The present Application is based on International Application No. PCT/EP2004/053325, filed on Dec. 8, 2004, which in turn corresponds to FR 03/15022 filed on Dec. 19, 2003, and priority is hereby claimed under 35 USC §119 based on these applications. Each of these applications are hereby incorporated by reference in their entirety into the present application.
1. Field of the Invention
The field of the invention is that of onboard terrain anticollision systems for aircraft.
2. Description of the Prior Art
Collisions with the terrain while the aircraft is fully controlled also called “CFIT”, the acronym standing for “Controlled Flight Into Terrain”, have been and still remain one of the main causes of air disasters. Developed some thirty years ago, the systems termed “GPWS”, the acronym standing for “Ground Proximity Warning System”, have allowed a significant reduction in the number of accidents. They are based on the use of radio-probes which make it possible to determine in an instantaneous manner the position of the aircraft with respect to the ground. These rudimentary and nonpredictive systems have not however made it possible to completely eliminate accidents of this type.
More recently, “GCAS” type systems, the acronym standing for “Ground Avoidance Collision System”, have appeared. These systems rely on the use of systems for predicting potential trajectories of the craft and the determination of possible collisions between these trajectories and the terrain. The pilot can thus anticipate a future collision and react accordingly.
More recently still, terrain anticollision systems have taken the generic term of “TAWS”, the acronym standing for “Terrain Awareness Warning System”, and cover all systems possessing a function for predicting potential collisions with the terrain. These systems are defined by an international aeronautical standard, the TSO C151A, and fulfill in addition to the customary GPWS functions, the additional functions of predictive alert of risks of collision with the relief and/or obstacles on the ground termed “FLTA”, the acronym standing for “predictive Forward-Looking Terrain collision Awareness and alerting” and of premature descent termed “PDA”, the acronym standing for <<Premature Descent Alerting”. These FLTA and PDA functions consist in warning the crew through timely prealerts or alerts whenever, under controlled flight, a situation of risk of collision with the terrain arises, in particular when the short-term foreseeable trajectory of the aircraft encounters the relief and/or an obstacle on the ground, so that an avoidance maneuver is engaged. The pilot can thus avoid the “CFIT” by an appropriate avoidance maneuver. The basic maneuver is termed “pull-up” signifying vertical avoidance.
These functions can according to the implementation be grouped into a single mode termed “CPA”, the acronym standing for “Collision Prediction and Alerting”.
The first generation of “TAWS” systems affords the functions of prediction of potential trajectories, of determination of risk of collision with the terrain, of cartographic display of the terrain comprising the indication of the risk of collision and of audible alerts in the event of risk of collision. Certain second-generation systems of the “TAWS” systems allow not only the prediction of the risk of collision with the terrain, but also alert the pilot as to the feasibility of the disengagement maneuver to be performed to anticipate this risk of collision. This is rendered possible by the use in real time of the upward speed capabilities of the aircraft.
In a more precise manner, the “CPA” mode is based on a comparison between a surface also called the safety profile denoted S or “clearance sensor” and the surface or the terrain profile situated under said surface or said safety profile, said comparison taking account of a safety margin. The terrain profile arises from a topographic representation extracted from a terrain and/or obstacles database onboard the aircraft and is correlated with the position of the aircraft by virtue of the position sensors of the aircraft.
The safety surface or profile S are represented diagrammatically in the two cross sections of
The intersection of said surface S with a vertical plane containing the aircraft A forms a trajectory termed the predicted trajectory TP. In
This origin O determined, the predicted trajectory TP comprises two main parts as is indicated in the lateral view of
Generally, the flight time T1 is at least equal to the response time necessary for initializing a vertical avoidance maneuver.
The second part is also called “SVRMB”, the acronym standing for “Standard Vertical Recovery Maneuver Boundary”. It models a lower limit of the standard vertical avoidance trajectory supposed to make it possible to avoid the collision with the terrain. The maneuver comprises, for the pilot, the following successive operations:
The future trajectory TF of the aircraft in the event of a vertical avoidance maneuver is depicted dashed in the lateral view of this figure.
The safety surface or profile are limited laterally by a left limit TG and a right limit TD as is seen in the view from above of
The limits of the terrain situated under the aircraft used for the comparison with the safety surface or profile are obtained by the vertical projection of the left and right limits of the safety surface onto the terrain situated under the aircraft.
The lateral margin ML taken in a horizontal plane passing through the origin O typically equals 100 meters on either side of the aircraft. The aperture angles can vary as a function of the forecast curvature of the future trajectory of the craft in a horizontal plane. Said trajectory is represented dashed in
Currently, the “CPA” mode calculates two safety surfaces or profiles, the first surface SMT is called the medium-term safety Surface or Profile or else the “Medium Term Clearance Sensor” and the second SCT is called the short-term safety Surface or Profile or else the “Short Term Clearance Sensor”. These surfaces are represented in
The short-term safety surface or profile are calculated as indicated in the previous paragraphs.
