The present disclosure relates to advancer systems for medical devices, and in particular to advancer systems for separately controlling the elements of a set of coaxially used medical devices.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
A variety of elongate medical devices may be navigated through the body to perform diagnostic and therapeutic procedures. The devices are most commonly manually advanced and retracted. Advancer systems have been developed for automatically advancing and retracting medical devices in the body. U.S. patent application Ser. No. 10/138,710, filed May 3, 2002, for System and Methods for Advancing a Catheter, or U.S. patent application Ser. No. 10/858,485, filed Jun. 1, 2004, for System and Methods for Medical Device Advancement, disclose examples of such devices. The problem of controlling coaxial medical devices in which two or more coaxial devices telescope relative to each other is more difficult. The geometry of such systems makes an advancer system for such devices more complex. U.S. Pat. No. 6,726,675 is an example of an attempt to resolve some of these difficulties.
Automation of device movement allows the physicians to perform the procedures remotely, which reduces exposure to radiation from x-ray imaging, and also facilitates telemedicine in which specialists in remote locations can conduct or at least supervise local procedures. These and other features and advantages will be in part apparent, and in part pointed out hereinafter.
The exemplary embodiments of the present invention facilitate movement of telescoping medical devices within a subject body. Some embodiments for facilitating movement of medical devices enable advancement or retraction of an outer member and an inner member either separately or together. In one embodiment, a telescoping medical device system is provided that includes an outer sheath having a proximal end and a distal end, and a lumen extending through at least the distal end portion, and a slot extending along a portion of the outer sheath. The telescoping medical device also includes an inner member extending through the slot and through the lumen in the outer sheath. A first drive mechanically engages and drives the outer sheath, and a second drive mechanically engages and drives the inner member through the slot and into the lumen of the outer sheath. Accordingly, the outer sheath and the inner member can be advanced separately or together.
Some embodiments of a method of this invention provide for advancing and retracting of inner and outer members of telescoping medical devices. One embodiment of a method provides for movement within a subject's body of an elongate, telescoping medical device having an outer sheath and an inner member. The method includes engaging and selectively advancing and retracting the outer sheath to selectively move the distal end of the outer sheath in the subject's body, and engaging and selectively advancing and retracting the inner member extending through an opening in the outer sheath intermediate the proximal and distal ends of the outer sheath. The inner member extends through the opening and a lumen in the outer sheath, so as to allow for selectively moving the distal end of the inner member in the subject's body.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
A first embodiment of an advancer mechanism in accordance with the principles of this invention is indicated generally as 120 in
A flexible inner member 140, having a proximal end 142 and a distal end 144, telescopes axially in the lumen 130 of the sheath 124, and is coiled about a first winch spool 146. From the first winch spool 146, the inner member 140 is received within the outer member or sheath 124, having a generally hollow lumen 130 therein. The inner member 140 extends through a length of the sheath 124 that is coiled around a second winch spool 132. The inner member 140 may be deployed through the outer sheath 124 into a patient's body by controlling the first winch 146 and a first set of rollers 148. The first set of rollers includes a drive roller or wheel 150 and a driven wheel 152 that engage the inner member 140, such that rotation of the drive wheel 150 advances and retracts the inner member 140. Accordingly, the first winch 146 and the first set of rollers 148 may feed a length of the inner member 140 through the outer sheath 124 and into a patient's body as required to reach a desired area within the patient's body.
The second winch spool 132 may be rotated, along with a second set of rollers 134, to feed the outer sheath 124 over the deployed inner member 140 which has been deployed within the patient's body and is generally stationary. The second set of rollers includes a drive roller or wheel 168 and a driven wheel 170 that engage the outer sheath 124, such that rotation of the drive wheel 168 advances and retracts the outer sheath 124. As the outer sheath 124 is fed out over the inner member 140 deployed within the body as shown in
Relative movement between the outer sheath 124 and the inner member 140 may be accomplished by turning the winch or reel 132 and either holding the reel 146 still, turning the reel 132 in the opposite direction, or turning the reel 146 in the same direction but at a slower rate. More specifically, to advance the inner member 140 into the subject relative to the outer sheath, the reel 146 is turned in a direction to advance the inner member 140 into the proximal end of the outer sheath 124. The reel 132 may be held still, or it can be turned in a direction opposite from the direction of reel 146, or it can even be turned in the same direction as reel 146, but at a slower rate. To retract the inner member 140 from the subject relative to the outer sheath, the reel 146 is turned in a direction to retract the inner member 140 from the proximal end of the outer sheath 124. The reel 132 may be held still, it can be turned in a direction opposite from the direction of reel 146, or it can even be turned in the same direction as reel 146, but at a slower rate.
