The present invention relates generally to explosive systems and micro-electromechanical systems (MEMS). More particularly, the present invention relates to systems and methods for explosive systems such as grenades with novel MEMS fuze and novel placement of the MEMS fuze providing increased performance, reliability, and safety.
Conventionally, high velocity grenades rely on a mechanical impact fuze located in the front of the grenade. The mechanical impact fuze is a complex device that uses environmental parameters associated with gun launch (e.g., setback and spin) to arm. Upon impact with a target the nose of the mechanical impact fuze is crushed. This action projects a stabber into an explosive charge located at the base of the mechanical impact fuze. A charge detonates and launches a metal projectile towards a main charge, which then detonates upon impact. This action collapses a metal shaped charge liner, which is projected forward through the mechanical impact fuze and into the target. At the same time the main charge fragments the body of the grenade and throws those fragments outward.
There are several limitations with conventional systems. The mechanical impact fuze is a complex device that is prone to failure. It has been known to arm and detonate early, posing a hazard to the gunner. These failures have primarily been attributed to errors made during manufacturing. The mechanical impact fuze may also fail to fire if the weapon impacts at an oblique angle or hits soft material such as snow. This situation poses an unexploded ordnance hazard to operators and bystanders. In addition, the presence of the mechanical impact fuze in front of the shaped charge inhibits the ability of the weapon to penetrate armor. Before the shaped charge can penetrate the target it must first go through the steel and aluminum components of the mechanical impact fuze. Further, the rear of the fragmenting grenade body has a tendency to come off as a single piece and fly straight back, which is a hazard to the gunner. Finally the device does not meet Department of Defense (DOD) “Insensitive Munitions” requirements, which are standards designed to reduce of risk of injury to personnel as a result of accidents such as dropped items or a fire.
In an exemplary embodiment, an explosive system includes a case with an interior with a front portion, a middle portion, and a rear portion; a main explosive charge disposed within the middle portion of the interior of the case; and a micro-electromechanical systems fuze disposed within the rear portion of the interior of the case, wherein the micro-electromechanical systems fuze is configured to detonate the main explosive charge and the micro-electromechanical systems fuze includes a plurality of safety mechanisms. The explosive system may further include a shaped charge liner disposed in the front portion of the interior of the case. The shaped charge liner is configured to penetrate a target upon detonation of the main explosive charge where the penetration is unimpeded by the micro-electromechanical systems fuze. The shaped charge liner is shaped to optimize penetration into the target. The case may include a fragmenting case configured to fragment upon detonation of the main explosive charge. The explosive system may further include electronic circuits disposed in the rear portion and communicatively coupled to the micro-electromechanical systems fuze; and an energy source powering the electronic circuits and the micro-electromechanical systems fuze. The energy source may include a piezoelectric energy harvester. The plurality of safety mechanisms may include a setback lock on the micro-electromechanical systems fuze, a timer in the electronic circuits configured to remove a command lock on the micro-electromechanical systems fuze, and sensors in the electronic circuits detecting impact and spinning of the explosive system. The setback lock is released upon launch of the explosive system, the command lock is removed upon expiration of the timer, and a micro-detonator on the micro-electromechanical systems fuze detonates the main explosive charge based upon the sensors detecting impact or cessation of the spinning. The micro-electromechanical systems fuze may include a spin armed slider; a command lock and a setback lock holding the spin armed slider in place; and an initiator out of line from a micro-detonator cup disposed to the spin arm slider. The explosive system may further include electronic circuits disposed in the rear portion and communicatively coupled to the micro-electromechanical systems fuze; where upon firing, the setback lock is moved out of position. The electronic circuits are configured to: activate a timer upon firing, release the command lock upon expiration of the timer, and detect spinning and impact of the explosive system. Upon release of the command lock and the setback lock, the spin armed slider moves into position such that the micro-detonator cup is in line with the initiator thereby arming the micro-electromechanical systems fuze.
