Advanced multi-shouldered fixed bobbin tools for simultaneous friction stir welding of multiple parallel walls between parts

Information

  • Patent Grant
  • 7854362
  • Patent Number
    7,854,362
  • Date Filed
    Friday, March 14, 2008
    16 years ago
  • Date Issued
    Tuesday, December 21, 2010
    13 years ago
Abstract
A multi-shouldered friction stir welding tool comprises an integral shank-pin unit having a plurality of pin portions for driving into a plurality of joints. A shank portion of the shank-pin unit is for attachment to an optional axial tension rod. A plurality of friction stir welding modules comprise a pair of shoulders that is connected to the shank-pin unit. The proximal end of each shoulder faces the pin portion of the shank-pin unit, whereby the shoulder and pin(s) rotate in unison. A pair of split collars or a pair of nuts is connected to the shank-pin unit and faces the distal end of each shoulder. The plurality of friction stir welding modules are connected to each other and rotate in unison to simultaneously make a plurality of parallel welds.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a multi-shouldered friction stir welding bobbin tool for friction stir welding and, more particularly, the present invention relates to using a multi-shouldered friction stir welding tool for simultaneous friction stir welding of a plurality of parallel joints between components having parallel portions.


The Friction Stir Welding (FSW) process is a solid-state based joining process, which makes it possible to weld a wide variety of materials alloys (Aluminum, Copper, Stainless Steel, etc.) to themselves and combinations (e.g. 6XXX/5XXX, 2XXX/7XXX, etc.). The joining is affected by a rotating FSW tool, which is forced into the joining area to heat it by friction and thus “plasticizes” the parts about it. Plasticized material flows around the axis of the rotating FSW tool, and the plasticized regions coalesce into sound metallurgical bonds.


In one embodiment, the present invention discloses a multi-shouldered friction stir welding tool comprising an integral shank-pin unit having a plurality of pin portions on the shank-pin unit, where the plurality of pin portions for plunging into a plurality of joints to perform a friction stir welding operation on the corresponding plurality of joints and, where a shank portion of the shank-pin unit is for attachment to an optional axial tension rod, a plurality of friction stir welding modules, each of the friction stir welding modules comprising a pair of shoulders that is connected to the shank-pin unit where each shoulder has a distal end and a proximal end, where the proximal end of each shoulder faces the pin portion of the shank-pin unit, whereby the shoulder and pin(s) rotate in unison, and a pair of split collars or a pair of nuts that is connected to the shank-pin unit and faces the distal end of each shoulder, where the plurality of friction stir welding modules are connected to each other whereby the modules rotate in unison to simultaneously make a plurality of parallel welds.


SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a multi-shouldered friction stir welding tool for simultaneous friction stir welding of a plurality of parallel joints between components having parallel portions. The multi-shouldered friction stir welding tool comprising an integral shank-pin unit having a plurality of pin portions on the shank-pin unit, where the plurality of pin portions for driving into a plurality of joints to perform a friction stir welding operation on the corresponding plurality of joints and, where a shank portion of the shank-pin unit is for attachment to an optional axial tension rod, a plurality of friction stir welding modules, each of the friction stir welding modules comprising a pair of shoulders that is connected to the shank-pin unit where each shoulder has a distal end and a proximal end, where the proximal end of each shoulder faces the pin portion of the shank-pin unit, whereby the shoulder and pin(s) rotate in unison, and a pair of split collars or a pair of nuts that is connected to the shank-pin unit and faces the distal end of each shoulder, where the plurality of friction stir welding modules are connected to each other whereby the modules rotate in unison to simultaneously make a plurality of parallel welds.


In one embodiment, the axial tension rod is disposed within the shank portion of the multi-shouldered friction stir welding tool shank-pin unit. In another embodiment, the shank-pin unit contains a loading means for placing the axial tension rod in tension and the shank-pin in compression.


In a further embodiment, the shank-pin unit has threadless ends with at least two flats along the length of the shank-pin unit. In another embodiment, each shoulder has an opening to facilitate contact with threads on the shank-pin unit.


