This application claims priority from Chinese Patent Applications Nos. 200920183323.3, 200920183324.8, and 200920183325.2 filed on Oct. 15, 2009 in the Chinese Intellectual Property Office, the disclosures of which are incorporated herein by reference in their entirety.
The present invention relates to aerators for generating bubbles in a flow of water. More particularly, the present invention relates to kitchen aerators including flow compensators which are capable of providing improved flow patterns.
Aerator nozzles, faucets, kitchen aerators, spray heads, shower heads, and the like for controlling the fluid flow of water are well known in the art. Aerator faucets, for example, such as those for use in the kitchen, are generally complicated mechanical devices having numerous parts including water discharge heads that can be rotated to regulate the discharge spray of water from the discharge spray head. Since these types of rotating spray heads can easily break down in view of the numerous internal moving component parts therein, kitchen aerators have been improved upon. Thus, for example, in U.S. Pat. No. 7,252,248 (“the '248 Patent”), assigned to the assignee of the present application, there has been provided a kitchen aerator which includes a flow compensator for increasing the flow rate of water at low pressures and which utilizes a flip lever to regulate the water flow rate. The pressure compensator is thus capable of regulating the flow rate or maintaining the flow rate regardless of pressure variations in the stream of water. It can also ensure that the flow rate does not exceed the maximum rated flow rate for the particular device in question.
The disclosure of the '248 Patent is therefore incorporated herein by reference thereto in its entirety. In
The search, however, has continued to improve upon these aerators and to provide superior products in terms of the materials used and the costs for producing same.
In accordance with the present invention, these and other objects have now been realized by the invention of an aerator for generating bubbles in a flow of water comprising an aerator body, a diverter having an upper portion and a lower portion attached to the aerator body, the diverter including a plurality of orifices for receiving the flow of water, each of the plurality of orifices including a decreasing pore size in a direction from the upper portion of the diverter towards the lower portion of the diverter, and a lower body portion including a water chamber having an inner surface and an outer surface for receiving and aerating the flow of water from the plurality of orifices in the diverter. In a preferred embodiment, the inner surface of the water chamber includes a plurality of baffles interrupted by a corresponding plurality of trenches therebetween for increasing the aeration of the flow of water exiting from the plurality of orifices.
In accordance with one embodiment of the aerator of the present invention, the diverter includes an upper diverter portion including the plurality of orifices and a lower diverter portion extending into the lower body portion. Preferably, the lower body portion is movable between a lower position in which the lower body portion is in sealable contact with the lower portion of the diverter, thereby preventing the flow of water from flowing therebetween, and an upper position in which the lower body portion is separated from the lower portion of the diverter thereby permitting the flow of water therebetween. In a preferred embodiment, the water chamber includes a plurality of water openings on the outer periphery thereof, whereby when the lower body portion is in the lower position the flow of water flows through the plurality of water openings, and when the lower body portion is in the upper position, the flow of water ceases through the plurality of water openings, thereby causing the flow of water to draw air through the plurality of water openings and further aerate the flow of water thereby.
In accordance with another embodiment of the aerator of the present invention, the aerator includes an inner frame surrounding the diverter and contained within the lower body portion. In a preferred embodiment, the inner frame includes an upper threaded portion, and including an upper body portion threadably affixed to the inner frame. In a preferred embodiment, the upper body portion includes an upper opening, and including a ball joint rotatably mounted within the upper opening in the upper body portion for rotatable mounting of the aerator. Preferably, the ball joint comprises a plastic ball joint.
In accordance with another embodiment of the aerator of the present invention, the aerator includes a pressure compensator mounted on the upper portion of the diverter for regulation of the maximum flow of the flow of water. Preferably, the aerator includes a screen associated with the pressure compensator for filtering the flow of water through the pressure compensator.