In another exemplary embodiment, electronic circuitry for an explosive system includes electronic circuits disposed on a circuit board; a micro-electromechanical systems fuze including plurality of safety mechanisms, where the micro-electromechanical systems fuze is communicatively coupled to the electronic circuits; and an energy source powering the electronic circuits and the micro-electromechanical systems fuze. Each of the circuit board, the micro-electromechanical systems fuze, and the energy source are disposed in a rear portion of the explosive system. The energy source may include a piezoelectric energy harvester. The plurality of safety mechanisms may include a setback lock on the micro-electromechanical systems fuze, a timer in the electronic circuits configured to remove a command lock on the micro-electromechanical systems fuze, and sensors in the electronic circuits detecting impact and spinning of the explosive system. The setback lock is released upon launch of the explosive system, the command lock is removed upon expiration of the timer, and a micro-detonator on the micro-electromechanical systems fuze detonates a main explosive charge in the explosive system based upon the sensors detecting impact or cessation of the spinning. The micro-electromechanical systems fuze may include a spin armed slider; a command lock and a setback lock holding the spin armed slider in place; and an initiator out of line from a micro-detonator cup disposed to the spin arm slider. Upon firing, the setback lock is moved out of position where the electronic circuits are configured to activate a timer upon firing, release the command lock upon expiration of the timer, and detect spinning and impact of the explosive system. Upon release of the command lock and the setback lock, the spin armed slider moves into position such that the micro-detonator cup is in line with the initiator thereby arming the micro-electromechanical systems fuze.
In yet another exemplary embodiment, a method includes launching a round, wherein the round includes a micro-electromechanical systems fuze in a rear portion of the round after explosive charges; releasing a setback lock on the micro-electromechanical systems fuze upon launching; initiating a timer upon launching; releasing a command lock on the micro-electromechanical systems fuze based on the timer thereby allowing a micro-detonator on the micro-electromechanical systems fuze to slide into position; and detecting impact and detonating the round through the micro-detonator. The method may further include detecting no impact and detecting the round has stopped spinning and detonating the round through the micro-detonator.
The present invention is illustrated and described herein with reference to the various drawings, in which like reference numbers denote like method steps and/or system components, respectively, and in which:
In various exemplary embodiments, the present invention relates to systems and methods for explosive systems such as grenades with novel MEMS fuze and novel placement of the MEMS fuze providing increased performance, reliability, and safety. The MEMS fuze is disposed towards a rear portion of the explosive system providing superior performance and design flexibility. Further, the explosive system includes electronics configured to implement a launch timer and to sense impact or when the system stops spinning. The present invention includes an operational method improving safety and reliability by preventing detonation until after the launch timer expires, upon impact, or when the explosive system stops spinning.
Referring to
In an exemplary embodiment of the present invention, the explosive system 10 includes a MEMS fuze 20 disposed towards a rear portion of the fragmenting case 12 interior. Specifically, the explosive system 10 may include a front portion with the shaped charge liner 16, a middle portion with the main explosive charge 14, and a rear portion with the MEMS fuze 20. Advantageously, placing the MEMS fuze 20 in the rear allows for greater design flexibility and optimization of penetration with the shaped charge liner 16. MEMS Fuze technology is being developed that requires less space and is more configurable than current technology. Specifically, the MEMS fuze 20 is disposed after the main explosive charge 14 and the shaped charge liner 16 relative to the front of the fragmenting case 12. Thus, the MEMS fuze 20 does not interfere with the shaped charge liner 16 upon impact. The explosive system 10 further includes circuit boards 22 with various electronic components related to operation of the explosive system 10. Also, the explosive system 10 includes an energy source 24 that powers the MEMS fuze 20 and the circuit boards 22 in the rear portion of the explosive system 10. For example, the energy source 24 may include a piezoelectric energy harvester. Note, the MEMS fuze 20, the circuit boards 22, and the energy source 24 may each be communicatively coupled for power and data transfer therebetween. The circuit boards 22 may include electronic components 21 configured to control the MEMS fuze 20, provide a timer, sense spinning of the explosive system 10, and sense impact of the explosive system 10. For example, the circuit boards 22 may control various components associated with or on the MEMS fuze 20, and the energy source 24 may power both the circuit boards 22 and the MEMS fuze 20.
Referring to
The MEMS fuze 20 may be implemented through various mechanisms. For example, the MEMS fuze 20 may be fabricated on a silicon on insulator (SOD wafer. Here, a silicon substrate (also known as a handle layer) is covered by an insulating or intermediate layer, such as silicon dioxide, over which is bonded or deposited another silicon layer, also known as the device layer, which is the layer from which the MEMS fuze 20 assembly components are fabricated. The MEMS fuze 20 assembly components may be formed by a DRIE (deep reactive ion etching) process that removes unwanted portions of device layer. The DRIE process is a well developed micromachining process used extensively with silicon based MEMS devices. For this reason, silicon is an exemplary material for the MEMS fuze 20 assembly of the present invention, although other materials are possible. In other exemplary embodiments, materials other than silicon may be used as a substrate, including glass, stainless steel, and a plastic material, such as, polycarbonate.
