The present disclosure relates to steam generating systems which can be used in combination with carbon capture sequestration (CCS) technology for use in coal-fired power generation.
During combustion, the chemical energy in a fuel is converted to thermal heat inside the furnace of a boiler. The thermal heat is captured through heat-absorbing surfaces in the boiler to produce steam. The fuels used in the furnace include a wide range of solid, liquid, and gaseous substances, including coal, natural gas, and diesel oil. Combustion transforms the fuel into a large number of chemical compounds. Water and carbon dioxide (CO2) are the products of complete combustion. Incomplete combustion reactions may result in undesirable byproducts that can include particulates (e.g. fly ash, slag), acid gases such as SOx or NOx, metals such as mercury or arsenic, carbon monoxide (CO), and hydrocarbons (HC).
The steam generator operates with a variable pressure profile versus load (subcritical to supercritical pressure). The water enters the economizer through inlet 141 and absorbs heat, then travels from economizer outlet 142 to inlet 143 at the base of the furnace. A lower bottle (not shown) may be present to distribute this water. The water then travels up through the furnace wall tubes 30. As the water travels through these water tubes 30, the water cools the tubes exposed to high-temperature flue gas in the combustion chamber 60 and absorbs energy from the flue gas to become a steam-water mixture at subcritical pressure (and remains a single phase fluid if at supercritical pressure conditions). The fluid is discharged into the vertical steam separators 42, where the steam-water mixture is separated, when subcritical, into wet steam (i.e., saturated steam) and water. Any water can exit via downcomer 50 and pass from outlet 144 to the economizer inlet 141. When the fluid is supercritical, the vertical separators act as conveying pipes with all the entering steam leaving from the top outlets. The steam is used to cool the flue gas in the convection pass path 70 of the furnace through steam tubes or roof tubes 75 leading from the vertical separator. The steam then passes from outlet 149 to inlet 145 and is fed through superheater heating surface 80, then sent to the high pressure steam turbine (reference number 146). Steam returning from the high pressure steam turbine (reference number 147) passes through the reheater heating surface 90 to absorbing additional energy from the flue gas, and can then be sent to a second intermediate-pressure or low-pressure steam turbine (reference number 148). The steam sent to the turbines is generally dry steam (100% steam, no water). The steam from the superheater 80 heating surfaces can be sent to a high pressure (HP) turbine, then from the reheater 90 heating surface to the intermediate pressure (IP) and low pressure (LP) steam turbine stages (not shown). Feedwater conveyed through economizer 100 may also be used to absorb energy from the flue gas before the flue gas exits the boiler; the heated feedwater is then sent to the furnace enclosure tubes 30, or can be sent through superheater 80 and reheater 90.
Referring to the gas flow system, air for combustion can be supplied to the furnace 20 through several means. Typically, a fan 102 supplies air 104 to a regenerative air heater 106. The heated air is then sent as secondary air 108 to windboxes for distribution to individual burners and as primary air 110 to the coal pulverizer 112, where coal is dried and pulverized. The primary air (now carrying coal particles) 116 is then sent to the burners 120 and mixed with the secondary air 108 for combustion and formation of flue gas 130 in the combustion chamber 60. The flue gas flows upwardly through the furnace combustion chamber 60 and then follows the convection pass path 70 to flue gas exhaust 160 past superheater 80, reheater 90, and economizer 100. The flue gas can then be passed through the regenerative air heater 106 (to heat the incoming air 104) and pollution control equipment 114 and, if desired, recycled through the furnace 20. The flue gas exits the boiler 10 through the flue gas exhaust 160.
As illustrated here, the steam outlet terminals of a Carolina style boiler are located at the top of the boiler, generally at a relatively high elevation from grade of about 200 feet. The steam is then carried to a steam turbine via steam leads (i.e. pipes). The steam leads are made from a nickel alloy for 700° C. steam temperatures, which is very expensive. Due to the location of the steam outlet terminals at the top of the boiler, the length of the steam leads can be very great. It would be desirable to be able to reduce the length of the steam leads from the steam outlet terminals of the boiler to the steam turbine where the steam is used to generate electricity.
The present disclosure relates to a boiler system which can be used in conjunction with a steam turbine to generate electricity. The steam outlet terminals of the boiler are located at the base of the boiler, instead of at the top of the boiler. This reduces the needed length of the steam leads, in turn reducing the cost and improving the economics of the overall system.
Disclosed in various embodiments herein is a steam generator, comprising: a downdraft furnace enclosure formed from walls made of water or steam cooled tubes, and wherein the furnace walls define a top end and a bottom gas outlet; a convection pass enclosure including a bottom gas inlet and horizontal tube banks located above the bottom gas inlet; a hopper tunnel connecting the bottom gas outlet of the downdraft furnace enclosure to the bottom gas inlet of the convection pass enclosure; and a steam outlet terminal located at the base of the steam generator.
