The present invention generally relates to hull designs for watercraft capable of planing such as but not limited to power boats (including speed boats and yachts), surfboards, sailboards, standup paddle (SUP) boards, kiteboards, and wakeboards.
Some watercraft are designed to operate in a planing mode as well as in a displacement mode along with semiplaning or transition in between displacement and planing. In displacement mode the lift is from displacement of water. As speed increases this force decreases due to the Bernoulli effect. In planing mode the lift is derived from a downward deflection of water by the shape of the hull. In transition there is often considerable wave and turbulence drag.
An objective of hull design is to reduce the drag at transition speed and at low planing speed, also called the “hump drag”, since it is often larger than the drag at higher speeds. An example hull which reduces some hump drag compared to preexisting hulls is disclosed in U.S. Pat. No. 9,242,699 B2 by the same inventor as the instant invention. U.S. Pat. No. 9,242,699 B2 is incorporated herein by reference.
In an exemplary embodiment, a watercraft hull includes a front lift surface comprising or consisting of a center surface and two tunnels cut into the outside bottom surface. The center surface may have a (nonzero) deadrise angle, and the width or beam of the front lift surface may be determined by the sum of the width of the center surface and widths of the two tunnels cut into the outside bottom.
The tunnels to the port and starboard sides (to the left and right sides) of the center surface may have varying depth and width and a sharp chine/spray deflector at the junctions between the tunnel and the center planing surface. At high speeds, these tunnels/chines generally determine the outer edge of the wetted surface. At low speeds the tunnels generally determine the outer edge of the wetted surface.
According to an aspect of some embodiments, the tunnels end in a step in height and/or planing angle near the back of the front lift surface (see U.S. Pat. No. 8,622,013 B2 by the same inventor for some exemplary steps; U.S. Pat. No. 8,622,013 B2 is herein incorporated by reference). The configuration of the front surface, tunnels, and steps may achieve multiple objectives. Besides producing front lift, exemplary embodiments may also slice through smaller waves while the tunnel/step and center surface provide lift to lift the bow in large waves. Since the tunnels are cut deeper into the board and generally have a larger attack angle they 1) form the out edge of the center (planing) surface in flat water and small waves, 2) make the breadth of this planing surface smaller such that the bow can slice through flat and small waves, and 3) for larger waves, or if the sailor's weight is too far forward on a sailboard, fill with water and together with the center surface will lift the front of the hull over most waves and keep the bow from being breeched. All these effects cause this bow design to have less drag in flat water, small waves, and larger waves. However, the tunnels narrow the overall front planing surface so as to give a smoother ride by both slicing through smaller waves and reducing the total heave acceleration in large waves. The tunnels may be configured to limit both the total wetted surface of the front lift surface (e.g., limit the total wetted surface of the hull's bow) and the wave drag of the front lift surface. Reducing the wetted surface and wave drag of the front lift surface reduces the wetted surface, wave drag, and friction drag of the hull as a whole.
The tunnels may end within 15% of the boat length from the back of the front planing surface. In other words, each step's location measured along a longitudinal direction of the hull is 0 to 15% of the hull length either fore or aft of a location of the center planing surface's aft end. At high speed the steps dewet a region of hull behind the steps. The steps may be configured to direct the wake off of the steps partially or entirely outside of the high lift surface (main plaining surface). This has the desired result that at high speed the main lift surface does not fall into the wake from steps at the end of the bow tunnels.
Both for sailboards and yachts, the bow's tunnels may assist in lifting the watercraft up over waves and allow the watercraft to have a wider bow profile and higher average attack angle in waves while having a narrower nose and smaller attack angle in flatter water.
According to another aspect, some embodiment increase the length of the front planing surface to displacement volume ratio of the front planing surface and also reduce its beam “b” by placing short tunnels outside of the front planing surface.
According to another aspect, hulls of some embodiments are configured to increase the lift of the planing surfaces while keeping the ratio of lift to drag roughly the same as configurations with lower lift. This may be achieved with, for example, a spoiler/angled interceptor and step in planing angle at the back end of the planing surface such as a Johnson camber configuration (3 term, 5 term) or higher order configurations.
