This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an example described below, more particularly provides for advancement of a tubular string into a wellbore.
It can sometimes be difficult to convey a tubular string with a bottom hole assembly into a wellbore. For example, if a wellbore section is horizontal or substantially inclined, friction between the tubular string and the wellbore section can prevent further displacement of the tubular string into the wellbore, even if a weight of the tubular string in a vertical section of the wellbore acts to bias the tubular string into the wellbore. Therefore, it will be appreciated that advancements are continually needed in the art of conveying tubular strings and bottom hole assemblies into wellbores. Such advancements may be useful, regardless of whether the tubular strings and bottom hole assemblies are positioned in horizontal wellbore sections.
Representatively illustrated in
In the
Although the wellbore 14 is illustrated as being vertical, sections of the wellbore could instead be horizontal or otherwise inclined relative to vertical. Although the wellbore 14 is completely cased and cemented as depicted in
The tubular string 12 of
As used herein, the term “bottom hole assembly” refers to an assembly connected at or near a distal end of a tubular string in a well. It is not necessary for a bottom hole assembly to be positioned or used at a “bottom” of a hole or well.
When the tubular string 12 is positioned in the wellbore 14, an annulus 30 is formed radially between them. Fluid, slurries, etc., can be flowed from surface into the annulus 30 via, for example, a casing valve 32. One or more pumps 34 may be used for this purpose. Fluid can also be flowed to surface from the wellbore 14 via the annulus 30 and valve 32.
Fluid, slurries, etc., can also be flowed from surface into the wellbore 14 via the tubing 20, for example, using one or more pumps 36. Fluid can also be flowed to surface from the wellbore 14 via the tubing 20.
Referring additionally now to
In the
The annular restrictor 40 restricts flow of fluid 42 through the annulus 30. The fluid 42 may be pumped through the annulus 30 from the earth's surface, for example, using the pump 34 of
The annular restrictor 40 in the
Although the annular restrictor 40 does not completely seal off the annulus 30 in the
In order for the differential pressure to be created across the annular restrictor 40, fluid 44 in the casing 16 below the annular restrictor should be able to displace (e.g., so that the fluid is not significantly compressed in the casing below the annular restrictor, as the annular restrictor advances through the casing). In some examples, the casing 16 may be perforated below the bottom hole assembly 22, thereby allowing the fluid 44 to exit the casing via perforations.
However, in the
Note that the fluid 44 can comprise the fluid 42 and any fluid in the wellbore 14 displaced by the bottom hole assembly 22 as it advances into the wellbore. If the annular restrictor 40 completely seals off the annulus 30, then the fluid 44 may not include any of the fluid 42, but may only include the fluid in the wellbore 14 displaced by the bottom hole assembly 22 as it advances into the wellbore.
In the
At an appropriate time, the annular restrictor 40 can be released from the tubular string 12, if desired. For example, the annular restrictor 40 may be released prior to retrieving the tubular string 12 from the well. In this manner, the annular restrictor 40 will not hinder retrieval of the tubular string 12, and will not “swab” the well (e.g., create a significant pressure reduction below the annular restrictor) as the tubular string is retrieved.
Referring additionally now to
The perforator 50 is used to form perforations 54 through the casing 16 and cement 18, and into an earth formation 56 penetrated by the wellbore 14. The firing head 52 is used to fire the perforator 50 which, in this example, may include explosive shaped charges to form the perforations 54. The firing head 52 may fire the perforator 50 in response to any of various stimuli, such as, pressure pulses, flow manipulations, time or temperature levels, electromagnetic signals, acoustic signals, etc.
However, other types of perforators may be used in other examples. An abrasive jet perforator may be used, in which case the firing head 52 would not be necessary.
The pressure differential across the annular restrictor 40 due to the flow of the fluid 42 through the annulus 30 may be used to convey the perforator 50 to a desired position for forming the perforations 54. The perforations 54 can then be formed by activating the firing head 52 to fire the perforator 50. After the perforations 54 are formed, the annular restrictor 40, firing head 52 and perforator 50 can be released from the tubular string 12, and the tubular string can be retrieved from the well, if desired.
Note that, after the perforations 54 are formed, fluid in the casing 16 below the annular restrictor 40 can be displaced into the formation 56 via the perforations. Thus, if the annular restrictor 40 is positioned sufficiently far above the perforator 50 (or multiple perforators), the pressure differential across the annular restrictor can be used to convey the perforator(s) to multiple locations for forming perforations. For example, multiple zones could be perforated in a single trip of the tubular string 12 into the well.