In yet another embodiment, each split collar has an threaded outer diameter and an threaded inner diameter that is connected to the shank-pin unit by threading the outer diameter of the collar onto threads on an inner diameter of the shoulder and threading the inner diameter of the collar onto threads on an outer diameter of the shank-pin unit. In another embodiment, each split collar is further tightened against or connected to the shank-pin unit by screws.


In another embodiment, the shank-pin is made of a solid rod.


In a further embodiment, each nut has an threaded outer diameter and an threaded inner diameter that is connected to the shank-pin unit by threading the outer diameter of the nut onto threads on an inner diameter of a shoulder and threading the inner diameter of the nut onto threads on an outer diameter of the shank-pin unit. In another embodiment, each nut is further tightened against or connected to the shank-pin unit by screws. In another embodiment, each nut is further connected to the shank-pin unit by jam nuts.


In a further embodiment, the shoulder may be a drive shank with an integrated shoulder.


In yet another embodiment, the loading means for placing the axial tension rod in tension and the pin-shank in compression is a bearing disposed in a shank-pin unit end for disengaging and relieving the torque experienced by the pin portions of the shank-pin unit during the friction stir welding operation.


In yet another embodiment, the distal end of the shoulder and the threaded outer diameter of the collar create a small pocket to prevent the plasticized material from flowing out of the joint.


In yet another embodiment, the present invention provides a method of friction stir welding a plurality of parallel joints simultaneously using at least one multi-shouldered friction stir welding tool. In a further embodiment, the two multi-shouldered friction stir welding tool are simultaneously driven by a rotation-splitting transmission system or by two synchronized Servo controlled motors.


Accordingly, it is one embodiment of the invention to provide a multi-shouldered friction stir welding tool for simultaneous friction stir welding of a plurality of parallel joints between components having parallel portions.


It is another embodiment of the invention to provide a method of friction stir welding a plurality of joints simultaneously using at least one multi-shouldered friction stir welding tool as claimed herein.


These and other further embodiments of the invention will become more apparent through the following description and drawing.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference is made to the following description taken in connection with the accompanying drawing(s), in which:



FIG. 1 is an elevational view of one embodiment of a multi-shoulder bobbin type friction stir welding tool for simultaneously welding two parallel joints in accordance with an embodiment of the present invention;



FIG. 2 is a cross-sectional view of one embodiment of the multi-shoulder bobbin type stir welding tool of FIG. 1 with an internal tension rod;



FIG. 3A is an exploded view of one embodiment of the drive shank assembly end of the multi-shoulder bobbin type friction stir welding tool of FIG. 1.;



FIG. 3B is a cross-sectional view of one embodiment of an assembled drive shank assembly end with a thrust bearing for disengaging the tension rod from the torsion experienced by the pin shank of the multi-shoulder bobbin type friction stir welding tool in accordance with another embodiment of the present invention;



FIG. 3C is an exploded view of one embodiment of the bottom end of the thrust bearing end of the multi-shoulder bobbin type friction stir welding tool of FIG. 1;



FIG. 4A is elevational view of one embodiment of the integral shank-pin unit used in the multi-shoulder bobbin type friction stir welding tool in accordance with an embodiment of the present invention;



FIG. 4B is a perspective view of one embodiment of the thread-less bottom end of shank-pin unit of FIG. 4A;



FIG. 4C is a front view of one embodiment of the thread-less top end of shank-pin unit of FIG. 4A;



FIG. 4D is an exploded view of one embodiment of the threads on pins 12 of shank-pin unit of FIG. 4A;



FIG. 5A is elevational view of one embodiment of the integral shank-pin unit used in the multi-shoulder bobbin type friction stir welding tool in accordance with another embodiment of the present invention;



FIG. 5B is a front view of one embodiment of a shoulder used on the integral shank-pin unit of FIG. 5A in accordance with an embodiment of the present invention;



FIG. 5C is a front view of one embodiment of one end of shank-pin unit of FIG. 5A;



FIGS. 6A and 6B are elevational views of one embodiment of assembling a shoulder onto the shank-pin unit with a split collar in accordance with an embodiment of the present invention;



