The present invention relates generally to UV fluid treatment systems and specifically to such systems and methods that incorporate electrodes to facilitate advanced oxidation processes (AOP). Such electrodes include those that are based on electrolytic production of hydrogen peroxide, or are optimized for the production of hydrogen peroxide and/or for the destruction of organic contaminants in industrial wastewater, including mixed metal oxide electrodes having two kinds of metal oxides, such as those disclosed in U.S. Pat. No. 8,580,091 (issued Nov. 12, 2013), included herein by reference as if fully re-written herein.
AOP that generally use UV plus peroxide can be used for many water and wastewater (i.e. fluid) based oxidation processes. Conventional peroxide systems are chemical based and generally require the dangerous chemical to be tankered in and stored. The present invention offers many advantages over what is done now.
In one embodiment, the present invention incorporates an L-shaped electrode, placed upstream from the UV lamps, that forms hydroxyl radicals. The electrode is inserted into the UV reactor through the existing access hatch.
In one embodiment, elongated, tubular UV lamps are used as the UV radiation source. Such lamps produce the least UV at their ends. In other words, the radiation intensity is diminished resulting in a lower UV dosage delivered near the lamp ends.
Additionally, elongated medium pressure (MP) lamps blacken over time and the arc shortens. These characteristics result in diminished UV dosages in UV reactors having such lamps oriented transversely to the fluid flow. Accordingly, it would be advantageous to direct the flow of fluid away from the ends and towards the center of such elongated lamps. It is also advantageous to move the fluid away from the top and bottom of the chamber (i.e. vertically). The present invention overcomes these, as well as other disadvantageous that will be apparent to those of skill in the art, by tapering the electrode veins so as to direct the flow of fluid towards the center of the elongated lamps—the area of highest UV fluence.
In one embodiment, the electrodes are titanium mesh, coated with Iridium and/or Ruthenium. In one embodiment, the electrodes are made from a mesh-like structure which increases surface area and disrupts the fluid flow pattern more than a solid sheet would; which is advantageous. In one embodiment, the present invention incorporates an electrode inserted into an access hatch of a UV reactor, immediately upstream of the UV radiation source.
By applying a voltage to the electrode the water is hydrolyzed and hydroxyl radicals are formed immediately before the UV system lamps (aka UV radiation source). When the hydroxyl radicals interact with the UV lamps an advanced oxidation process occurs. This process can be used to oxidize many contaminants out of many different types of water, swimming pool, or other recreational water and waste water; including water for reuse, as well as ultra-pure water.
When such a system is operated with the electrode in front (i.e. upstream) of the UV system, it acts as an advanced oxidation process. When the system is operated with the electrode behind (i.e. downstream) the UV lamp, and salt is introduced into the water upstream of the UV lamps, the system will provide a self-contained UV system plus residual chlorine provider.
One advantage of the L-shaped electrode of the present invention is to maximize surface area. The electrode is powered by DC voltage, and it has variable output base on the amperage and DC voltage that is fed to it. The DC voltage can switch, so as to assist in the removal of any scale of hardness from the electrode surface. In one embodiment, the voltage polarity (relative to the cathode and anode) is switched so as to assist in the removal of any scale of hardness from the electrode surface.
H2O2+hν→2.OHΦ=1.0
A reduction reaction takes place at the negatively charged cathode with electrons (e−) from the cathode being given to hydrogen cations to form hydrogen gas (the half reaction balanced with acid):
Reduction at Cathode:
2H+(aq)+2e−→H2(g)
An oxidation reaction occurs at the positively charged anode, generating oxygen gas and giving electrons to the anode to complete the circuit:
Anode (Oxidation):
2H2O(l)→O2(g)+4H+(aq)+4e−
The same half reactions can also be balanced with base as listed below. Not all half reactions must be balanced with acid or base. Many do, like the oxidation or reduction of water listed here.
Cathode (Reduction):
2H2O(l)+2e−→H2(g)+2OH−(aq)
Anode (Oxidation):
4OH−(aq)→O2(g)+2H2O(l)+4e−
Combining either half reaction pair yields the same overall decomposition of water into oxygen and hydrogen:
Overall Reaction:
2H2O(l)→2H2(g)+O2(g)
The number of hydrogen molecules produced is thus twice the number of oxygen molecules. Assuming equal temperature and pressure for both gases, the produced hydrogen gas has therefore twice the volume of the produced oxygen gas. The number of electrons pushed through the water is twice the number of generated hydrogen molecules and four times the number of generated oxygen molecules. Some of the other advantages of the present invention include:
Production of active substances, immediately adjacent to the UV lamp(s) with no harmful disinfection by products;
Elimination of transport, storage, handling of Hydrogen Peroxide inherent with conventional systems;
Scalable, no moving parts; and
The L-shaped electrode improves water flow patterns, which therefore improve the performance of the UV system.
Initiation:
H2O2/HO2−=hν→2HO.
Propagation:
H2O2/HO2−+HO.→H2O/OH−+HO2.
H2O2+HO2./O2.→HO.+H2O/OH−+O2
Termination:
HO.+HO.→H2O2
HO.+HO2500/O2→H2O/OH−+O2
HO2.+HO2500/O2→H2O2/HO2−+O2
The table below lists the reference numerals employed in the figures, and identifies the element designated by each numeral.