Prior to forming the perforations 54, any of the fluid 42 that flows past the annular restrictor 40, and fluid in the casing 16 below the annular restrictor, can flow to the surface via the tubular string 12. For example, a valve or ported sub 58 may be used to allow fluid flow into the tubular string 12 below the annular restrictor 40.
Referring additionally now to
The fluid motor 60 operates in response to flow of the fluid 42 through the motor. The fluid motor 60 may be a turbine-type drilling or milling motor. Alternatively, the fluid motor 60 may be a Moineau-type progressive cavity drilling or milling motor. Any type of fluid motor may be used in keeping with the scope of this disclosure.
The cutting device 62 is rotated by the fluid motor 60. The cutting device 62 may be a mill used, for example, to cut through the plug 46 or the casing 16 (e.g., to form a window for drilling a lateral or branch wellbore). Alternatively, the cutting device 62 may be a drill bit used to elongate the wellbore 14. Any type of cutting device may be used in keeping with the scope of this disclosure.
A valve or ported sub 64 may be used to allow the fluid 42 to flow from the annulus 30 above the annular restrictor 40, into the bottom hole assembly 22, and through the fluid motor 60. Another valve or ported sub 66 may be used to allow the fluid 42 that exits the cutting device 62 (as well as any fluid in the casing 16 below the annular restrictor 40) to flow into the bottom hole assembly 22 below the annular restrictor 40, for return to the surface via the tubular string 12.
After the plug 46 has been milled through (or after drilling or other cutting operations are concluded), the annular restrictor 40 can be released from the tubular string 12. The tubular string 12 can then be retrieved from the well.
In some examples, the annular restrictor 40 could be made of a dispersible or degradable material, so that the annular restrictor no longer substantially restricts flow through the annulus 30. Thus, instead of releasing the annular restrictor 40 from the tubular string 12, the annular restrictor could be dissolved (e.g., by flowing a particular fluid, such as acid, into contact with the annular restrictor) or otherwise degraded or dispersed, prior to retrieving the tubular string.
However, in some examples the tubular string 12 may not be retrieved from the well (e.g., in certain completion or workover operations). Thus, the scope of this disclosure is not limited to releasing, dissolving, degrading or dispersing the annular restrictor 40 prior to retrieving the tubular string 12.
The force generated by the pressure differential across the annular restrictor 40 may result in an immediate displacement of the bottom hole assembly 22, or the force may be “stored” for later use. In the
Referring additionally now to
The annular restrictor 40 is connected below the perforator 50 in the
The perforator 50 in the
Beginning with
A back pressure valve 70 is positioned below the upper connector 68. The back pressure valve 70 in this example includes two pivotably mounted flappers 72 that are biased toward sealing engagement with annular seats 74 encircling a central longitudinal flow passage 76.
However, a sleeve 78 positioned in the passage 76 prevents the flappers 72 from rotating toward the seats 74. Shear members 80 releasably retain the sleeve 78 in this position.
In
In
An inner sleeve 86 initially prevents fluid in the passage 76 from flowing to the nozzles 84, and so the perforator 50 is initially inactive. The sleeve 86 is releasably retained in this position by one or more shear members 88, visible in
In
The packer 90 is connected below a release mechanism 92. The release mechanism 92 in this example includes an inner support sleeve 94 that initially radially outwardly supports multiple circumferentially distributed threaded collets 96. The support sleeve 94 is releasably retained in this position by shear members 98.
In
Referring additionally now to
For example, the plug 102 could be dropped into the tubular string 12 at the surface, and the pump 36 (see
Instead of the collets 96, balls 106 received in openings 108 could be outwardly supported by the sleeve 94, so that the balls engage an annular recess 110, and so that displacement of the sleeve would allow the balls to disengage from the recess. Thus, the scope of this disclosure is not limited to use of any particular type of release mechanism.
The annular restrictor 40 may be released from the bottom hole assembly 22 after the perforator 50 is appropriately positioned for forming perforations. In other examples, the annular restrictor 40 may be released (or dispersed or otherwise degraded) at any time it is no longer desired to utilize the annular restrictor to displace the bottom hole assembly 22 in response to a pressure differential across the annular restrictor.
Referring additionally now to
To accomplish this result, a plug 114 (such as a ball or dart, etc.) is sealingly engaged with a tapered seat 116 in the sleeve 86, and increased pressure is applied to the passage 76 above the plug. The plug 114 can be dimensioned larger than the plug 102 used to release the annular restrictor 40.
For example, the plug 114 could be dropped into the tubular string 12 at the surface, and the pump 36 could be used to displace the plug through the tubular string and into sealing engagement with the seat 116. The pump 36 may also be used to apply increased pressure to the flow passage 76, in order to shear the shear members 88 and displace the sleeve 86 downward.