The bottom gas outlet of the downdraft furnace enclosure may include an outwardly-extending throat that extends into a porthole of the bottom gas inlet of the convection pass enclosure.
The top end of the downdraft furnace enclosure may include a gas inlet for receiving flue gas from an associated furnace.
The steam generator may further comprise a windbox and burners at the top end of the downdraft furnace enclosure for generating flue gas.
The flue gas exiting the convection pass enclosure may be recirculated to the top end of the downdraft furnace enclosure, to a base of the downdraft furnace enclosure, and/or to a base of the convection pass enclosure.
The flue gas exiting the convection pass enclosure may pass through a particulate cleaning device and then be recirculated to the top end of the downdraft furnace enclosure, a base of the downdraft furnace enclosure, or a base of the convection pass enclosure.
The hopper tunnel may be lined with a refractory material. The hopper tunnel can include a submerged chain conveyor for removing ash and slag. The submerged chain conveyor may travel in-line with the flue gas flow, or may travel transverse to the flue gas flow.
Alternatively, the hopper tunnel can be formed from steam or water-cooled tube panels. Water trough seals may be present between the downdraft furnace enclosure, the hopper tunnel, and the convection pass enclosure.
The fluid in the tubes of the downdraft furnace enclosure can flow counter-current to flue gas flow.
The convection pass enclosure is sometimes formed from enclosure walls made of steam or water cooled tubes, wherein the cooling fluid in the tubes of the convection pass enclosure flow co-current to flue gas flow.
The horizontal tube banks in the convection pass enclosure may include superheaters, reheaters, and economizers.
The steam generator may further comprise an upper horizontal pass enclosure connected to a top end of the convection pass enclosure and a down pass, the upper horizontal pass and the down pass containing additional tube banks.
These and other non-limiting characteristics are more particularly described below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.
A more complete understanding of the components, processes, and apparatuses disclosed herein can be obtained by reference to the accompanying drawings. These figures are merely schematic representations based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
As used in the specification and in the claims, the term “comprising” may include the embodiments “consisting of” and “consisting essentially of.”
Numerical values should be understood to include numerical values which are the same when reduced to the same number of significant figures and numerical values which differ from the stated value by less than the experimental error of conventional measurement technique of the type described in the present application to determine the value.
All ranges disclosed herein are inclusive of the recited endpoint and independently combinable (for example, the range of “from 2 watts to 10 watts” is inclusive of the endpoints, 2 watts and 10 watts, and all the intermediate values).
As used herein, approximating language may be applied to modify any quantitative representation that may vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially,” may not be limited to the precise value specified, in some cases. The modifier “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the expression “from about 2 to about 4” also discloses the range “from 2 to 4.”
The terms “waterside”, “water cooled”, “steam cooled” or “fluid side” refer to any area of the boiler that is exposed to water or steam. In contrast, the terms “airside”, “gas side” or “fireside” refer to an area of the boiler that is exposed to direct heat from the furnace, or in other words the combustion gas from the furnace. Where the specification refers to water and/or steam, the liquid and/or gaseous states of other fluids may also be used in the methods of the present disclosure.
It should be noted that many of the terms used herein are relative terms. For example, the terms “upper” and “lower” are relative to each other in location, i.e. an upper component is located at a higher elevation than a lower component in a given orientation. The terms “inlet” and “outlet” are relative to a fluid flowing through them with respect to a given structure, e.g. a fluid flows through the inlet into the structure and flows through the outlet out of the structure. The terms “upstream” and “downstream” are relative to the direction in which a fluid flows through various components, i.e. the flow fluids through an upstream component prior to flowing through the downstream component.
The terms “horizontal” and “vertical” are used to indicate direction relative to an absolute reference, i.e. ground level. However, these terms should not be construed to require structures to be absolutely parallel or absolutely perpendicular to each other. For example, a first vertical structure and a second vertical structure are not necessarily parallel to each other. The terms “top” and “bottom” or “base” are used to refer to surfaces where the top is always higher than the bottom/base relative to an absolute reference, i.e. the surface of the earth. The terms “above” and “below” are used to refer to the location of two structures relative to an absolute reference. For example, when the first component is located above a second component, this means the first component will always be higher than the second component relative to the surface of the earth. The terms “upwards” and “downwards” are also relative to an absolute reference; an upwards flow is always against the gravity of the earth.