FIGS. 7A, 7B and 7C are elevational views of one embodiment of assembling a shoulder onto the shank-pin unit with a split collar in accordance with another embodiment of the present invention;



FIG. 8 is a cross-sectional view of one embodiment of a friction stir welding module in accordance with an embodiment of the present invention;



FIG. 9 is an elevational view of one embodiment of two opposing multi-shoulder bobbin type friction stir welding tools for simultaneously welding two parallel joints each in accordance with an embodiment of the present invention;



FIG. 10 is a cross-sectional view of one embodiment of the two multi-shoulder bobbin type stir welding tool of FIG. 9 with an internal tension rod;



FIG. 11 is a perspective view of one embodiment of two opposing multi-shoulder bobbin type friction stir welding tools of FIG. 10 simultaneously welding two parallel joints each in accordance with an embodiment of the present invention;



FIGS. 12A, 12B, 12C and 12D are perspective views of one embodiment of types of torque-splitting transmission used to simultaneously and synchronically drive the two multi-shoulder bobbin type friction stir welding tools in accordance with an embodiment of the present invention;



FIG. 13 is a perspective view of one embodiment of two Servo driven motors used to simultaneously and synchronically drive the two multi-shoulder bobbin type friction stir welding tools in accordance with another embodiment of the present invention;



FIG. 14 is a cross-sectional view of one embodiment of the use of a double ended split collar in accordance with another embodiment of the invention; and



FIGS. 15A and 15B are elevational views of one embodiment of assembling a shoulder and a driving shank onto the shank-pin unit with a capture adjusting nut in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides multi-shouldered fixed bobbin tools that afford simultaneous friction stir welding of multiple parallel joints between parts, such as sheet, plate a flange or a web, a planner portion of an extrusion, a planner portion of a casting, etc.


In the discussion which follows, directional terms such as “upper”, “lower”, “top”, “bottom”, etc . . . apply relative to welding setups oriented with the bottom end of the FSW tool at the bottom and the shank end at the top. The terms “distal” and “proximal” are also used. Distal has the meaning of farthest from the pins of the FSW tool, proximal means nearer.


In one embodiment, the present invention discloses a multi-shouldered friction stir welding tool comprised of an integral shank-pin unit having a plurality of pin portions on the shank-pin unit, where the plurality of pin portions for plunging into a plurality of joints to perform a friction stir welding operation on the corresponding plurality of joints and, where a shank portion of the shank-pin unit is for attachment to an optional axial tension rod, a plurality of friction stir welding modules, each of the friction stir welding modules comprising a pair of shoulders that is connected to the shank-pin unit where each shoulder has a distal end and a proximal end, where the proximal end of each shoulder faces the pin portion of the shank-pin unit, whereby the shoulder and pin(s) rotate in unison, and a pair of split collars or a pair of nuts that is connected to the shank-pin unit and faces the distal end of each shoulder, where the plurality of friction stir welding modules may be directly or indirectly connected to each other whereby the modules rotate in unison to simultaneously make a plurality of parallel welds. For example, the plurality of friction stir welding modules may be connected laterally and rotationally through flexible links.


In one embodiment, to friction stir weld with a multi-shouldered fixed bobbin tool: a) multiple parallel joints (e.g. 2, 4), b) relatively thick walls (2.5 cm), and c) tough/strong alloys (e.g. 7085), the tool must be extra strong to resist the severe cyclic bending and twisting at its pins during welding. To prevent the intense cyclic bending and twisting during welding of multiple parallel joints of the FSW tool, the present invention advances the concept of combining the use of compression loading of the pins, between the shoulders, with the aid of an internal tension member and also the concept of an integral pin/shank ensemble with a self-locking shoulder and a split collar threaded onto the pin/shank ensemble.