The medium-term safety surface or profile comprise two parts. The first part can be determined in a similar way to the first part of the safety surface or of the short-term profile. The second part corresponds to a second surface or a second safety profile that can be built according to calculation principles similar to those of the short-term safety surface or profile but by taking the origin O′ of said second surface no longer at the level of the aircraft A but on the predicted trajectory ahead of the aircraft. Typically, the first flight time T1 of the predicted trajectory of the medium-term safety surface or profile has a duration of about 20, the first flight time of the predicted trajectory of the short-term safety surface or profile has a duration of about 8 seconds. These values of 20 and of 8 seconds can be modulated as a function of considerations such as the height of the aircraft above the ground, the air-speed of the aircraft, its vertical speed, the proximity of an airport, etc.
The medium-term safety surface or profile SMT is dedicated, in conjunction with the surface or the profile of the terrain, corresponding to the advanced detection of risk of collision with the terrain G as indicated in
The short-term safety surface or profile SCT is dedicated, in conjunction with the surface or the profile of the corresponding terrain, to the detection of risk of imminent collision with the terrain G as indicated in
Nevertheless, in certain cases, the alarm associated with a vertical avoidance is replaced by an alarm termed the transverse avoidance alarm also called “avoid terrain”. These cases arise when a vertical avoidance trajectory would not make it possible to avoid the collision with the terrain, typically when starting a turn or stopping a turn in mountainous zones. The transverse avoidance must not, in these particular cases, limit itself to a simple maneuver termed a vertical evade but also integrate a transverse component so as to avoid the collision, the maneuver rate being able to be provided by the TAWS system. In this case, the dangerous terrain is typically represented by alternately red and black bands on the displays of the instrument panel. The pilot absolutely must instigate a transverse avoidance maneuver.
This “avoid terrain” alarm is triggered in certain specific situations detailed below:
The transverse avoidance maneuver consists either in carrying out a vertical avoidance maneuver accompanied by a turn with an appropriate radius of deflection, or else in a correction of the last piloting action performed by the pilot to obtain the necessary trajectory correction.
One of the tricky points in the management of “TAWS” systems is to precisely determine the situations in which the transverse avoidance alarm termed “avoid terrain” must be triggered, simple comparison between the medium- and short-term safety surfaces or profiles and the surfaces or terrain profiles possibly proving to be insufficient in the specific situations mentioned above.
Specifically with such a comparison, the height of overshoot of the terrain above the safety surface is not established.
The invention proposes to consider in addition to the safety surfaces or profiles ordinarily calculated a surface or a profile called the immediate safety surface or profile or else the “Immediate Clearance Sensor” making it possible to discern with greater exactness the type of alarm and maneuver to be performed. Such an invention makes it possible to provide alarms appropriate to the situation and hence to thus decrease in an appreciable manner the risk of collision with the terrain.
More precisely, the invention is aimed at an onboard terrain anticollision device for aircraft comprising at least:
Advantageously, the device also comprises:
The invention will be better understood and other advantages will appear on reading the description which will follow given without limitation and by virtue of the appended figures among which:
Referring to
The medium-term safety Surface or Profile SMT is dedicated to the detection of a potential collision with the terrain in the medium term. In the event of risk of collision, a prealarm is emitted in such a way that the pilot takes cognizance of the risk and can anticipate this danger.
The short-term safety surface SCT is dedicated to the detection of a potential collision with the terrain in the short-term. In the event of risk of collision, a first alarm is emitted indicating to the pilot that he must instigate forthwith a vertical avoidance maneuver termed “pull-up”.
The safety surface or profile termed immediate SI is dedicated to the detection of a potential collision with the terrain in the very short term, which collision may not be avoided by a simple vertical avoidance maneuver. In the event of risk of collision, a second alarm is emitted for transverse avoidance termed “avoid terrain”, noticeably different from the alarm termed “pull-up”. In the majority of cases, the pilot must then instigate either a transverse avoidance maneuver or a cancellation of the trajectory correction having led to this situation.
The calculation of this immediate safety surface or profile makes it possible to discriminate the situations where a “pull-up” maneuver is sufficient for avoiding the collision from the situations where an “avoid terrain” maneuver is imperative for avoiding the collision, this discrimination being ensured neither by first-generation “TAWS” systems, nor in a fully satisfactory manner by second-generation “TAWS” systems.
Consequently, the first alarm is of the vertical avoidance alarm type and the second alarm is of the transverse avoidance alarm type, the vertical avoidance alarm corresponding for the pilot to a vertical avoidance maneuver and the transverse avoidance alarm corresponding for the pilot to a transverse avoidance maneuver.