As used herein, the term “supercritical” refers to a fluid that is at a temperature above its critical temperature or at a pressure above its critical pressure or both. For example, the critical temperature of water is 374.15° C., and the critical pressure of water is 3200.1 psia (22.1 MPa). A fluid at a temperature that is above its boiling point at a given pressure but is below its critical pressure is considered to be “superheated” but “subcritical”. A superheated fluid can be cooled (i.e. transfer energy) without changing its phase. As used herein, the term “wet steam” refers to a saturated steam/water mixture (i.e., steam with less than 100% quality where quality is percent steam content by mass). As used herein, the term “dry steam” refers to steam having a quality equal to greater than 100% (i.e., no liquid water is present). Supercritical water or steam will have no visible bubble interface or meniscus forming during a heating or cooling process due to zero surface tension on reaching the critical point temperature. The fluid continues to act like a single phase flow while converting from water to steam or steam to water, and is a non-equilibrium thermodynamic condition where rapid changes in density, viscosity and thermal conductivity can occur.
To the extent that explanations of certain terminology or principles of the solar receiver, boiler and/or steam generator arts may be necessary to understand the present disclosure, the reader is referred to Steam/its generation and use, 40th Edition, Stultz and Kitto, Eds., Copyright 1992, The Babcock & Wilcox Company, and to Steam/its generation and use, 41st Edition, Kitto and Stultz, Eds., Copyright 2005, The Babcock & Wilcox Company, the texts of which are hereby incorporated by reference as though fully set forth herein.
In the conventional boiler of
In the Carolina (two-pass) boiler of
In use, air and coal are fed into the top end 212 by the windbox or roof vestibule 218, and combusted using the burners 220 to generate hot flue gas 202. Oxy-combustion (i.e. using oxygen-enriched recirculated gas) or air firing can be used. The windbox also generates an air flow that causes the flue gas to flow downwards due to mechanical draft fans (rather than rising as would naturally occur; the downdraft is aided by the wall cooling the flue gas). A bottom gas outlet 222 is present at the bottom end 214, through which the hot flue gas exits the furnace enclosure 210. The flue gas flows through a hopper tunnel 270 located at the base of the furnace enclosure. The hopper tunnel 270 fluidly connects the bottom gas outlet 222 of the downdraft furnace enclosure with a bottom gas inlet 236 of the convection pass enclosure. The hopper tunnel also flexibly seals the bottom gas outlet and the bottom gas inlet. When exiting the downdraft furnace enclosure, the flue gas may have a temperature of about 500° F. to about 2500° F. The flue gas 202 then flows upwards through the convection pass enclosure 230 past horizontally arranged tube banks that act as superheater 240, reheater 242, and/or economizer 244 surfaces. These surfaces capture additional energy from the flue gas. When exiting the convection pass enclosure, the flue gas may have a temperature of about 240° F. to about 825° F. The convection pass enclosure 230 itself also has a top end 232 and a bottom end 234.
The flue gas may pass through a regenerative air heater 302 to transfer some of the remaining heat energy to incoming air. The flue gas may also be sent to pollution control units to remove undesired byproducts. For example, the flue gas can pass through a selective catalytic reduction (SCR) unit 300 to remove NOx, a flue gas desulfurization (FGD) unit 304 to remove SOx, and/or a particulate cleaning device 306 (e.g. a baghouse or electrostatic precipitator). The pollution control units and the regenerative air heater are placed in an order suitable for optimum pollution reduction. For example, in specific embodiments, the SCR unit 300 is placed upstream of the regenerative air heater 302. If desired, the flue gas exiting the convection pass enclosure may be recirculated to the windbox or vestibule 218 at the top of the furnace enclosure, a practice generally referred to as gas recirculation (reference numeral 310). If desired, the flue gas exiting the convection pass enclosure can also be recirculated to the base 252 of the downdraft furnace enclosure for steam temperature control (reference numeral 312) and/or to the base 254 of the convection pass enclosure (reference numeral 314) and used to control the flue gas temperature, which is generally referred to as gas tempering. The steam generator may include any of these recirculation paths, or may include all three recirculation paths.
With regard to the fluid flow in the downdraft furnace enclosure, relatively cold water from the economizer outlet enters the steam generator at the base of the furnace walls 216, and flows through the water tubes, becoming a steam/water mixture by absorbing the heat energy in the flue gas. This water flows counter-current to the flue gas flow (i.e. the water flows upwards while the flue gas flows downwards). The steam/water mixture is collected in outlet headers and sent to vertical steam separators 260 and separated into wet steam and water. The steam is sent to the convection pass enclosure 230 through the superheater 240 then to the steam turbine, and then returns from the steam turbine to pass through the reheater 242 tube banks in the convection pass enclosure. In some embodiments, the convection pass enclosure is also formed from enclosure walls made of water or steam cooled tubes, which can also capture energy. In such embodiments, the fluid flow in the enclosure walls of the convection pass enclosure is co-current to the flue gas flow (i.e. both flow upwards). Generally, the downdraft furnace enclosure is water-cooled at lower loads and becomes steam cooled near the outlet at higher loads, while the convection pass enclosure is steam-cooled.