In one embodiment, FIG. 1 shows a multi-shoulder bobbin type friction stir welding tool 10 (“FSW tool”) according to the present invention. In one example, FSW tool 10 is for making two parallel welds simultaneously and includes an integral shank-pin unit 11 which may be held in a chuck or collet of a friction stir welding machine. In one example, FSW tool 10 also includes two pins 12 with each having a left shoulder 13 and a right shoulder 14 surrounding pins 12. Each left shoulder 13 and right shoulder 14 has a split collar 16. In yet another example, split collars 16 firmly secure each shoulder 13 and 14 to shank-pin unit 11. At one end of FSW tool 10 is a drive shank 17 where FSW tool 10 is attached to the friction stir welding machine collet (not shown). At the end of the drive shank 17, the mechanism that puts the tension member in tension and thus putting the pin into compression, is located. This mechanism is comprised of a race/support 21 and a collar retainer 22 underneath which is located a split collar 16, a washer 27, and a plurality of disc springs 23 therebetween as shown in FIG. 3A. Race/support 21 and disc springs 23 may, for example only, be a Belleville™ race/support and a Belleville™ disc springs, respectively. At the other end of FSW tool 10 is a thrust bearing retainer 18.


In another embodiment, split collars 16 are replaced with nuts that are also called capture adjusting nuts. In a further embodiment, FSW tool may be for making more than two parallel welds.


In the following discussion, it is presumed that FSW tool 10 is to be rotated clockwise. In this case, both shoulders 14 are right handed shoulders, that is to say, have clockwise inner diameter threads and both of the shoulders 13 are left handed shoulders, that is to say, they have counterclockwise inner diameter threads.


As will be discussed in more detail below, each pin 12 has at least one flat area 34 that exists across the two types of threads as shown in FIG. 4D. These flats 34 prevent shoulders 13 and 14 from rotating during the engagement with split collars 16 and during friction stir welding. As shown in FIG. 6, shoulders 13 and 14 are affixed to shank-pin unit 11 through split collars 16, where each half of these split collars 16 has threads on an inner diameter 16b and an outer diameter 16a, while each of the shoulders 13 and 14 has threads on an inner diameter 13b and 14b, respectively. Shoulders 13 and 14 are affixed to the shank-pin unit 11 by turning and threading in split collars 16, so that their inner diameter 16b is threaded onto shank-pin unit 11 and their outer diameter 16a is threaded into the inner diameter 13b and 14b of shoulders 13 and 14. When split collars 16 are jammed-threaded against the threads on an outer diameter 11a of shank-pin unit 11 and inner diameter 13b and 14b of the shoulders, shoulders 13 and 14 get located and fixed along shank-pin unit 11.


Here, right hand shoulder 14 that is more towards the right is attached to shank-pin unit 11 having a shank portion and a pin portion 12a as shown in FIG. 4D. Right hand shoulder 14 that is more towards the left is attached to the same shank-pin unit 11 which includes pin portion 12a.


Similarly, left handed shoulder 13 is attached to shank-pin unit 11 having a shank portion and a pin portion 12b as shown in FIG. 4D. Left handed shoulder 13 that is more towards the right is attached to the same shank-pin unit 11 which includes pin portion 12b.


The threads on pin portions 12a are left handed threads, so that plasticized material is urged from a merge point 33 of pin portion 12a and pin portion 12b towards the scroll shoulders when FSW tool 10 is rotated in a clockwise direction. Likewise, the threads on pin portions 12b are right handed threads so that plasticized material is urged toward the corresponding shoulder when FSW tool 10 is so rotated. Also, split collars 16 firmly secure each shoulder 13 and 14 to shank-pin unit 11 in the correct place. Moreover, in one embodiment, optionally screws may be used to connect the two halves of split collar for extra security as shown in FIGS. 7A, 7B and 7C.


In one embodiment, the cross-sectional view of FSW tool 10 is shown in FIG. 2. Here, an axial tension rod 19 is disposed along the entire length of the shank-pin unit 11. When this rod 19 is put under tension, it puts the shark-pin under compression, parts of which are the pins between shoulders 14 and 13.