Referring additionally now to
To activate the back pressure valve 70, a plug 118 (such as a ball or dart, etc.) is sealingly engaged with a tapered seat 120 in the sleeve 78, and increased pressure is applied to the passage 76 above the plug. The plug 118 can be dimensioned larger than the plug 114 used to activate the perforator 50.
For example, the plug 118 could be dropped into the tubular string 12 at the surface, and the pump 36 could be used to displace the plug through the tubular string and into sealing engagement with the seat 120. The pump 36 may also be used to apply increased pressure to the flow passage 76, in order to shear the shear members 80 and displace the sleeve 78 downward.
It may now be fully appreciated that the above disclosure provides significant advancements to the art of conveying tubular strings and bottom hole assemblies into wellbores. In various examples described above, an annular restrictor 40 can be used to displace a tubular string 12 into a wellbore 14, in response to flow of fluid 42 through an annulus 30 and a resulting pressure differential across the annular restrictor.
This disclosure describes tools and methods for advancing well tool assemblies into a wellbore. One concept is to use an annular element on an outside of a bottom hole assembly. The annular element supplies downward force on the bottom hole assembly and tubing when fluid is pumped down an annulus between the tubing and the wellbore.
When fluid is pumped down the annulus, it creates a downward hydraulic force on the element, which tends to advance the bottom hole assembly and tubing into the wellbore. The fluid which is displaced below the annular element by the advancing bottom hole assembly can either flow into an opening in the casing below the bottom hole assembly, or if no openings below the bottom hole assembly exist, the fluid can flow to the surface through the tubing (similar to reverse circulation). The displaced fluid can be fluid displaced below the bottom hole assembly, but separated from the annulus above by the annular element, or it can be a combination of displaced fluid combined with annular flow that passes around or through the annular element.
This method allows large downward forces to be applied to the bottom hole assembly, making it possible to convey tools on flexible tubing strings, such as coiled tubing, to much greater depths than can be achieved by “pushing” tubing into the wellbore from the surface.
Optional configurations include (but are not limited to):
Some specific concepts described above include (but are not limited to):
One specific operating method can include the following steps:
One very useful application of this system and method is to position an abrasive or pyrotechnic (explosive) perforator deep within a wellbore to perforate a “toe” of the well (at or near a distal end of a generally horizontal or substantially inclined wellbore section). In one configuration, an abrasive perforator can be deployed above the annular element. In another configuration, an explosive shaped charge perforator can be deployed below the annular element.
A system 10 for advancing a tubular string 12 into a wellbore 14 can include an annular restrictor 40 connected in the tubular string. The annular restrictor 40 restricts flow through an annulus 30 formed between the tubular string 12 and the wellbore 14. Restriction to the flow through the annulus 30 biases the tubular string 12 into the wellbore 14, and fluid in the wellbore displaces into at least one of: a) a formation 56 penetrated by the wellbore and b) the tubular string.
The annular restrictor 40 may be connected at a distal end of the tubular string 12 in the wellbore 14. The annular restrictor 40 may permit restricted flow past the annular restrictor.
The system 10 may include a vibratory tool 48 that generates vibrations in response to displacement of the fluid 44 in the wellbore 14 into the tubular string 12.
The annular restrictor 40 may be connected between a perforator 50 and a tubing 20 extending to surface (e.g., at or near the earth's surface, as depicted in
A perforator 50 may be connected between the annular restrictor 40 and a tubing 20 extending to surface.
The annular restrictor 40 may be connected between a fluid motor 60 and a tubing 20. The system 10 may include a ported sub 66 connected between the annular restrictor 40 and the fluid motor 60. The ported sub 66 can permit the fluid 42 in the wellbore 14 to displace into the tubular string 12 and flow through the fluid motor 60.
The system of claim 1, further comprising a release mechanism that releases the annular restrictor from the tubular string.
A method of advancing a tubular string 12 into a wellbore 14 can include connecting an annular restrictor 40 in the tubular string 12, and flowing a first fluid 42 through an annulus 30 formed between the tubular string 12 and the wellbore 14, thereby causing a differential pressure across the annular restrictor 40, the differential pressure biasing the tubular string 12 into the wellbore 14.
The method may include flowing a second fluid 44 from the wellbore 14 into the tubular string 12 as the tubular string advances into the wellbore. At least a portion of the first fluid 42 may flow with the second fluid 44 into the tubular string 12. The step of flowing the second fluid may include generating vibrations in response to the second fluid 44 flowing from the wellbore 14 into the tubular string 12.