In this manner it is possible to provide multiple telescoping devices, and the inner member 140 could also be provided with a lumen for another device, which could likewise be provided on its own reel, and can be advanced and retracted relative to the other devices, by controlling the rotation of the reels. The device is still compact, because the reels are stacked upon each other, with the proximal end of each device centrally positioned in its respective reel. The first winch 146 and the first set of drive rollers 148, as well as the second winch 132 and the second set of drive rollers 134, may be simultaneously controlled to advance, as well as to retract, both the inner and outer members within a patient's body.
The inner member 140 may initially be advanced into a patient's body to reach a desired target area, and the outer sheath may subsequently be advanced over the inner member to the target area using the advancing apparatus. The outer sheath 124 may also include one or more functional components near the distal end 128, to provide treatment to a desired target area in the patient. Accordingly, the inner member and outer member may both be simultaneously advanced into a patient's body to reach a desired target area at the same time, and may also be simultaneously retracted from the patient's body at the same time.
A second embodiment of an advancer mechanism is shown in
As shown in
The support block 262 carries a reel 272 on which the inner member 240 is wound. The reel 272 is carried on a spindle that can be driven with a motor (not shown), or remote electric motor such as an indexing motor (not shown) which is connected to the drive wheel or wheels via a suitable power train (also not shown) which may include a flexible rotational drive shaft, clutch, and/or transmission. The unwinding of the reel 272 (and operation of a second pair of drive rollers where employed) causes the inner member 240 to advance, and the winding of the reel 272 causes the inner member 240 to retract.
The rotation of the reel 272 advances and retracts the inner member 240 relative to the outer sheath 224. The advancement or retraction of the outer member 224 by the wheels 250 and 252 causes the support block 262 to slide on the rails 258 and 260 to advance the outer sheath 224 and the inner member 240. The reel 272 can be locked to restrict movement of the inner member 240 as the wheels 250 and 252 move the inner sheath 240, to advance both the inner and outer members. Likewise the wheels 250 and 252 can lock to restrict movement of the outer sheath 224 as the reel 272 advances and retracts only the inner member 240. The system 220 thus allows the outer sheath 224 and the inner member 240 to be advanced and retracted separately, or in tandem.
A third embodiment of an advancer mechanism is shown in
As shown in
The support block 362 has a socket for receiving and engaging the adapter 336 engaged on the proximal end 328 of the outer sheath 324. The advancement or retraction of the outer member 324 by the wheels 350 and 352 causes the adapter 336 and support block 362 to move relative to rails 358 and 360. The support block 362 also includes a driver comprising opposed drive wheel 368 and a driven wheel 370 for engaging the inner member 340. Rotation of the drive wheel 368 advances and retracts the inner member 340 relative to the outer sheath 324. The drive wheel 368 is connected to an appropriate drive system, such as an electric motor (not shown), with a flexible rotational drive element (not shown). The wheels 368 and 370 are spaced sufficiently apart for frictionally engaging the exterior surface of the inner member 340 to advance and retract it through the outer sheath 324. The system 320 thus allows the outer sheath 324 and the inner member 340 to be advanced and retracted separately, or in tandem.
Operation
In operation, the outer sheath 324 is disposed between the wheels 350 and 352. The adapter 336 on the proximal end 326 of the outer sheath 324 is engaged in a socket in the support block 362. The inner member 340 is disposed between the wheels 368 and 370. Operating wheels 350 and 352 as shown in
In fourth embodiment, an advancer mechanism and a system are provided for controlling coaxial medical devices. As shown in
Referring to
In the system for using an advancing apparatus, the drive mechanisms can be individually controlled by the physician with appropriate controls (not shown). Alternatively, the control of the drive mechanisms can be combined into a single control, which may be used direction by the physician, or integrated into a computer control that that is part of a larger navigation system that can orient and advance a generally coaxial medical device. The inner and outer members of the coaxial medical device accordingly can be respectively controlled to advance the inner member, for example, to a target area within the patient's body, or to advance the outer member over the inner member, or to advance both the outer member and inner member together, for enabling the physician to employ the coaxial medical device within the patient's body.