In one embodiment, FIG. 3A shows an exploded view of drive shank assembly of FSW tool 10. In one embodiment, FIG. 3B shows a cross-sectional view of an assembled drive shank assembly end 40 with thrust bearing 26. In one embodiment, FIG. 3C shows a bearing race 24 and thrust bearing retainer 18 holding thrust bearing 26 in place. In another embodiment of the present invention, thrust bearing 26 may be located at the drive shank end of the FSW tool as shown in FIG. 3B. Here, thrust bearing 26 is located between race/support 21 and collar retainer 22. Race/support 21 may, for example only, be a steel washer.


In one embodiment, one of the purposes of the thrust bearing 26 also called the swivel portion is to disengage and relieve the internal tension rod from the torsion experienced by the pins during the FSW operation.


In another embodiment, the shank-pin unit is a solid rod without an internal tension rod. In this case, a thrust bearing is not needed in the FSW tool.



FIG. 4A shows a hollow shank-pin unit 11 to possibly accommodate an internal tension rod in accordance with one embodiment of the present invention. Shank-pin unit 11 has a thread-less top end 28 and a thread-less bottom end 29. Thread-less top end 28 has a drive collar torque with four flats 28a for engaging with drive shank 17 (FIG. 1). In one embodiment, flats 28a are on the top, bottom, left and right side of thread-less top end 28 as shown in FIG. 4B. There is also a collar stop feature 36, which is comprised of the ends of the four flats (28a), against which the end face of the shank rests.



FIG. 4C shows the front view of thread-less bottom end 29 with tool shoulder torque flats 29a in accordance with one embodiment of the present invention. There are two opposite flats 29a on thread-less bottom end 29 for engaging with a “swivel” mechanism, when it is separate from an internal tension rod 19 with a tensioning mechanism, based on washers 27 (FIG. 3A) which may, for example only, be Bellville™ washers on the other end of shank-pin unit 11.


In one embodiment, FIG. 4D is an exploded view of the alternating left hand threads 12b and right hand thread 12a on shank-pin unit 11 with merge point 33 between the two types of threads. A flat area 34 exists across the two types of threads as shown in FIG. 4D. In one embodiment, shank-pin unit is threaded with opposite threads along its entire length. In another embodiment, shank-pin unit is threaded with opposite threads only where the pins are located and the threads are machined flat 120 or 90 degrees apart along the entire length of the pin-shank. These flats prevent the shoulders from rotating during the engagement with the split collars.



FIG. 5A shows another embodiment where a shank-pin unit 41 is solid. FIG. 5B. shows the flats that are machined into the opening 14a of shoulder 14 to be used on the FSW tool to engage with corresponding flats 42a on shank-pin unit 41 to prevent the rotation of shoulder 14 during welding. This tight fit between the opening 14a of shoulder 14 and an end 42 of shank-pin unit 41 reduces plasticized material from propagating or extruding into the threaded connection between the inner diameter of shoulder 14 and the outer diameter of shank-pin unit 41, which facilitates the ease of assembly, disassembly and adjustment of location of each shoulder.


The opening on each of the shoulders is designed to slip over the thread of the shank-pin unit and engage with flats during the welding operation. This opening in conjunction with the thread on the shoulder's inner diameter allow the placement of each shoulder, exactly where it needs to be along the shank-pin assembly and firmly secured to the shank-pin unit with the aid of the split collar.


In one embodiment, FIG. 6A shows how split collar 16 is engaged with to shoulder 14. Here, split collar 16 has an outside diameter 16a and an inside diameter 16b that is threaded. Split collar 16 is comprised of two halves. Once the two halves of split collar 16 are assembled it is screwed into the back end of shoulder 14. The threads on an inner diameter 14b (shown in FIG. 8) of shoulder 14 contact the threads on outside diameter 16a of split collar 16. The threads on the inner diameter 16b of split collar 16 is threaded on an outer diameter 11a (shown in FIG. 8) of shank-pin unit 11. Split collar 16 is rotated to engage shoulders 13 and 14, as shown by arrows A in FIG. 6B, to the outer diameter threads on the shank-pin 11. Optionally, in another embodiment, the two halves of split collar 16 may be further secured by the used of a set of screws 47 as shown in FIG. 7B.