The method may include flowing a second fluid 44 from the wellbore 14 into a formation 56 penetrated by the wellbore as the tubular string 12 advances into the wellbore.
The method may include rotating a cutting device 62 in response to the first fluid 42 flowing from the wellbore 14 into the tubular string 12. The method may also include releasing the annular restrictor 40 from the tubular string 12 after the cutting device 62 rotating step.
The method may include, after the flowing step, perforating a casing 16 that lines the wellbore 14. The method may also include releasing the annular restrictor 40 from the tubular string 12 prior to the perforating step.
The method may include degrading the annular restrictor 40 in the wellbore 14 prior to retrieving the tubular string 12 from the wellbore.
Another method of advancing a tubular string 12 into a wellbore 14 can include connecting an annular restrictor 40 in the tubular string 12, flowing a fluid 42 through an annulus 30 formed between the tubular string 12 and the wellbore 14, thereby biasing the tubular string 12 into the wellbore 14, and then causing the annular restrictor 40 to cease restricting flow through the annulus 30.
The causing step may be performed prior to retrieving the tubular string 12 from the wellbore 14.
The causing step may be performed by releasing the annular restrictor 40 from the tubular string 12.
The causing step may be performed by at least one of: dissolving the annular restrictor 40, degrading the annular restrictor 40 and dispersing the annular restrictor 40.
The causing step may be performed prior to, or after, perforating a casing 16 that lines the wellbore 14.
The causing step may be performed after rotating a cutting device 62 in response to the fluid 42 flowing step.
The causing step may be performed prior to rotating a cutting device 62 in the wellbore 14.
The method may include closing a back pressure valve 70 after the causing step.
The method may include permitting flow from the wellbore 14 into the tubular string 12 as the tubular string advances into the wellbore.
Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope of this disclosure encompasses any combination of any of the features.
Although each example described above includes a certain combination of features, it should be understood that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.
It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
In the above description of the representative examples, directional terms (such as “above,” “below,” “upper,” “lower,” etc.) are used for convenience in referring to the accompanying drawings. In general, the term “above” is used to indicate a direction toward the earth's surface along a wellbore, and the term “below” is used to indicate a direction away from the earth's surface along a wellbore. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.
The terms “including,” “includes,” “comprising,” “comprises,” and similar terms are used in a non-limiting sense in this specification. For example, if a system, method, apparatus, device, etc., is described as “including” a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term “comprises” is considered to mean “comprises, but is not limited to.”
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. For example, structures disclosed as being separately formed can, in other examples, be integrally formed and vice versa. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.
This application claims the benefit of the filing date of U.S. provisional application No. 62/164,786 filed on 21 May 2015. The entire disclosure of this prior application is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3003560 | Corley, Jr. et al. | Oct 1961 | A |
3070167 | Loy, III et al. | Dec 1962 | A |
3126058 | Yetman et al. | Mar 1964 | A |
3467196 | Kinsman | Sep 1969 | A |
3554279 | Meripol | Jan 1971 | A |
3656562 | Baugh | Apr 1972 | A |
RE32755 | Vann | Sep 1988 | E |
5180009 | Sneed | Jan 1993 | A |
5209304 | Nice | May 1993 | A |
5967816 | Sampa et al. | Oct 1999 | A |
6315498 | Baugh et al. | Nov 2001 | B1 |
6343657 | Baugh et al. | Feb 2002 | B1 |
6491098 | Dallas | Dec 2002 | B1 |
6651744 | Crawford | Nov 2003 | B1 |
7279052 | Kinnari et al. | Oct 2007 | B2 |
8844636 | Bebak et al. | Sep 2014 | B2 |
20020144812 | Smith, Jr. | Oct 2002 | A1 |
20030047320 | Badrak | Mar 2003 | A1 |
20040118565 | Crawford | Jun 2004 | A1 |
20050284504 | Kinnari | Dec 2005 | A1 |
20050284624 | Libby et al. | Dec 2005 | A1 |
20120247756 | Taylor | Oct 2012 | A1 |
20140116724 | McDougall et al. | May 2014 | A1 |
20140158369 | Radford et al. | Jun 2014 | A1 |
20140190685 | Frazier | Jul 2014 | A1 |
20150176363 | Mazyar | Jun 2015 | A1 |
20170067313 | Connell | Mar 2017 | A1 |
20180230364 | Weaver | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2014150058 | Sep 2014 | WO |
Entry |
---|
International Search Report with Written Opinion dated Sep. 1, 2016 for PCT Patent Application No. PCT/US2016/033269, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20160340994 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62164786 | May 2015 | US |