Referring to
The present invention provides several advantages over conventional designs, specifically in areas of performance, reliability, and safety. Moving the MEMS fuze to the rear of the round reduces the amount of material the shaped charge has to go through before it reaches the target resulting in better penetration. The fragmenting case is modified such that it will not project the rear of the body to the firer, improving safety. The explosive fill itself is changed to be more compliant with Insensitive Munition standards. The MEMS fuze has fewer moving parts than the current mechanical impact fuzes, and the tolerances are easier to control due to the batch process methods used to fabricate the components. This configuration improves reliability and reduces the likelihood of a premature detonation. Finally, the presence of an electronic fire control system reduces the likelihood of dud rounds.
In an exemplary embodiment, the explosive system 10 may include a 40×53 High-Velocity, High-Explosive Dual-Purpose (HEDP) M430 cartridge (subsequently replaced in production by the M430A1) or the like. Thus, the concepts described herein may enhance the safety and reliability of the M430A1 HEDP. It may also be applied to a wide variety of other small and medium caliber weapons. Advantageously, the present invention addresses the need for smaller and smarter weapons. Relocation of the fuze, combined with the MEMS technology, allows for significant optimization and configuration of weapons technology. The M430A1 provides both armor penetration and anti-personnel effects.
Although the present invention has been illustrated and described herein with reference to exemplary embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present invention and are intended to be covered by the following claims.
Finally, any numerical parameters set forth in the specification and attached claims are approximations (for example, by using the term “about”) that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of significant digits and by applying ordinary rounding.
The present invention described herein may be manufactured and used by or for the Government of the United States of America for government purposes without the payment of any royalties thereon or therefore.
Number | Name | Date | Kind |
---|---|---|---|
4444116 | Mitard et al. | Apr 1984 | A |
4567829 | Ziemba et al. | Feb 1986 | A |
4598884 | Speer | Jul 1986 | A |
H000344 | Williamsen et al. | Oct 1987 | H |
4938146 | Gunther et al. | Jul 1990 | A |
4969397 | Gunther et al. | Nov 1990 | A |
4982665 | Sewell et al. | Jan 1991 | A |
5081929 | Mertens | Jan 1992 | A |
5157221 | Ronn | Oct 1992 | A |
5166469 | Kerdraon et al. | Nov 1992 | A |
5275107 | Weber et al. | Jan 1994 | A |
6167809 | Robinson et al. | Jan 2001 | B1 |
6622629 | Hodge et al. | Sep 2003 | B2 |
6857372 | Renaud-Bezot et al. | Feb 2005 | B2 |
6964231 | Robinson et al. | Nov 2005 | B1 |
7040234 | Maurere et al. | May 2006 | B1 |
7055437 | Robinson et al. | Jun 2006 | B1 |
7316186 | Robinson et al. | Jan 2008 | B1 |
7490552 | Jean et al. | Feb 2009 | B1 |
7506586 | Pereira et al. | Mar 2009 | B1 |
7552681 | Laib et al. | Jun 2009 | B1 |
7654458 | Kokodis et al. | Feb 2010 | B1 |
7808158 | Deeds et al. | Oct 2010 | B1 |
7913623 | Fan et al. | Mar 2011 | B1 |
7971532 | Olson et al. | Jul 2011 | B1 |
8091478 | Khuc et al. | Jan 2012 | B1 |
8220395 | Gorman et al. | Jul 2012 | B1 |
8266963 | Rastegar et al. | Sep 2012 | B2 |
8276515 | Robinson et al. | Oct 2012 | B1 |
20020121213 | Micke et al. | Sep 2002 | A1 |
20030041767 | Rastegar et al. | Mar 2003 | A1 |
20030140811 | Bone | Jul 2003 | A1 |
20040031411 | Novotney et al. | Feb 2004 | A1 |
20050132920 | Ceola | Jun 2005 | A1 |
20060033406 | Rastegar et al. | Feb 2006 | A1 |
20060102040 | Johansson | May 2006 | A1 |
20060107862 | Davis et al. | May 2006 | A1 |
20090013891 | Rastegar et al. | Jan 2009 | A1 |
20100176692 | Shmilovich et al. | Jul 2010 | A1 |
20100282106 | Robinson et al. | Nov 2010 | A1 |
20120090490 | Pattison | Apr 2012 | A1 |