The present invention relates to wastewater treatment in a flue gas desulphurization apparatus used in a power plant such as a coal, crude oil, or heavy oil combustion power plant. In particular, the invention relates to an aeration apparatus for aeration used for decarboxylation (aeration) of wastewater (used seawater) from a flue gas desulphurization apparatus for desulphurization using a seawater method. The invention also relates to a seawater flue gas desulphurization apparatus including the aeration apparatus and to a method for operating the aeration apparatus.
In conventional power plants that use coal, crude oil, and the like as fuel, combustion flue gas (hereinafter referred to as “flue gas”) discharged from a boiler is emitted to the air after sulfur oxides (SOx) such as sulfur dioxide (SO2) contained in the flue gas are removed. Known examples of the desulphurization method used in a flue gas desulphurization apparatus for the above desulphurization treatment include a limestone-gypsum method, spray dryer method, and seawater method.
In a flue gas desulphurization apparatus that uses the seawater method (hereinafter referred to as a “seawater flue gas desulphurization apparatus”), its desulphurization method uses seawater as an absorbent. In this method, seawater and flue gas from a boiler are supplied to the inside of a desulfurizer (absorber) having a vertical tubular shape such as a vertical substantially cylindrical shape, and the flue gas is brought into gas-liquid contact with the seawater used as the absorbent in a wet process to remove sulfur oxides. The seawater (used seawater) used as the absorbent for desulphurization in the desulfurizer flows through, for example, a long water passage having an open upper section (Seawater Oxidation Treatment System: SOTS) and is then discharged. In the long water passage, the seawater is decarbonated (exposed to air) by aeration that uses fine air bubbles ejected from an aeration apparatus disposed on the bottom surface of the water passage (Patent documents 1 to 3).
Patent Literature 1: Japanese Patent Application Laid-open No. 2006-055779
Patent Literature 2: Japanese Patent Application Laid-open No. 2009-028570
Patent Literature 3: Japanese Patent Application Laid-open No. 2009-028572
Aeration nozzles used in the aeration apparatus each have a large number of small slits formed in a rubber-made diffuser membrane that covers a base. Such aeration nozzles are generally referred to as “diffuser nozzles”. These aeration nozzles can eject many fine air bubbles of substantially equal size from the slits with the aid of the pressure of the air supplied to the nozzles.
When aeration is continuously performed in seawater using the above aeration nozzles, precipitates such as calcium sulfate in the seawater are deposited on the wall surfaces of the slits of the diffuser membranes and around the openings of the slits, causing the gaps of the slits to be narrowed and the slits to be clogged. This results an increase in pressure loss of the diffuser membranes, and the discharge pressure of discharge unit, such as a blower or compressor, for supplying the air to the diffuser is thereby increased, so that disadvantageously the load on the blower or compressor increases.
The occurrence of the precipitates may be due to the following reason. Seawater present outside a diffuser membrane permeates inside the diffuser membrane through its slits and comes into continuous contact with air passing through the slits for a long time. Drying (concentration of the seawater) is thereby facilitated, and the precipitates are deposited.
In view of the above problem, it is an object of the present invention to provide an aeration apparatus that can remove precipitates generated in the slits of diffuser membranes, a seawater flue gas desulphurization apparatus including the aeration apparatus, and a method for operating the aeration apparatus. Solution to Problem
According to an aspect of the present invention, an aeration apparatus that is immersed in water to be treated and generates fine air bubbles in the water to be treated includes: an air supply pipe for supplying air through discharge unit; an aeration nozzle including a diffuser membrane having a slit, the air being supplied to the aeration nozzle; and a control unit for performing control to temporarily stop supply of the air at predetermined intervals.
According to another aspect of the present invention, an aeration apparatus that is immersed in water to be treated and generates fine air bubbles in the water to be treated includes: an air supply pipe for supplying air through discharge unit; an aeration nozzle including a diffuser membrane having a slit, the air being supplied to the aeration nozzle; and a control unit for performing control to temporarily increase supply of the air at predetermined intervals.
Advantageously, in the aeration apparatus, the control unit performs control to temporarily increase the supply of the air and simultaneously feed water to the air supply pipe.
Advantageously, in the aeration apparatus, the control unit performs control to temporarily stop the supply of the air and simultaneously feed water to the air supply pipe.
