dated Jan. 21, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18207214.0, titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Mar. 28, 2019, 6 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216002.8, titled “Surgical Training Model for Laparoscopic Procedures,” dated Apr. 2, 2019, 6 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216005.1, titled “Surgical Training Model for Laparoscopic Procedures,” dated Apr. 2, 2019, 7 pgs.
European Patent Office, International Search Report for International Application No. PCT/US2011/053859 A3, dated Apr. 5, 2012, entitled “Portable Laparoscopic Trainer.”
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/60997, dated Mar. 7, 2013, entitled “Simulated Tissue Structure for Surgical Training.”
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, dated Mar. 18, 2013, entitled “Advanced Surgical Simulation.”
Human Patient Simulator, Medical Education Technologies, Inc., http://www.meti.com (1999) all.
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2011/053859, titled “Portable Laparoscopic Trainer” dated Apr. 2, 2013.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061728 dated Oct. 18, 2013, entitled “Surgical Training Model for Laparoscopic Procedures.”
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062363, dated Jan. 22, 2014, entitled “Surgical Training Model for Laparoscopic Procedures.”
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061949, dated Feb. 17, 2014, entitled “Surgical Training Model for Laparoscopic Procedures.”
Anonymous: Realsim Systems—LTS2000, Sep. 4, 2005, pp. 1-2, XP055096193, Retrieved from the Internet: URL:https://web.archive.org/web/2005090403; 3030/http://www.realsimsystems.com/exersizes.htm (retrieved on Jan. 14, 2014).
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061557, dated Feb. 10, 2014, entitled “Surgical Training Model for Laparoscopic Procedures.”
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062269, dated Feb. 17, 2014, entitled “Surgical Training Model for Transluminal Procedures.”
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/060997, titled “Simulated Tissue Structure For Surgical Training” dated Apr. 22, 2014.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/070971 titled “Advanced Surgical Simulation” dated Jun. 24, 2014.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/019840 dated Jul. 4, 2014 entitled “Advanced Surgical Simulation Constructions and Methods.”
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/038195 titled “Hernia Model”, dated Oct. 15, 2014.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/048027 titled “First Entry Model”, dated Oct. 17, 2014.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/042998, title; Gallbladder Model, dated Jan. 7, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability, for PCT application No. PCT/US2013/053497, titled, Simulated Stapling and Energy Based Ligation for Surgical Training, dated Feb. 12, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062363, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062269, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061557, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061728, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061949, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/020574, dated Jun. 1, 2015 entitled “Advanced First Entry Model for Surgical Simulation.”
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/022774, dated Jun. 11, 2015 entitled “Simulated Dissectible Tissue.”
Anonymous: Silicone rubber—from Wikipedia, the free encyclopedia, pp. 1-6, XP055192375, Retrieved from the Internet: URL:http://en.wikipedia.org/w.index.php?title=Silicone_rubber&oldid=596456058 (retrieved on May 29, 2015).
Lamouche, et al., “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomedical Optics Express, Jun. 1, 2012, 18 pgs., vol. 3, No. 6.
Kurashima Y et al., “A tool for training and evaluation of Laparoscopic inguinal hernia repair; the Global Operative Assessment of Laparoscopic Skills-Groin Hernia” American Journal of Surgery, Paul Hoeber, New York, NY, US vol. 201, No. 1, Jan. 1, 2011, pp. 54-61 XP027558745.
Limps and Things, EP Guildford Mattu Hernia Trainer, http://limbsandthings.com/us/products/tep-guildford-mattu-hernia-trainer/.
Simulab, Hernia Model, http://www.simulab.com/product/surgery/open/hernia-model.
McGill Laparoscopic Inguinal Hernia Simulator, Novel Low-Cost Simulator for Laparoscopic Inguinal Hernia Repair.
University of Wisconsin-Madison Biomedical Engineering, Inguinal Hernia Model, http://bmedesign.engr.wisc.edu/projects/s10/hernia_model/.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/019840, titled Simulated Tissue Structure For Surgical Training, dated Sep. 11, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/038195, titled Hernia Model, dated Nov. 26, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/042998, titled “Gallbladder Model” dated Dec. 30, 2015.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2013/053497 titled “Simulated Stapling and Energy Based Ligation for Surgical Training” dated Nov. 5, 2013.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/048027, titled “First Entry Model” dated Feb. 4, 2016.
Society of Laparoendoscopic Surgeons, “Future Technology Session: The Edge of Innovation in Surgery, Space, and Business” http://www.laparoscopytoday.com/endourology/page/2/, Figure 1B: http://laparoscopy.blogs.com/laparoscopy_today/images/6-1/6-1VlaovicPicB.jpg , Sep. 5-8, 2007, 10 pgs.
Miyazaki Enterprises, “Miya Model Pelvic Surgery Training Model and Video,” www.miyazakienterprises, printed Jul. 1, 2016, 1 pg.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/059668 titled “Simulated Tissue Models and Methods” dated Apr. 26, 2016, 20 pgs.