The medium-term, short-term and immediate safety surfaces or profiles are defined as previously as a function of a predicted trajectory bounded by two lateral limits. Each of the predicted trajectories comprises two parts:
The parameters defining the immediate safety surface or profile S1 termed the “Immediate Clearance Sensor” according to the invention can be neighboring or identical with those defining the medium-term and short-term safety surface or profile. To optimize the effectiveness of said immediate safety surface or profile, the lateral margins or the angles of right and left lateral aperture of the limits of said immediate safety surface or profile can also be substantially different from the lateral margins or from the angles of right and left lateral aperture of the limits of the other predicted surfaces. To improve the effectiveness of the system according to the invention, at least one of the first comparison means or second comparison means (the first comparison unit or the second comparison unit) can advantageously comprise a criticality indicator of the risk of collision with the terrain. Said criticality indicator can depend on the surface or on the terrain profile situated above one of the safety surfaces or profile. It can also depend on the terrain surface and on the terrain height situated above one of the safety surfaces.
The first flight time for the medium-term safety surfaces or profiles has a duration of about 20, the first flight time for the short-term safety surface or profile has a duration of about 8 seconds and the first flight time for the immediate safety surface or profile has a low duration, typically less than 3 seconds.
The first, the second and the third safety surface or profiles are bounded laterally by a left limit and a right limit, said limits being defined essentially by a lateral margin and at least one angle of left lateral aperture and at least one angle of right lateral aperture.
The parameters defining the immediate safety surface or profile SI termed the “Immediate Clearance Sensor” according to the invention can be neighboring or identical with those defining the medium-term and short-term safety surface or profile. To optimize the effectiveness of said immediate safety surface or profile, the lateral margins or the angles of right and left lateral aperture of the limits of said immediate safety surface or profile can also be substantially different from the lateral margins or from the angles of right and left lateral aperture of the limits of the other predicted surfaces. To improve the effectiveness of the system according to the invention, at least one of the first comparison means or second comparison means can advantageously comprise a criticality indicator of the risk of collision with the terrain. Said criticality indicator can depend on the surface or on the terrain profile situated above one of the safety surfaces or profile. It can also depend on the terrain surface and on the terrain height situated above one of the safety surfaces.
The alarms are of audible or visual type. They can be indicated in the latter case on the displays of the instrument panel of the aircraft.
Advantageously, the information processing means (the information processing apparatus) can comprise means of alarm management (alarm management unit) as a function of the evolution of the risks of collision with the terrain.
The device then comprises means for switching the transverse avoidance and vertical avoidance alarms, when the situation of the aircraft evolves. Specifically, the alarms provided by devices of this type are typically maintained so long as the situation of danger of collision is not resolved.
In order to avoid unscheduled switchings, such a switching can typically be performed when the situation of the aircraft has changed in a significant manner and the trajectory has evolved noticeably, for example by a change of the slope or of the roll or of the heading of more than a few degrees, typically from 2 to 10 degrees.
Number | Date | Country | Kind |
---|---|---|---|
03 15022 | Dec 2003 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2004/053325 | 12/8/2004 | WO | 00 | 6/19/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/069093 | 7/28/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4354237 | Lambregts et al. | Oct 1982 | A |
4567483 | Bateman et al. | Jan 1986 | A |
4684948 | Bateman | Aug 1987 | A |
4914436 | Bateman et al. | Apr 1990 | A |
5414631 | Denoize et al. | May 1995 | A |
5442556 | Boyes et al. | Aug 1995 | A |
5488563 | Chazelle et al. | Jan 1996 | A |
5677842 | Denoize et al. | Oct 1997 | A |
5884222 | Denoize et al. | Mar 1999 | A |
5892462 | Tran | Apr 1999 | A |
6088654 | Lepere et al. | Jul 2000 | A |
6317663 | Meunier et al. | Nov 2001 | B1 |
6370475 | Breed et al. | Apr 2002 | B1 |
6405132 | Breed et al. | Jun 2002 | B1 |
6433729 | Staggs | Aug 2002 | B1 |
6480120 | Meunier | Nov 2002 | B1 |
6484072 | Anderson et al. | Nov 2002 | B1 |
6525674 | Kelly et al. | Feb 2003 | B1 |
6546338 | Sainthuile et al. | Apr 2003 | B2 |
6583733 | Ishihara et al. | Jun 2003 | B2 |
6606034 | Muller et al. | Aug 2003 | B1 |
6906641 | Ishihara | Jun 2005 | B2 |
7173545 | Berthe | Feb 2007 | B2 |
7321813 | Meunier | Jan 2008 | B2 |
7386373 | Chen et al. | Jun 2008 | B1 |
20030107499 | Lepere et al. | Jun 2003 | A1 |
20040181318 | Redmond et al. | Sep 2004 | A1 |
20060052912 | Meunier | Mar 2006 | A1 |
20060074559 | Meunier | Apr 2006 | A1 |
20060097895 | Reynolds et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070185652 A1 | Aug 2007 | US |