According to another aspect, some embodiments increase the longitudinal stability of a hull with the addition of a single-deadrise tunneled demi-hulls surface after the main planing surface (i.e., high lift surface). By “single-deadrise tunneled demi-hulls” what is meant is single hull split into two halves and separated by a tunnel surface in the middle. To either side of the tunnel surface the “hull halves” or “demi-dulls” may have a single deadrise angle, multiple deadrise angles, one or more stakes, and/or a curved (non-linear) profile in the transverse direction. A vertical or nearly vertical surface behind the main planing surface is supplied by the tunnel surface, and it is the vertical or nearly vertical surface that is responsible for increasing the hulls longitudinal stability.
In some embodiments, a hull according to the present invention reduces resistance in the 20-30 mph range, even to the point where a “hump” in the drag characterization is lower than the minimum drag in planing mode.
For yachts an exemplary tunnel bow limits the decrease of the planing angle and limits the high speed planing wetted surface and thus decrease the high-speed planing drag essentially to that of three points (one in the front and two in the back of the yacht).
To reduce hump drag, some embodiments increase both the length to displacement and the length to beam near the front lift surface.
In some embodiments, planing drag is decreased by increasing a hull's “length over displacement”, L/ΔD, where D is displacement. The same or other embodiments further decrease the planing drag by increasing the length over breadth width, L/B.
The foregoing and other objects, aspects, and advantages will be better understood from the following, in which:
Exemplary embodiments of the invention involve watercraft hulls, surfaces of watercraft hulls, and general hull configurations. In particular, exemplary embodiments involve surfaces which face or contact the water during at least some states of use. Exemplary embodiments use a combination of surfaces and surface features to create advantageous hydrodynamic effects for exemplary performance in displacement mode, planing mode, and/or the transition mode between displacement and planing.
For the purposes of this disclosure, “planing mode” is generally defined as the lift being mainly hydrodynamic lift (≥90%) and when the hydrostatic lift is ≤10% of the total lift. “Displacement mode” is generally where the lift is mainly hydrostatic and the drag vs. speed is increasing nonlinearly with increasing speed. As used herein, “displacement mode” is used to indicate that ≥70% of the lift is hydrostatic lift and the remaining lift (≈30% or less) is hydrodynamic lift. Thus the board or watercraft hull is in “transition mode” when the hydrostatic lift is between 70% and 10% of the total lift and the hydrodynamic lift is most of the remaining lift, that is, 30% to 90%. In “transition mode”, the drag vs. speed normally goes through a hump or peak, but this is not always the case if the weight is small or the wave drag is sufficiently reduced. The hump in drag may occur because during the transition mode, the hull begins to plane but the hull is not yet at an optimal planing angle. In addition, wave drag may be present in transitional mode that disappears once the hull is in planing mode.
The main drag forces for a hull in planing mode are the dynamic drag, which is the dynamic force in the backward direction, and the skin friction. The main drag force in displacement mode is wave drag, which is the difference of pressure on forward facing surfaces and backward facing surfaces. In transition mode, all three—dynamic drag, skin friction, and wave drag—are important, with wave drag and dynamic drag being the most important.
Some exemplary embodiments may operate in planing mode for speeds such as 8-25 mph or more for sailboards, 12-80 mph or more for power boats, and 12-35 or more for large yachts. The particular speed ranges differs some from one watercraft type to another. Generally, reducing or eliminating hump drag can result in a hull planing at lower speeds.