Australian Patent Office, Patent Examination Report No. 1 for Australian Application No. 2012358851 titled “Advanced Surgical Simulation” dated May 26, 2016, 3 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/032292 titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Jul. 14, 2016, 11 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/018697 titled “Simulated Tissue Structures and Methods,” dated Jul. 14, 2016, 21 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/034591 titled “Surgical Training Model for Laparoscopic Procedures,” dated Aug. 8, 2016, 18 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/036664 titled “Hysterectomy Model”, dated Aug. 19, 2016, 15 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/020574, entitled “Advanced First Entry Model for Surgical Simulation,” dated Sep. 22, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/0043277 titled “Appendectomy Model”, dated Oct. 4, 2016, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/022774, titled “Simulated Dissectible Tissue,” dated Oct. 6, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/041852 titled “Simulated Dissectible Tissue”, dated Oct. 13, 2016, 12 pgs.
3D-MED Corporation, “Validated Training Course for Laparoscopic Skills”, https://www.3-dmed.com/sites/default/files/product-additional/product-spec/Validated%20Training%20Course%20for%20Laparoscopic%20Skills.docx_3.pdf , Printed Aug. 23, 2016, pp. 1-6.
3D-MED Corporation, “Loops and Wire #1” https://www.3-dmed.com/product/loops-and-wire-1, printed Aug. 23, 2016, 4 pgs.
Barrier, et al., “A Novel and Inexpensive Vaginal Hysterectomy Simulatory,” Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, vol. 7, No. 6, Dec. 1, 2012, pp. 374-379.
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2016/062669, titled “Simulated Dissectible Tissue”, dated Feb. 10, 2017, 8 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/055148 titled “Hysterectomy Model”, dated Feb. 28, 2017, 12 pgs.
European Patent Office, Examination Report for European Application No. 14733949.3 titled “Gallbladder Model,” dated Dec. 21, 2016, 6 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/062669 titled “Simulated Dissectible Tissue,” dated Apr. 5, 2017, 19 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2017/020389 titled “Simulated Tissue Cartridge”, dated May 24, 2017, 13 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2015/059668, entitled “Simulated Tissue Models and Methods,” dated May 26, 2017, 16 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/018697, entitled “Simulated Tissue Structures and Methods,” dated Aug. 31, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/0032292, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Nov. 23, 2017, 2017, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/034591, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Dec. 7, 2017, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/036664, entitled “Hysterectomy Model,” dated Dec. 21, 2017, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/041852, entitled “Simulated Dissectible Tissue,” dated Jan. 25, 2018, 12 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 17202365.7, titled “Gallbladder Model”, dated Jan. 31, 2018, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/043277, entitled “Appendectomy Model,” dated Feb. 1, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/055148, entitled “Hysterectomy Model,” dated Apr. 12, 2018, 12 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20186713.2, titled “Simulated Dissectible Tissue,” dated Nov. 10, 2020, 12 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 19159065.2, titled “Simulated Tissue Structures and Methods,” dated May 29, 2019, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Aug. 29, 2019, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Sep. 6, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20153338.7, titled “Advanced Surgical Simulation Constructions and Methods,” dated Mar. 5, 2020, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 19215545.5, titled “Advanced First Entry Model for Surgical Simulation,” dated Mar. 26, 2020, 8 pgs.
“Surgical Female Pelvic Trainer (SFPT) with Advanced Surgical Uterus,” Limbs & Things Limited, Issue 1, Jul. 31, 2003, URL:https://www.accuratesolutions.it/wp-content/uploads/2012/08/ Surgical_Female_Pelvic_Trainer_SFPT_with_Advanced_Uterus_Us er_Guide.pdf, retrieved Feb. 21, 2020, 2 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20158500.7, titled “Surgical Training Device,” dated May 14, 2020, 9 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. 21159294.4, titled “Surgical Training Model for Laparoscopic Procedures,” dated Apr. 5, 2021, 7 pgs.
Condino et al.; “How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators,” The International Journal of Medical Robotics and Computer Assisted Surgery, Apr. 27, 2011, vol. 7, No. 2, pp. 202-213.
Wilkes et al.; “Closed Incision Management with Negative Pressure Wound Therapy (CIM): Biomechanics,” Surgical Innovation 19(1), URL:https://journals.sagepub.com/doi/pdf/10.1177/1553350611414920, Jan. 1, 2012, pp. 67-75.
European Patent Office, Extended European Search Report for European Patent Application No. EP 21182654.0, titled “Simulated Dissectible Tissue,” dated Oct. 22, 2021, 13 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 21191452.8, titled “Advanced Surgical Simulation Constructions and Methods,” dated Dec. 13, 2021, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 22151452.4, titled “Portable Laparoscopic Trainer,” dated Apr. 13, 2022, 8 pgs.
Related Publications (1)
Number Date Country
20190122583 A1 Apr 2019 US
Provisional Applications (3)
Number Date Country
61971714 Mar 2014 US
61952289 Mar 2014 US
61857982 Jul 2013 US
Continuations (1)
Number Date Country
Parent 14657925 Mar 2015 US
Child 16226957 US
Continuation in Parts (1)
Number Date Country
Parent 14340234 Jul 2014 US
Child 14657925 US