In a first embodiment of a medical device, the medical device 422 comprises an inner member 440 that may be received within an outer sheath 424 having a slit 480 as shown in
Referring to
As shown in
In a second embodiment of a medical device 522 shown in
In a third embodiment of a medical device 622, the device 622 is similar in construction to device 422, and corresponding parts are identified with corresponding reference numerals. The medical device 622 includes an outer member 624 having a slit 680 therein, where an eyelet (not shown) that can extend into the slit of the outer sheath 624, wedging the slit 680 open to provide an opening through which an inner member can pass. However as shown in
A fourth embodiment of a medical device 722 is shown in
A fifth embodiment of a medical device 822 is shown in
A fifth embodiment of a medical device 922 is shown in
In an alternate construction of the medical device 922′, the medical device 922′ includes an outer member 924 having a slit 980 therein, where the adjoining portions of the outer sheath 924 on each side of the slit 980 may be continuously bonded together at 990″. An applicator may be employed to separate and bond the adjoining portions of the outer sheath 924 along the slit 980 to permit an inner member to be deployed within the lumen 930 of the outer sheath 924. The applicator may apply an adhesive, or may ultravioletly actuate an adhesive on the edge margins of the slot to form the continuous bond 990″ as in
A method is also provided for moving in a subject's body an elongate, telescoping medical device that comprising at least an outer sheath and an inner member. The method comprises engaging and selectively advancing and retracting the outer sheath to selectively move the distal end of the outer sheath in the subject's body. The method also provides for engaging and selectively advancing and retracting the inner member, which extends through an opening in the outer sheath intermediate the proximal and distal ends of the outer sheath and into a lumen in the sheath. The inner member is advanced and retracted through the outer sheath to selectively move the distal end of the inner member in the subject's body. The opening in the outer member or sheath moves relative to the outer member as the outer member is advanced and retracted, while the opening remains relatively stationary relative to the subject's body. The method provides for forming an opening in the outer sheath for the inner member to pass through, by wedging open a generally longitudinally extending slot in the outer sheath. The outer sheath is engaged and selectively advanced and retracted at a point proximal to the opening in the sheath.
In a control system 1000 for controlling an advancing apparatus for a coaxial medical device, such as the various embodiments described herein, the drive mechanisms 1050, 1052 and 1068, 1070 can be individually controlled by the physician with appropriate controls (not shown). The control system 1000 is preferably connected to power via 1010 for actuating the drive mechanisms. The control system 1000 may receive information relating to the advancement or retraction of the medical device, through a data input 1012 that is in communication with one or more input devices. Such input devices may include but are not limited to computer keyboards, joysticks, or even voice activated devices. The control system receives information (such as digital information transmitted to the control system) requesting the advancement or retraction of either the inner member and the outer member, or both, and the extent of advancement or retraction. The control system may receive a request to advance only the inner member 1040 a given distance, and may accordingly control application of power via 1014 to effect rotation of a motor (not shown) to operate the drive mechanisms 1068 and 1070 to advance the inner member 1040 the given distance. Similarly, the control system may receive a request to advance only the outer sheath 1024 a given distance, and may accordingly control application of power via 1016 to effect rotation of a motor (not shown) or to operate the drive mechanisms 1050 and 1052 to advance the outer sheath 1024, and control rotation of a motor to operate the drive mechanisms 1068 and 1070 to retract the inner member 1040 while the outer sheath is being advanced.
As the physician orients or guides the distal end of the medical device within a patient's body towards a target area within the body, the physician may provide inputs to the control system for operating the drive mechanisms 1050, 1052 and 1068, 1070 to advance or retract the inner member 1040 and the outer sheath 1024 as required. Such input devices may include but are not limited to computer keyboards, joysticks, or even voice activated devices. The drive mechanisms 1050, 1052 and 1068 and 1070 may be mounted on a removable cover or support, such that various drive mechanisms may be modularly installed and employed. Such modular drive mechanisms allow for appropriately spaced drive wheels to accommodate changes in diameter of the medical device's inner or outer member. The drive mechanisms mounted on a cover or support may be fit onto the base, and may cooperate with a precise drive mechanism for controlling the displacement of the inner and outer members.
The control system may also be controlled by or cooperate with a navigation system for guiding the distal end of the medical device. Such a system may allow the physician to orient the distal end of the medical device through the application of a magnetic field external to the patient, for orienting the distal end of the medical device in a desired direction. The control system 1000 for the advancer 1020 may cooperate with or receive input signals from such navigation systems to advance the inner or outer members when the distal end has been oriented. The navigation system may also receive other additional input signals, such as an ECG signal of a patient's heart, which signal may be used to gate a switching device on and off for advancing and retracting the medical device a small distance, to accommodate the beating of the patient's heart for maintaining the medical device in contact with the heart surface. Such an advancer device may be operated to advance and retract the medical device synchronous with the heart to enhance contact of the distal end with the heart tissue.
Alternatively, the control of the drive mechanisms can be combined into a single control, which may be used direction by the physician, or integrated into a computer control that that is part of a larger navigation system that can orient and advance a generally coaxial medical device. The single control may comprise a keyboard, a joystick, or other peripheral device or any combination of input devices for enabling the physician to advance or retract the medical device. The inner and outer members of the coaxial medical device accordingly can be respectively controlled to advance the inner member, for example, to a target area within the patient's body, or to advance the outer member over the inner member, or to advance both the outer member and inner member together, for enabling the physician to employ the coaxial medical device within the patient's body.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/748,042, filed Dec. 7, 2005, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60748042 | Dec 2005 | US |