The modifications to scroll compressors relate generally to scroll compressors, expanders, and vacuum pumps that alter or reduce the pressure of gases within a container. More specifically, these modifications refer to bellows design, liquid cooling of a compressor, and tip seal improvements.
A unique aspect of the present invention is two bellows that allow liquid cooling of the compressor.
Scroll devices have been used as compressors and vacuum pumps for many years. In general, they have been limited to a single stage of compression due to the complexity of two or more stages. In a single stage, a spiral involute or scroll upon a rotating plate orbits within a fixed spiral or scroll upon a stationery plate. A motor shaft turns a shaft that orbits a scroll eccentrically within a fixed scroll. The eccentric orbit forces a gas through and out of the fixed scroll thus creating a vacuum in a container in communication with the fixed scroll. An expander operates with the same principle only turning the scrolls in reverse. When referring to compressors, it is understood that expander or vacuum pump can be used.
Often oil is used during manufacture and operation of compressors. Oil free or oilless scroll type compressors and vacuum pumps have difficult and expensive manufacturing, due to the high precision of the scroll in each compressor and pump. For oil lubricated equipment, swing links often minimize the leakage from gaps in the scrolls by allowing the scrolls to contact the plate of the scroll. Such links cannot be used in an oil free piece of equipment because of the friction and wear upon the scrolls. If the fixed and orbiting scrolls in oil free equipment lack precision, leakage will occur and the equipment performance will decline as vacuums take longer to induce or do not arise at all.
Prior art designs have previously improved vacuum pumps, particularly the tips of the scrolls. In the preceding work of this inventor, U.S. Pat. No. 6,511,308, a sealant is applied to the scrolls during manufacturing. The pump with the sealant upon the scrolls is then operated which distributes the sealant between the scrolls. The pump is then disassembled to let the sealant cure. After curing the sealant, the pump is reassembled for use.
Then in U.S. Pat. No. 3,802,809 to Vulkliez, a pump, has a scroll orbiting within a fixed scroll. Beneath the fixed disk 13, a bellows 11 guides the gases evacuated from a container. The bellows spans between the involute and the housing, nearly the height of the pump. This pump and many others are cooled by ambient air in the vicinity of the pump.
The present art overcomes the limitations of the prior art where a need exists for bellows in liquid cooling of compressive equipment and improved tip seals upon spirals. That is, the art of the present invention, modifications to scroll compressors utilize two bellows between two scrolls for liquid cooling, an improved tip seal design, and an improved coating method of the spirals.
Accordingly, the present invention improves scroll compressors and other equipment with bellows suitable for liquid cooling and a plunger actuated seal for the scroll tips. A bellows has a location spanning the fixed and the orbiting scrolls that provides for hermetic sealing of the entire scroll device. Using two bellows, the present invention allows for liquid cooling of a compressor. One bellows serves as an inlet and a second bellows serves as an outlet for coolant from the orbiting and fixed scrolls. Opposite the orbiting scroll, the bellows are in communication to exhaust heat from the coolant to the atmosphere. Then the orbiting scroll has a spiral upon a face. The spiral ends in a tip that passes adjacent to the scroll. To evacuate gases, the tip has a tight fit to the scroll as the tip orbits. The present invention provides a seal upon the tip that abuts the scrolls, a plunger behind the seal, and a spring upon the plunger. The spring and plunger combine to maintain the seal in positive contact with the scrolls.
Additionally, the present invention provides an improved coating upon the fixed scroll or involute. The coating seals the fixed and orbiting scrolls to each other without the use of epoxy. While epoxy seals scrolls, a compressor must run to distribute epoxy and then be cleaned to remove any excess epoxy. The improved coating seals the scrolls upon running the compressor and generates little if any excess coating.
Therefore, it is an object of the present invention to provide new and improved cooling for compressors, vacuum pumps, and expanders.
It is a further object of the present invention to provide hermetic sealing of the orbiting and fixed scrolls.
It is a still further object of the present invention to provide liquid cooling of compressors thus increasing the efficiency of the compressor.
It is an even still further object of the present invention to provide a seal that maintains contact with the opposing scroll as the seal wears during use.
These and other objects may become more apparent to those skilled in the art upon review of the invention as described herein, and upon undertaking a study of the description of its preferred embodiment, when viewed in conjunction with the drawings.
The same reference numerals refer to the same parts throughout the various figures.
The present art overcomes the prior art limitations by modifying scroll compressors and other pumps with bellows, liquid cooling using bellows, and tip seals. Turning to
Turning a compressor 1 upon its side,
Outwards of the scrolls upon the perimeter, an annular well forms within the compressor 1. The well generally extends around the circumference of the scrolls and at least the height of the scrolls outwards from the centerline of the scrolls. Within the annular well, the bellows 8 seals the scrolls. The bellows 8 as before has a generally hollow cylindrical shape with a round flange 9 upon each end. Here in section, the bellows 8 appears on edge as two equally spaced bands. The bellows 8 has a slight inclination to accommodate the eccentric shaft 5. Flanges 9 appear upon each end of the bands and connect the bellows 8 by bolting or other means to the scrolls. The flanges 9 have an annular shape with an inner diameter similar to the inner diameter of the bellows 8. In the preferred embodiment, the flanges 9 bolt to the scrolls. In alternate embodiments, the flanges 9 join the scrolls by welding or brazing. To fully seal the scrolls, the flanges 9 have a sealing ring 10. Here in section, the sealing ring 10 appears as four portions located at the ends of each band. The sealing rings 10 take up any gap between the flanges 9 and the scrolls thus sealing the bellows 8. O-rings or metal seals may serve as the sealing rings 10.