FIGS. 7A, 7B and 7C show assembling shoulder 14 onto the shank-pin unit 11 where a split collar 16 is secured to the shank-pin unit with a set of screws 47 in accordance with an embodiment of the present invention. First, shoulder 14 is slipped over shank-pin 11 where it should be secured for welding relative to the pin (between shoulders 13 and 14). Then, two halves of split collar 16 are assembled and threaded around shank-pin unit 11 and the distal end of shoulder 14. Optionally, in another embodiment, two screws 47 are then inserted and tightened to secure split collar 16 to shank-pin unit 11 as shown by arrows B.


In one embodiment, FIG. 8 shows a cross-sectional view of a friction stir welding module 48 of FSW tool 10 that shows the relationship between shank-pin unit 11, shoulders 13 and 14 and split collars 16. Here, a pocket 49 for the accumulation of plasticized material from friction stir welding is shown between the back of shoulder 14 and the front of split collar 16. There is also an optional tapered pipe thread interface 37 to aid in the locking of split collar to shank-pin unit.


The loading mechanism of the tension rod and the thrust bearing/swivel portion may be placed on the ends of FSW tool in a variety of ways. In one embodiment, the tension rod loading mechanism may be combined with the swivel portion on drive end of the FSW tool. In another embodiment, the loading mechanism of the tension rod and the swivel portion may be on the drive end of the FSW tool but be separate from each other. In further embodiment, the loading mechanism may be on the drive end while the swivel portion is on the other end of the shank-pin unit.


In one embodiment, FIG. 9 shows two opposing multi-shoulder bobbin type friction stir welding tools 50 for simultaneously welding two parallel joints each.


In one embodiment, FIG. 10 shows the cross-sectional view of FIG. 9 that shows two opposing multi-shoulder bobbin type friction stir welding tools 50 for simultaneously welding two parallel joints each with internal tension rod 19. In another embodiment, shank-pin unit may be solid so there is no internal tension rod disposed along the entire length of the shank-pin unit.


In one embodiment, FIG. 11 shows two opposing multi-shoulder bobbin type friction stir welding tools 50 simultaneously welding two parallel joints each between workpieces 53 and 54.


There are many different types of torque-splitting transmissions that may be used to simultaneously and synchronically drive two multi-shoulder bobbin type friction stir welding tools. FIGS. 12A, 12B, 12C and 12D show examples of types of torque-splitting transmission that can be used to simultaneously and synchronically drive the two multi-shoulder bobbin type friction stir welding tools. Further, in another embodiment, the two multi-shoulder bobbin type friction stir welding tools may be driven simultaneously and synchronically by two Servo driven motors as shown in FIG. 13.


In one embodiment, FIG. 14 shows a cross-sectional view of the use of a double ended split collar 51 that allows the placement of two shoulders 52 back to back.


In one embodiment, FIG. 15A shows how capture adjusting nut 56 is attached to shoulder 14. Here, capture adjusting nut 56 has an outside diameter 56a and an inside diameter 56b that is threaded. Capture adjusting nut 56 is screwed into the back end of shoulder 14. The threads on an inner diameter 14b as shown in FIG. 15B of shoulder 14 contact the threads on outside diameter 56a of capture adjusting nut 56. The threads on the inner diameter 56b of capture adjusting nut 56 is threaded on an outer diameter 41a of shank-pin unit 41 as shown in FIG. 15B.



FIG. 15A also shows how capture adjusting nut 57 is attached to a drive shank with integrated shoulder 55. Here, capture adjusting nut 57 has an outside diameter 57a and an inside diameter 57b that is threaded. Capture adjusting nut 57 is threaded over outside diameter thread on pin 41 and at the same time it is inserted into the threadless inner diameter 55A of drive shank-shoulder 55 as shown in FIG. 15B. The outside diameter of capture adjusting nut 57 has a smooth groove 58a that is designed to “receive” the ends of screws 58. Screws 58 may freely turn/slide in groove 58a, as capture adjusting nut 57 is turned along pin 41 and thus moving shank-shoulder 55 with it to the right position along the pin 41. Then screws 58 are screwed into and through the walls of the shank-shoulder 55, to the point where the screw ends are placed in smooth groove 58a. With this design the space between the two shoulders, 14 and 55 (i.e. length of pin) is adjusted by rotating the capture adjusting nut 57, which moves along the threaded outside diameter of shank-pin 41, while “moving with it” the shank-shoulder 55, whose internal diameter is threadless and is attached to adjusting nut 57 through two pins, 58, that slide within groove 58a on the outside diameter of nut 57, as shown in arrow C in FIG. 15B.