The supercritical steam and/or reheat steam exits at one or more steam outlet terminals located at the base 254 of the convection pass enclosure, which is part of the steam generator. The reheat steam outlet terminal is labeled with reference numeral 261, while the supercritical steam outlet terminal is labeled with reference number 262, and either or both of these outlet terminals may be present. The term “base” refers here to the bottom one-third of the steam generator's height, the height being indicated by reference numeral 264. For example, if the steam generator has a height of about 60 feet, then the steam outlet terminal(s) is at a height of at about 20 feet. It should be recognized that the furnace enclosure and the convection pass enclosure may be of different heights.
In this regard, the steam leads for main steam and hot reheat piping needed to operate an advanced ultra supercritical steam generator at 700° C. (1292° F.) are as much as four (4) times the cost of material by mass for the steam leads needed to operate a steam generator at 600° C. (1112° F.). It can thus be advantageous to use the present design to lower the steam outlet terminal rather than incur the cost of such piping.
The tube banks in the convection pass enclosure should be drainable. Internal deposits are generally dispersed along the tube rows, so as not to concentrate in the lower bends of pendant sections. At the connection to the enclosure walls, expansion water seals or gas tight expansion joints (not shown) are present between the enclosure walls and the tube banks.
Returning to
Referring specifically to
Because the furnace enclosure and the convection pass enclosure are designed to operate at a high temperature differential, the hopper tunnel 270 must be able to handle the transfer of very hot flue gas. The hopper tunnel may be lined with a refractory material 276, which is chemically and physically stable at high temperatures. Exemplary refractory materials include refractory brick containing aluminum oxide, silica, or magnesium oxide, or ceramic tiles. Such materials can withstand temperatures of 2800° F. to 3000° F. As illustrated here, the hopper tunnel has a width 282, refractory brick 276 located around the entire periphery of the tunnel, and insulation 278 surrounding the brick, and having the appropriate dimensions. The upper portion of the hopper tunnel has a height 284, and the lower portion of the hopper tunnel has a height 286. Present in the lower portion is a mechanical transport system 280 (e.g. a submerged chain conveyor) that moves the ash out of the hopper tunnel.
It is noted that the convection pass enclosure is depicted in the various Figures as having a single gas path. It is also contemplated that the convection pass enclosure can include parallel gas paths, where one gas path can be used for steam temperature control using gas biasing.
The present disclosure has been described with reference to exemplary embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2982266 | Rowand | May 1961 | A |
3040719 | Dickey | Jun 1962 | A |
3161180 | Durham | Dec 1964 | A |
3192909 | Richardson | Jul 1965 | A |
3205870 | Durham | Sep 1965 | A |
3245385 | Koch | Apr 1966 | A |
3324837 | Gorzegno | Jun 1967 | A |
3368534 | Gorzegno | Feb 1968 | A |
3580226 | Blackburn, Jr. | May 1971 | A |
3665893 | Barberton | May 1972 | A |
3927627 | Brunn | Dec 1975 | A |
4398504 | Kwasnik, Jr. | Aug 1983 | A |
4442795 | Strohmeyer, Jr. | Apr 1984 | A |
4442797 | Strohmeyer, Jr. | Apr 1984 | A |
4462341 | Strohmeyer, Jr. | Jul 1984 | A |
4479355 | Guide | Oct 1984 | A |
4493291 | Zabelka | Jan 1985 | A |
4494468 | Rickard | Jan 1985 | A |
4709662 | Rawdon | Dec 1987 | A |
4709663 | Larson | Dec 1987 | A |
4745884 | Coulthard | May 1988 | A |
5237963 | Garcia-Mallol | Aug 1993 | A |
5343830 | Alexander | Sep 1994 | A |
5967098 | Tanca | Oct 1999 | A |
6058858 | Belin | May 2000 | A |
6071482 | Brockerhoff | Jun 2000 | A |
6325001 | Sheldon | Dec 2001 | B1 |
9488370 | Jiang | Nov 2016 | B2 |
20050070751 | Capote | Mar 2005 | A1 |
20060089519 | Stell | Apr 2006 | A1 |
20060107587 | Bullinger | May 2006 | A1 |
20160146452 | Wang | May 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20150096507 A1 | Apr 2015 | US |