Advantageously, in the aeration apparatus, the aeration nozzle further includes: a cylindrical base support body into which the air is introduced; a hollow cylindrical body that has a diameter smaller than a diameter of the base support body and that is disposed at an axial position of the base support body via a partition plate; an end support body that is disposed at one end of the hollow cylindrical body and that has approximately the same diameter as the diameter of the base support body; a tubular diffuser membrane that covers the base support body and the end support body and of which both ends are fastened to the base support body and the end support body, respectively; a large number of the slits formed in the tubular diffuser membrane; and an air outlet hole formed in the side surface of the base support body for allowing introduced air to flow into a pressurization space between an inner circumferential surface of the diffuser membrane and outer circumferential surfaces of the support bodies in front of the partition plate.
Advantageously, in the aeration apparatus, the aeration nozzle further includes: a cylindrical base support body into which the air is introduced; an end support body that has approximately the same diameter as the base support body; a tubular diffuser membrane that covers the base support body and the end support body and of which both ends are fastened to the base support body and the end support body, respectively; and a large number of the slits formed in the tubular diffuser membrane.
According to still another aspect of the present invention, a seawater flue gas desulphurization apparatus includes: a desulfurizer that uses seawater as an absorbent; a water passage for allowing used seawater discharged from the desulfurizer to flow therethrough and be discharged; and the aeration apparatus described above that is disposed in the water passage, the aeration apparatus generating fine air bubbles in the used seawater to decarbonate the used seawater.
According to still another aspect of the present invention, a method for operating an aeration apparatus, includes: using an aeration apparatus that is immersed in water to be treated and used to generate fine air bubbles in the water to be treated; and temporarily stopping or increasing supply of air at predetermined intervals when supplying air through discharge unit, thereby preventing clogging.
Advantageously, the method further includes: feeding water to an air supply pipe, the feeding being performed independently or at the same time when temporarily stopping or increasing the supply of air.
According to the present invention, it is possible to remove precipitates generated in the slits of the diffuser membranes of the aeration apparatus.
Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to embodiments described below. The components in the following embodiments include those readily apparent to persons skilled in the art and those substantially similar thereto.
An aeration apparatus and a seawater flue gas desulphurization apparatus according to embodiments of the present invention will be described with reference to the drawings.
As shown in
In the seawater flue gas desulphurization apparatus 100, the seawater 103 is supplied through a seawater supply line L1, and part of the seawater 103 is used for absorption, i.e., is brought into gas-liquid contact with the flue gas 101 in the flue gas desulphurization absorber 102 to absorb SO2 contained in the flue gas 101 into the seawater 103. The used seawater 103A that has absorbed the sulfur components in the flue gas desulphurization absorber 102 is mixed with the dilution seawater 103 supplied to the dilution-mixing basin 105 disposed below the flue gas desulphurization absorber 102. The diluted used seawater 103B diluted and mixed with the dilution seawater 103 is supplied to the oxidation basin 106 disposed on the downstream side of the dilution-mixing basin 105. Air 122 supplied from an oxidation air blower 121 is supplied to the oxidation basin 106 from aeration nozzles 123 to recover the quality of the seawater, and the resultant water is discharged to the sea as treated water 124.
In
The structure of the aeration nozzles 123 is described with reference to
As shown in
As shown in
For example, as shown in
The slits 12 described above are closed in a normal state in which no pressure is applied thereto. In the seawater flue gas desulphurization apparatus 100, the air 122 is continuously supplied, so that the slits 12 are constantly in an open state.
A first end 20a of the support body 20 is attached to a header 15 and allows the introduction of the air 122, and the support body 20 has an opening at its second end 20b that allows the introduction of the seawater 103.