In accordance with the present invention, other objects have now been realized by the invention of an aerator for generating bubbles in a flow of water comprising an aerator body, a diverter having an upper portion and a lower portion attached to the aerator body, a pressure compensator mounted on the upper portion of the diverter for regulation of the maximum flow of the flow of water therethrough, the aerator body including an upper portion including a ball joint opening, and a ball joint including an upper ball joint portion including threads for connection to a faucet and a lower ball joint portion mounted within the ball joint opening for swiveling movement therein, the lower ball joint portion comprising plastic and the upper ball joint portion comprising metal. In a preferred embodiment of the aerator of the present invention, the lower ball joint portion is capable of swiveling in a 360° rotation in the ball joint opening.
In one embodiment of the aerator of the present invention, the diverter includes a plurality of orifices for receiving the flow of water. Preferably, the plurality of orifices includes a decreasing pore size in a direction from the upper portion of the diverter towards the lower portion of the diverter.
In accordance with another embodiment of the aerator of the present invention, the aerator includes a lower body portion including a water chamber having an inner surface and an outer surface for receiving and aerating the flow of water from the plurality of orifices in the diverter. Preferably the inner surface of the water chamber includes a plurality of baffles interrupted by a corresponding plurality of trenches therebetween for increasing the aeration of the flow of water exiting from the plurality of orifices.
In accordance with another embodiment of the aerator of the present invention, the diverter includes an upper diverter portion including the plurality of orifices and a lower diverter portion extending into the lower body portion. Preferably the lower body portion is movable between a lower position in which the lower body portion is in sealable contact with the lower portion of the diverter, therefore preventing the flow of water from flowing therebetween, and an upper position in which the lower body portion is separated from the lower portion of the diverter thereby permitting the flow of water therebetween. In a preferred embodiment, the water chamber includes a plurality of water openings on the outer periphery thereof, whereby when the lower body portion is in the lower position, the flow of water can flow through the plurality of water openings, and when the lower body portion is in the upper position, the flow of water ceases through the plurality of water openings, thereby causing the flow of water to draw air through the plurality of water openings and further aerate the flow of water thereby.
In accordance with another embodiment of the aerator of the present invention, the aerator includes an inner frame surrounding the diverter and contained within the lower body portion. Preferably the inner frame includes an upper threaded portion, and including an upper body portion threadably affixed to the inner frame.
In accordance with another embodiment of the aerator of the present invention, the aerator includes a screen associated with the pressure compensator for filtering the flow of water through the pressure compensator.
The present invention may be more fully appreciated with reference to the following detailed description which in turn refers to the figures in which:
Referring first to
The upper diverter portion 3b is intended to equally distribute water flow throughout the entire body of the aerator body 1. The lower diverter portion 3a, as noted, creates a seal against the lower body portion 2, which toggles the water flow to the center bubble stream or the outer spray streams, as discussed in detail below. The diverter 3 directs the flow of water down to the lower surface of the water chamber for expulsion in the appropriate aerated manner. The upper portion of the diverter 3 includes an open mounting portion 7, and a plurality of pores 31 therebelow for the flow of water therefrom. Preferably, these pores are disposed in a circular pattern around the entire floor of the open mounting portion 7, thus distributing the flow of water as discussed above. The upper mounting portion will contain a pressure compensator (not shown in
In the lower portion of the aerator body 1 there is disposed lower body portion 2 which is shown in
On the other hand, when the lower body portion 2 is moved into an up position, as shown in
Referring next to
Turning next to
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Aerators are provided by this invention for the aeration of water in connection with aerator nozzles, faucets, kitchen aerators, spray heads, shower heads, and the like. The aerators can include adjustable flow control mechanisms for altering the flow through the aerator, and for producing greater aeration in one mode as compared to another, thus providing aerated water flow for each of these devices.
Number | Date | Country | Kind |
---|---|---|---|
200920183323.3 | Oct 2009 | CN | national |
200920183324.8 | Oct 2009 | CN | national |
200920183325.2 | Oct 2009 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/52632 | 10/14/2010 | WO | 00 | 11/6/2012 |