Liquid cooling of a compressor 1 becomes possible for selected equipment and applications. Liquid cooling proves useful for compressors 1 in confined locations with limited access to air, such as boats or spacecraft.
The grooves 13, 20 form a generally annular shape as shown in the sectional view of
Referencing the inlet and the outlet of
Upon the fixed scroll 3, the first bellows 22 and the second bellows 23 join to a first end plate 17. The first end plate 17 has a generally rectangular shape incorporated into the fixed scroll 3 and an upper surface and an opposite lower surface. The first end plate 17 bolts to the fixed scroll 3 in the preferred embodiment with the upper surface towards the orbiting scroll 4. Here the bolts 9a are located upon a line through the centers of the first bellows 22 and the second bellows 23. The first and second bellows join to the upper surface of the first end plate 17. Upon the lower surface, O-rings 10 seal fittings for the inlet and outlet of liquid coolant for the compressor 1. The O-rings 10 and fittings have a generally hollow round shape to ease connection of lines carrying the liquid coolant to and from the compressor 1.
Then upon the orbiting scroll 4, the first bellows 22 and the second bellows 23 join a second end plate 21. The second end plate 21 is fastened into the orbiting cooling plate 18, generally perpendicular to the first end plate 17. The second end plate 21 bolts to the orbiting cooling plate 18 with the bolts 9a upon the lateral axis of the second end plate 21, generally between the first and second bellows 23. O-rings 10 seal the first bellows 22 and the second bellows 23 to the second end plate 21.
And turning to
The modifications of the present invention also include a method of sealing the scrolls of a compressor 1. To attain high vacuums and maximum efficiency, imperfections and deviations in the scrolls must be sealed. Previously, epoxy was applied to the surfaces of the scrolls 3, 4, a compressor 1 was assembled and operated for a time, then the scrolls were disassembled and the tip seal grooves 25 cleaned, and then the epoxied scrolls were reassembled into a compressor 1. The present invention applies a mold release or other material upon the tips 24 of the scrolls for filling the tip seal groove 25, assembles the scrolls together, injects epoxy into the scrolls, then operates the compressor 1 for a time to disperse the epoxy. The mold release inhibits the adhesion and accumulation of epoxy upon the tips 24 thus reducing the need to disassemble, to clean, and then to reassemble the compressor 1. In the present invention, the epoxy occupies any gaps between the adjacent scroll's plate. The method of the present invention may eliminate the need for a tip seal 29 as previously described. In the preferred embodiment of this method, the mold release is a lubricating fluid. In an alternate embodiment, this method uses a mold release selected from elastomers, gels, greases, low hardness plastics, and pliable sealants. The method of the present invention applies to scroll compressors, vacuum pumps, and expanders alike.
From the aforementioned description, modifications to a scroll compressor have been described. The modifications of the present invention are uniquely capable of sealing the fixed and orbiting scrolls of the compressor, providing liquid cooling, and sealing the tips of the scrolls. The modifications of the present invention and its various components adapt existing equipment and may be manufactured from many materials including but not limited to metal sheets and foils, elastomers, steel plates, polymers, high density polyethylene, polypropylene, polyvinyl chloride, nylon, ferrous and non-ferrous metals, their alloys, and composites.
This nonprovisional patent application claims priority to the provisional patent application having Ser. No. 60/773,274, which was filed on Feb. 14, 2006. The provisional application was filed during the pendency of PCT application Ser. No. PCT/US01/50377 which was filed on Dec. 31, 2001 designating the U.S., and which claimed priority to the U.S. non-provisional application Ser. No. 09/751,057 which was filed on Jan. 2, 2001 and is now U.S. Pat. No. 6,511,308.
Number | Name | Date | Kind |
---|---|---|---|
3802809 | Vulliez | Apr 1974 | A |
3986799 | McCullough | Oct 1976 | A |
3994636 | McCullough et al. | Nov 1976 | A |
4340339 | Hiraga et al. | Jul 1982 | A |
4415317 | Butterworth | Nov 1983 | A |
4416597 | Eber et al. | Nov 1983 | A |
4462771 | Teegarden | Jul 1984 | A |
4718836 | Pottier et al. | Jan 1988 | A |
4730375 | Nakamura et al. | Mar 1988 | A |
4892469 | McCullough et al. | Jan 1990 | A |
5160253 | Okada et al. | Nov 1992 | A |
5466134 | Shaffer et al. | Nov 1995 | A |
5632612 | Shaffer | May 1997 | A |
5752816 | Shaffer | May 1998 | A |
5759020 | Shaffer | Jun 1998 | A |
5951268 | Pottier et al. | Sep 1999 | A |
6050792 | Shaffer | Apr 2000 | A |
6129530 | Shaffer | Oct 2000 | A |
6379134 | Iizuka | Apr 2002 | B2 |
6439864 | Shaffer | Aug 2002 | B1 |
6511308 | Shaffer | Jan 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20070189912 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60773274 | Feb 2006 | US |