In the support body 20, the side close to the first end 20a is in communication with the inside of the header 15 through an air inlet port 20c that passes through the header 15 and the flange 16. The inside of the support body 20 is partitioned by a partition plate 20d disposed at some axial position in the support body 20, and the flow of air is blocked by the partition plate 20d. Air outlet holes 20e and 20f are formed in the side surface of the support body 20 and disposed on the header 15 side of the partition plate 20d. The air outlet holes 20e and 20f allow the air 122 to flow between the inner circumferential surface of the diffuser membrane 11 and the outer circumferential surface of the support body, i.e., into a pressurization space 11a for pressurizing and expanding the diffuser membrane 11. Therefore, the air 122 flowing from the header 15 into the aeration nozzle 123 flows through the air inlet port 20c into the support body 20 and then flows through the air outlet holes 20e and 20f formed in the side surface into the pressurization space 11a, as shown by arrows in
The fastening members 22 fasten the diffuser membrane 11 to the support body 20 and prevent the air flowing through the air outlet holes 20e and 20f from leaking from the opposite ends.
In the aeration nozzle 123 configured as above, the air 122 flowing from the header 15 through the air inlet port 20c flows through the air outlet holes 20e and 20f into the pressurization space 11a. Since the slits 12 are closed in the initial state, the air 122 is accumulated in the pressurization space 11a to increase the inner pressure. The increase in the inner pressure of the pressurization space 11a causes the diffuser membrane 11 to expand, and the slits 12 formed in the diffuser membrane 11 are thereby opened, so that fine bubbles of the air 122 are injected into the diluted used seawater 103B. Such fine air bubbles are generated in all the aeration nozzles 123 to which air is supplied through branch pipes L5A to L5H and the headers 15 (see
Aeration apparatuses according to an embodiment will next be described. The present invention provides means for removing precipitates deposited in the slits 12 by causing change in the pressure of the air 122 supplied to the diffuser membrane 11.
As shown in
Normally, three of the four blowers are used for operation, and one of them is a reserve blower. Since the aeration apparatus must be continuously operated, only one of the two cooling units 131A and 131B and only one of the two filters 132A and 132B are normally used, and the others are used for maintenance.
In the present embodiment, the salt concentration in seawater is generally 3.4%, and 3.4% of salts are dissolved in 96.6% of water. The salts include 77.9% of sodium chloride, 9.6% of magnesium chloride, 6.1% of magnesium sulfate, 4.0% of calcium sulfate, 2.1% of potassium chloride, and 0.2% of other salts.
Of these salts, calcium sulfate is deposited first as seawater is concentrated (dried), and the deposition threshold value of the salt concentration in seawater is about 14%.
A mechanism of deposition of precipitates in the slits 12 will be described with reference to
In the present invention, the slits 12 are cuts formed in the diffuser membranes 11, and the gap of each slit 12 serves as a discharge passage of air.
The seawater 103 is in contact with slit wall surfaces 12a that form the passage. The introduction of the air 122 causes the seawater to be dried and concentrated to form concentrated seawater 103a. Then a precipitate 103b is deposited on the slit wall surfaces and clogs the passage in the slits.
In the state shown in
In the state shown in
In this state, by changing the pressure as will be described below, precipitates are forcibly removed and operation can be performed for a long time.
However, in the state shown in
Even in this state, it is possible to forcibly remove precipitates by changing the pressure as will be described below.
In the present embodiment, the control unit issues a command to temporarily stop supply of the air 122 at predetermined time intervals in order to avoid the above clogged state.
As shown in
Therefore, it is possible to prevent clogging of the slits 12 and narrowing of the gaps of the slits 12, which are caused by deposition of calcium sulfate through continuous operation. As a result, it is possible to prevent pressure loss of the diffuser membranes 11.
The interval to stop the supply of the air 122 may be appropriately changed according to the deposition states of precipitates. Preferably, the supply of air is stopped once a day or once every two days.
By stopping the supply of air in order to change the pressure of the air passing through the slits 12 at the early stage of the deposition, it is possible to cause precipitates to come off easily.
The supply of the air 122 may be stopped by stopping the blowers 121A to 121D serving as discharge unit. A switching valve (not shown) may be disposed in the air supply line L5 to stop the supply of the air 122 toward the aeration nozzles 123 side. The air 122 of which flow has been switched, which is compressed air, is stopped or relieved by a damper means or a relief valve.
As shown in
As described above, the fresh water 141 is supplied and thereby introduced into the aeration nozzles 123. Accordingly, the slits 12 of the diffuser membranes 11 are cleaned, so that precipitates such as calcium sulfate adhered to the slits 12 can be dissolved and removed.