In one embodiment, in a UV (i.e. ultra violet) fluid reactor 1, an electrode 5 comprises, a plurality of L-shaped, substantially planar cathodes 6; and a plurality of L-shaped, substantially planar anodes 7.
In one embodiment, the UV radiation source comprises a plurality of tubular, medium pressure, mercury vapor lamps, enclosed by a quartz sleeve. Those of skill in the art will appreciate that other UV radiation sources can be used (e.g. amalgam lamps) without compromising the spirit of the invention.
The plurality of L-shaped, substantially planar cathodes 6 are electrically connected to each other and are at substantially a first voltage. The plurality of L-shaped, substantially planar anodes 7 are electrically connected to each other and are at substantially a second voltage. In one embodiment, the first and second voltages differ by approximately 36 volts (e.g. the first voltage is zero and the second voltage is 36 volts). In one embodiment, the range of DC voltage is 0-36 volts, and 0-12 amps.
The voltage polarity can be switched, depending on how fouled the electrodes become. Reversing the polarities in such a manner achieves the advantage of mitigating scaling and/or the accumulation of other undesirable particles and/or substances. The interval of such reversal is calibrated according to the application. For example, in one embodiment, a timer is used and the interval (i.e. duty cycle) varies from once per day (worst case-heavy fouling/scaling) to once per month (soft water).
Each cathode 6 is electrically connected (and likewise for each anode 7) to each other. In one embodiment, the connectivity is achieved by inserting threaded titanium rod 18 (i.e. threaded conducting rod) through hole 14 of each upper, vertical portion 8 of each cathode 6, using titanium (i.e. conducting) spacers 19 as necessary to achieve the desired distance between each cathode. The connectivity of each anode 7 is achieved by inserting threaded titanium rod 18 (i.e. threaded conducting rod) through hole 15 of each upper, vertical portion 10 of each anode 7, using titanium spacers 19 as necessary to achieve the desired distance between each anode.
The electrically connected cathodes 6 are non-electrically connected to the electrically connected anodes 7 by first arranging the cathodes and anodes, relative to each other, so that there is one anode between every two cathodes and vice versa (except on the ends); and so that holes 16 and 17 are coaxially aligned. In other words, the cathodes and anodes are alternatingly, cooperatively arranged. This arrangement is depicted in
To achieve the non-electrical connection of cathodes 6 to anodes 7, non-conducting (e.g. PVC) threaded rods 20 are inserted through each of holes 16 in each lower, horizontal portion 9 of each cathode 6 as well as through each of holes 17 in each lower, horizontal portion 11 of each anode 7; using non-conducting spacers 21 as necessary to achieve the desired distance between each respective cathode and anode.
It is to be understood that the number of cathode/anode pairs can be varied to achieve differing levels of reaction. For example,
In one embodiment, the various cathodes 6 and anodes 7 are made from a mesh material. However, a solid material can be substituted. In another embodiment, each cathode and anode are made from a titanium mesh material that is coated with iridium and/or ruthenium. In one embodiment, mixed metal oxide, iridium and ruthenium oxide coated titanium substrates (e.g. grade 1 or 2, 0.063 inches thick) are used. It is to be understood that while titanium is used in some embodiments for the various electrodes, threaded rods, bolts, and spacers, other conducting metals may be used.
As shown in
In one embodiment, each cathode 6 and each anode 7 are substantially parallel to each other (
Those of skill in the art will appreciate that such an arrangement will direct the flow of fluid away from the ends of an elongated radiation source (e.g. a tubular medium pressure mercury vapor lamp) arranged perpendicularly (i.e. transverse) to fluid flow, towards the center of the radiation source. A distinct advantage is thereby achieved because the radiation intensity of such a radiation source is diminished somewhat towards the ends thereof.
In one embodiment, the veins (i.e. cathodes and anodes) are parallel (e.g.
In one embodiment (e.g.
Those of skill in the art will appreciate that the size of electrode 5 is proportional to the size of reactor 1. Thus, various sizes are possible in accordance with conventional reactors.
This application is a divisional application of and claims the benefit under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/229,775, titled ADVANCED OXIDATION SYSTEM AND METHOD IN A UV REACTOR WITH ELECTRODE, which was filed on Mar. 28, 2014, issued as U.S. Pat. No. 9,630,863, which is incorporated herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4830721 | Bianchi et al. | May 1989 | A |
5720869 | Yamanaka | Feb 1998 | A |
6420715 | Cormack | Jul 2002 | B1 |
7097764 | Neofotistos | Aug 2006 | B2 |
7507973 | Bircher | Mar 2009 | B2 |
8459861 | Bircher | Jun 2013 | B2 |
20100118301 | Vondras | May 2010 | A1 |
20110010835 | McCague | Jan 2011 | A1 |
20120048744 | Kim | Mar 2012 | A1 |
20130220829 | Rigby | Aug 2013 | A1 |
20140263092 | Sanchez Cano | Sep 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20170144901 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14229775 | Mar 2014 | US |
Child | 15423071 | US |