While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.

Claims
  • 1. A multi-shouldered friction stir welding tool comprising: an integral shank-pin unit having a plurality of pin portions on the shank-pin unit,wherein the plurality of pin portions for driving into a plurality of joints to perform a friction stir welding operation on the corresponding plurality of joints and,wherein a shank portion of the shank-pin unit is for attachment of an optional axial tension rod, a plurality of friction stir welding modules, each of the friction stir welding modules comprising:a pair of shoulders that is connected to the shank-pin unit where each shoulder has a distal end and a proximal end, where the proximal end of each shoulder faces the pin portion of the shank-pin unit, whereby the shoulder and pin(s) rotate in unison; anda pair of split collars that is connected to the shank-pin unit and faces the distal end of each shoulder;wherein the plurality of friction stir welding modules are connected to each other whereby the modules rotate in unison to simultaneously make a plurality of parallel welds and wherein each split collar has a threaded outer diameter and a threaded inner diameter that is connected to the shank-pin unit by threading the outer diameter of the collar onto threads on an inner diameter of the shoulder and threading the inner diameter of the collar onto threads on an outer diameter of the shank-pin unit.
  • 2. The multi-shouldered friction stir welding tool of claim 1, wherein the axial tension rod is disposed within the shank portion of the shank-pin unit.
  • 3. The multi-shouldered friction stir welding tool of claim 2, wherein the shank-pin unit contains a loading means for placing the axial tension rod in tension and the shank-pin in compression.
  • 4. The multi-shouldered friction stir welding tool of claim 1, wherein the shank-pin unit has threadless ends with at least two flats along the length of the shank-pin unit.
  • 5. The multi-shouldered friction stir welding tool of claim 1, wherein each shoulder has an opening to facilitate contact with threads on the shank-pin unit.
  • 6. The multi-shouldered friction stir welding tool of claim 1, wherein each split collar is further tightened against or connected to the shank-pin unit by screws.
  • 7. The multi-shouldered friction stir welding tool of claim 3, wherein the loading means for placing the axial tension rod in compression is a bearing disposed in a shank-pin unit end for disengaging and relieving the torque experienced by the pin portions of the shank-pin unit during the friction stir welding operation.
  • 8. The multi-shouldered friction stir welding tool of claim 1, wherein the distal end of the shoulder and the threaded outer diameter of the collar create a small pocket to prevent the plasticized material from flowing out of the joint.
US Referenced Citations (88)
Number Name Date Kind
2227627 Bruzon Jan 1941 A
2351996 Morgan Jun 1944 A
2857793 Lucien Oct 1958 A
3264446 Gronlund Aug 1966 A
3487530 Ely Jan 1970 A
3555239 Kerth Jan 1971 A
3604612 Miller et al. Sep 1971 A
3643969 Finley et al. Feb 1972 A
3684855 Wepfer et al. Aug 1972 A