The hull 1 may be that of a sailboard or yacht, for example. Generally the hull 1 may be of any watercraft capable of planing, for example yachts or sailboards. However, embodiments of the invention may also benefit the performance of non-planing watercraft such as standup paddle (SUP) boards, among others. Therefore an exemplary hull 1 may be configured for a watercraft such as but not limited to power boats (including speed boats and yachts), surfboards, sailboards, standup paddle (SUP) boards, kiteboards, and wakeboards. The bottom of the hull 1 has at least three identifiable regions, and the bottom of the hull may either comprise or consist of these three regions together. From stem to stern, these are a front lift surface 7, a main lift surface 2, and a back lift surface 15. As used herein, these terms refer to regions of the hull bottom, and thus may be alternatively called front region 7, middle region 2, and back region 15 if desired. As a shorthand, these surfaces or regions are referred to herein as S7, S2, and S15, respectively. Other surfaces may be similarly abbreviated (e.g., a “surface 99” or “region 99” may be referred to simply as “S99”). As evident from
Boundaries between regions, surfaces, and features of the hull may be defined by any of a number of different elements, such as but not limited to: a step or steps in depth or planing angle, a change in concavity, a ridge, a change in deadrise (i.e., deadrise angle), chine, spray deflector, waterline, a change in attack angle (e.g., a sharp point, a change in attack angle at which the derivative is undefined, where the limits approaching the point of change in attack angle are not the same), the keel, the keel area, and a boundary between wetted and unwetted surfaces/regions. As is known in the art, some hull features may smoothly transition from one to the next and therefore may lack a definable “line” or similar absolute boundary. In such cases adjacent features may still be separately identifiable though a precise boundary between the adjacent features cannot be pinpointed owing to the nature of hull design.
The “transverse direction” generally means the shortest path from the starboard side of a hull to the port side of the hull, or vice versa. Unless the context indicates otherwise, exemplary embodiments described herein are generally symmetrical in the transverse direction of the hull. In other words, the hull's geometry (especially at the bottom side of the hull facing or facing into the water) is mirrored on either side of a center longitudinal plane bisecting the hull into equal parts port side and starboard side. The “keel line” is a known term in the art and is a geometric line (or curve) tracking the center and/or bottommost edge of the keel. Regardless of where the keel begins or ends the geometric “keel line” may extend from one longitudinal end of the hull to the opposite longitudinal end of the hull (i.e., from stem to stern). The keel line generally lies in the geometric plane bisecting the hull into equal parts port side and starboard side. A “width” or “breadth” is generally measured in the transverse direction. Conversely, a “length” is generally measured in the longitudinal direction.
In some exemplary embodiments, a watercraft hull comprises a main lift surface 2 and a back lift surface 15 according to what is disclosed in U.S. Pat. No. 9,242,699 B2, the complete contents of which are herein incorporated by reference. To facilitate comparison, some of the reference labels in this disclosure have been deliberately made to match reference labels in the '699 patent. However, the common reference labels are for ease of comparison only and are not intended to imply that all features in the '699 patent correspond exactly with the features of the instant disclosure where reference labels match. Rather, they may match in some embodiments but do not necessarily match. In particular, in many exemplary embodiments according to the present invention, the front lift surface 7 differs significantly from what is disclosed in U.S. Pat. No. 9,242,699. S7 of exemplary embodiments will now be discussed in detail.
For yacht hulls, the bow planing prism (that is, S73) can have a step/camber 8 which dewets the front of the main lift surface 2, particularly at high planing speeds (see
The tunnels 71 and 72, one to either side of the S73, may each end in a step 81 in depth or planing angle (see
A bow comprising or consisting of S7 is well suited for large watercraft hulls like yachts and smaller watercraft hulls like sailboards. However, some differences may be provided based on the intended use. Sailboards comprise a fin attached to or integral with S2/S15 (see, e.g., outline of fin 40 in
The tunnels 71 and 72 may be separated from S73 by a sharp chine/spray deflector at the junctions where the tunnels meet S73. The sharp chine edge of S73 may be configured to deflect spray off of S73 downward (i.e., away from the hull).
The relatively narrow and pointed planing surface supplied by S73 in the front of the hull 1 allows the bow to efficiently slice through waves, producing a smooth ride. Meanwhile, the outside tunnels 71 and 72 prevent the bow from being broached when big waves are encountered. The nose or front 74 (see
When sailing a sailboard, the operator (i.e., the sailor) wants it to plane. To plane it is desirable that the sailboard be at a low angle of attack so it has less drag. Ordinarily the operator attempts to push the board forward with his feet or by pumping to get the board to move faster than the hump speed (where there is a spike in drag between the displacement mode and the planing mode). Once the board is planing, the drag reduces below the hump drag and the board is able to maintain a speed and stay planing. After the board is planing, it is generally desirable that the planing angle of attack is about 4.3 to 5.5 degrees or smaller for rockered/cambered surfaces. To achieve this, embodiments herein may provide a lighter bow to the board.