As a result, it is possible to prevent clogging of the slits 12 or narrowing of the gaps of the slits 12, which are caused by the deposition of calcium sulfate, making it possible to prevent pressure loss of the diffuser membranes 11.
The cleaning is appropriately performed when the pressure loss of the slits is not recovered by stopping the supply of air.
It is possible to supply water at the same time when air is being introduced.
In the present embodiment, the fresh water 141 is used as water to be supplied. However, instead of the fresh water, seawater (such as seawater 103 from the dilution seawater supply line L2, used seawater 103A in the dilution-mixing basin 105, or the diluted used seawater 103B in the oxidation basin 106) or water vapor may be used. When water vapor is used, water vapor is liquidized by a cold condensation means (not shown).
The supply of the air 122 is increased at predetermined time intervals as above, so that the pressure changes (the amount of air temporarily increases) and the speed of air passing through the slits increases. Therefore, precipitates of calcium sulfate deposited in the slits 12 are discharged to the outside, and the slits 12 returns to normal.
As a result, it is possible to prevent clogging of the slits 12 and narrowing of the slits 12, which are caused by deposition of calcium sulfate through continuous operation. Consequently, it is possible to prevent pressure loss of the diffuser membranes 11.
The interval of increase may be appropriately changed according to the deposition states of precipitates. Preferably, the supply is increased once a day or once every two days.
By temporarily increasing the supply of air in order to change the pressure of the air passing through the slits 12 at the early stage of the deposition, it is possible to easily discharge precipitates to the outside.
For temporarily increasing the supply of air, when, for example, three blowers 121A to 121C are normally operated in the aeration apparatus 120A shown in
That is, by operating the blowers 121A to 121D, the amount of the air 122 introduced into the aeration nozzles 123 temporarily increases. Therefore, the speed of air passing through the slits increases and calcium sulfate can be removed to the seawater side.
Consequently, it is possible to prevent clogging of the slits 12 and narrowing of the gaps of the slits 12, which are caused by deposition of calcium sulfate. As a result, it is possible to prevent pressure loss of the diffuser membranes 11.
When the capacity of the blower is insufficient, a predetermined purge condition may be set so that precipitates in the slits 12 are pushed and flushed out by using an additional blower.
It is also possible to use the aeration apparatus 120B shown in
Aeration nozzles according to the present embodiment will next be described. The present invention provides aeration nozzles that cause precipitates deposited in the diffuser membranes 11 to come off easily.
As shown in
When the supply of the air 122 is stopped, as indicated by a dashed line in
While the aeration nozzle 123 shown in
The precipitates that have come off are accumulated inside the diffuser membrane 11. Therefore, it is not necessary to form slits at portions where the precipitates are accumulated. When forming slits, it is preferable to form extra slits in advance by taking into account clogging of slits that may occur, so that the supply amount of air is not reduced even when precipitates that have come off are accumulated in the slits.
In addition to the tube-type aeration nozzle, a disk-type aeration nozzle will be described.
In the description in the present embodiment, seawater is exemplified as water to be treated, but the invention is not limited thereto. For example, in an aeration apparatus for aerating polluted water in polluted water treatment, plugging caused by deposition of sludge components on diffuser slits (membrane slits) can be prevented, and the aeration apparatus can be stably operated for a long time.
In the present embodiment, tube-type aeration nozzles are used in the aeration apparatuses, but the present invention is not limited thereto. For example, the invention is applicable to disk-type and flat-type aeration apparatuses having diffuser membranes and to diffusers including ceramic or metal diffuser membranes having slits that are open at all times.
As described above, in the aeration apparatus according to the present invention, precipitates generated in the slits of the diffuser membranes of the aeration apparatus can be removed. For example, when applied to a seawater flue gas desulphurization apparatus, the aeration apparatus can be continuously operated in a stable manner for a long time.
11 diffuser membrane
12 slit
100 seawater flue gas desulphurization apparatus
102 flue gas desulphurization absorber
103 seawater
103A used seawater
103B diluted used seawater
105 dilution-mixing basin
106 oxidation basin
120A, 120B aeration apparatus
123 aeration nozzle
Number | Date | Country | Kind |
---|---|---|---|
2010-183498 | Aug 2010 | JP | national |
Number | Date | Country | |
---|---|---|---|
61419398 | Dec 2010 | US |