3702914 Noura Nov 1972 A
3718798 Randolph et al. Feb 1973 A
3789181 Netterstedt et al. Jan 1974 A
3873798 Friedman et al. Mar 1975 A
3942337 Leonard et al. Mar 1976 A
4122990 Tasaki et al. Oct 1978 A
4260869 Stevens et al. Apr 1981 A
4272973 Fu-Tsai Jun 1981 A
4356574 Johnson Nov 1982 A
4483106 Wachs et al. Nov 1984 A
4517865 Huang May 1985 A
4659903 Berne et al. Apr 1987 A
4767048 Kimbrough et al. Aug 1988 A
4809572 Sasaki Mar 1989 A
4835829 Welschof et al. Jun 1989 A
5460317 Thomas et al. Oct 1995 A
5697544 Wykes Dec 1997 A
5725698 Mahoney Mar 1998 A
5796068 Jones Aug 1998 A
5971252 Rosen et al. Oct 1999 A
5975406 Mahoney et al. Nov 1999 A
6029879 Cocks Feb 2000 A
6053391 Heideman et al. Apr 2000 A
6132435 Young Oct 2000 A
6227430 Rosen et al. May 2001 B1
6237829 Aota et al. May 2001 B1
6237835 Litwinski et al. May 2001 B1
6257479 Litwinski et al. Jul 2001 B1
6273323 Ezumi et al. Aug 2001 B1
6325273 Boon et al. Dec 2001 B1
6367524 Brewer Apr 2002 B1
6419142 Larsson Jul 2002 B1
6487943 Jansson et al. Dec 2002 B1
6497355 Ding et al. Dec 2002 B1
6510975 Enomoto Jan 2003 B2
6516992 Colligan Feb 2003 B1
6638641 Delano Oct 2003 B2
6648206 Nelson et al. Nov 2003 B2
6669075 Colligan Dec 2003 B2
6676004 Trapp et al. Jan 2004 B1
6685081 Iwata Feb 2004 B2
6706130 Minamitani et al. Mar 2004 B1
6712007 Yamamoto et al. Mar 2004 B2
6758382 Carter Jul 2004 B1
6779704 Nelson et al. Aug 2004 B2
6779709 Stotler et al. Aug 2004 B2
6799708 von Strombeck et al. Oct 2004 B2
6834889 Sunde et al. Dec 2004 B2
6880743 Coletta et al. Apr 2005 B1
6908690 Waldron et al. Jun 2005 B2
6936332 Aota et al. Aug 2005 B2
6974107 Christensen et al. Dec 2005 B2
6994242 Fuller et al. Feb 2006 B2
7025151 Hehli et al. Apr 2006 B2
7198189 Stol et al. Apr 2007 B2
7275675 Carter et al. Oct 2007 B1
7281647 Stol et al. Oct 2007 B2
7464852 Waldron et al. Dec 2008 B2
20010015369 Litwinski et al. Aug 2001 A1
20010025714 Lieser Oct 2001 A1
20030029903 Kashiki et al. Feb 2003 A1
20030217452 Talwar et al. Nov 2003 A1
20040035914 Hempstead Feb 2004 A1
20040191019 Lee et al. Sep 2004 A1
20040265065 Stecher et al. Dec 2004 A1
20050139640 Kay Jun 2005 A1
20050252947 Fujii et al. Nov 2005 A1
20050263569 Miller Dec 2005 A1
20060006211 Loitz et al. Jan 2006 A1
20060043151 Stol et al. Mar 2006 A1
20060043152 Stol et al. Mar 2006 A1
20060049232 Murakami Mar 2006 A1
20060065694 Stol et al. Mar 2006 A1
20060157531 Packer et al. Jul 2006 A1
20060254788 Bucher Nov 2006 A1
20060289604 Zettler Dec 2006 A1
20070000972 Koga et al. Jan 2007 A1
20070034671 Burton et al. Feb 2007 A1
20080217377 Stol et al. Sep 2008 A1
Foreign Referenced Citations (20)
Number Date Country
102005030800 Jan 2007 DE
2256807 Aug 1975 FR
11320128 Nov 1999 JP
11347753 Dec 1999 JP
2000176657 Jun 2000 JP
2000202647 Jul 2000 JP
2001129674 May 2001 JP
2002169077 Jun 2002 JP
2002263863 Sep 2002 JP
2003154469 May 2003 JP
2003236680 Aug 2003 JP
2003360574 Sep 2003 JP
0005025 Feb 2000 WO
0174526 Oct 2001 WO
0185385 Nov 2001 WO
2006009778 Jan 2006 WO
2006037051 Apr 2006 WO
2006081819 Aug 2006 WO
2008109649 Sep 2008 WO
2009114861 Sep 2009 WO
Related Publications (1)
Number Date Country
20090230173 A1 Sep 2009 US