To reduce the hump drag and preferably eliminate the hump drag (e.g., making the drag in transition mode equal to or less than the minimum drag in planing mode), embodiments may minimize the watercraft displacement (generally equaling the total weight of the craft and the load) divided by the craft length. In addition, to reduce or eliminate the hump drag embodiments may minimize the beam width/hull length. The inventor has discovered that the latter feature may be used not just in the hull as a whole but also specifically for the bow of the hull. That is, hump drag may be reduced or eliminated by minimizing the ratio of bow beam of S73/bow length. The bow beam is an important width to consider and is preferably kept small.
The tunnels 71 and 72 may be angled outward, e.g. at 8 degrees, so that any wake from the steps 81 only dewet outside regions of the board or yacht in the region of the hull behind the bow. Step 81 may be angled so that the outside of 81 is forward of the inside e.g. 5 degrees. The steps 81 may be angled with respect to the transverse direction of the hull, as apparent in
An exemplary hull, in particular at the aft end of a planing surface (e.g., S2, S73, or S15), may comprise a spoiler and/or interceptor at an end of a (longitudinally) cambered surface, e.g., at the end of a Johnson five term camber or Johnson three term camber.
A test was performed to evaluate the performance of a model generally having a bow consistent with S7 of
The next model (referred to as “model 1” or the “tunnel bow” design) was then constructed from model 0, with the result that features not under study were identical between model 0 and model 1. Unlike model 0, model 1 comprised a parabolic nose at the center of the bow with zero dead rise. Also unlike model 0, model 1 comprised a tunnel on either side of the bow center, and each tunnel ended in a step. Model 0 did not have the tunnels or the steps at the end of tunnels.
Both model 0 and model 1 were weighted to have a total weight of 27 pounds during all tests and data collection.
An objective was to achieve a lift to drag ratio of approximately 7, or a drag about 1/7th of the hull's total weight, at the hump velocity. Experimentally, the lowest planing drag of the square bow design (model 0) was about ⅕th of the total weight. Some of the drag was attributed to a rocker at the hull's bow. The square bow design had a rocker on the bow the curvature of which pulled the bow down at high speed, thus increasing the drag at high speed. The drag may be further reduced by reducing the rocker at the front of the bow.
The data presented in
A model 2 was then fashioned from the body of model 1. A number of changes were performed: 1) the amount of rocker in front of the bow was reduced since the front surface of the board was in the water only for an LCG of 50 cm or slightly more than 50 cm; 2) a greater deadrise angle in the front, 3) a chine angle of ≈−20 degrees, 3) a modification to the back of the model to have no foil.
Mathematically, there are three unknowns to consider for each LCG: “S” which is the drag of the hull models 0 and 1 from surfaces of the hull aft of the bow, “B0” which is the drag of the bow of model 0; and “Bt” which is the drag of the model 1. The following two assumptions may be made: 1) for the case of LCG=50 cm from the stern, S=B0=50% of the drag, and 2) for LCG=35 cm from the stern, where much less of the bow is in the water (in both models 0 and 1) S=75% of the drag.
The lift to drag ratio can then be calculated with two equations and two assumptions at a speed where the measured improvements were respectfully 25% and 20% going from the square bow to the tunnel bow. The result of the calculation is a 30% improvement for the LCG=50 cm and a 25.5% improvement for LCG=35 cm for the tunnel bow if the original model 0 would have had a lift to drag of 7. A lift to drag of 7 was the Lift/Drag measured for both a′ scale model of the sailboard and the 160 cm yacht model. Separately, a lift/drag of up to 9 was experimentally measured on a 240 cm long full size sailboard.
While exemplary embodiments of the present invention have been disclosed herein, one skilled in the art will recognize that various changes and modifications may be made without departing from the scope of the invention as defined by the following claims.
This application claims the benefit of U.S. provisional patent application No. 62/551,478, filed Aug. 29, 2017, the complete contents of which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62551478 | Aug 2017 | US |