Not Applicable
Not Applicable
Not Applicable
This invention relates to an aerator apparatus having a bubble generator in a mixing chamber. The bubble generator functions to diffuse a gas into a stream of liquid flowing through the mixing chamber. Additionally, this invention relates to a method to use the aerator apparatus mounted on a floatable frame to diffuse a gas into a pond or column of water.
In the present aeration technology, paddlewheel type rotors are driven by electric motors coupled to a mechanical gear reducer that is either connected directly to the rotor by couplings or indirectly by belts. The paddlewheel type aerator generators supply oxygen by splashing the surface of the water to entrain air into a current induced by the paddlewheel. These types of apparatuses require a substantial amount of maintenance and have high energy requirements. In other aerators, such as the one shown in U.S. Pat. No. 4,954,295, propellers are employed but without a separate bubble generator means. The propeller itself is used to aerate the liquid. These types of aerators do not provide sufficient gas delivery. A simpler more energy efficient aerator apparatus that can deliver a highly aerated liquid is needed.
In the present invention, a gas, such as air, is forced into a mixing chamber wherein the gas is diffused into a liquid, such as water. The mixing chamber contains a bubble generator which includes a plurality of porous tubes for diffusing a gas into a liquid flowing through the mixing chamber. The gas saturated liquid is then forced out of the mixing chamber by a propeller.
More specifically, the present invention includes an aerator apparatus for mixing a gas with a liquid. The aerator apparatus is made of a first motor having a shaft with a blower operatively connected to the first motor. It also has a mixing chamber made of an enclosing wall having a proximal opening and a distal opening. A bubble generator is located within the mixing chamber and it is operatively connected to the blower. The gas blown into the bubble generator diffuses into the liquid flowing through the mixing chamber. A propeller is positioned to propel water into the proximal opening of the mixing chamber and out of the distal opening of the mixing chamber.
The present invention also includes a method of diffusing a gas into a liquid to be treated. The first step is to mount the aeration apparatus of this invention on a floatable frame to form an aeration assembly. The second step is to dispose the aeration assembly in to the liquid to be treated. The next step involves blowing a gas into the bubble generator of the aerator apparatus and rotating the propeller to induce a flow of the liquid by the propeller through the mixing chamber. The last step involves diffusing a gas into the liquid and propelling the liquid from the aerator apparatus into the pond or column of water.
Referring to
More specifically, as shown in
Referring to
The blower 14 is operatively connected to a bubble generator 33. The term operatively connected means connected or attached in a way to allow the connected device to operate or function as intended. In the preferred embodiment, the blower 14 is operatively connected to the bubble generator 33 (through manifold 36) at the proximal opening 31 of the mixing chamber 30; however, the blower 14 can be operatively connected anywhere along the length of the mixing chamber 30 and by multiple connection hoses (not shown), such as when multiple manifolds are used.
The function of the bubble generator 33 is to form bubbles for delivery to the liquid in the mixing chamber 30. The bubbles increase the amount of surface area of gas in contact with the liquid. This bubble generator 33 includes main pipe 35 connected to at least one manifold 36 by tube 22. The main pipe 35 runs the length of the bubble generator 33. The main pipe 35 is connected to at least one manifold 36. The at least one manifold 36 is also connected to a plurality of porous tubes 37. The main pipe 35 and the plurality of porous tubes 37 in the preferred embodiment are formed of 1½ inch O.D. porous tube. The plurality of porous tubes 37 and main pipe 35 are preferably made of a synthetic rubber (open cell) (ASI, Lexington, Tennessee), such as Neoprene, but can be made of any material porous to the gas to be diffused. In an alternative embodiment, the main pipe 35 is made of nonporous material such as polyethylenes, but is operably connected to a plurality of porous tubes 37. The main pipe 35 can be sized larger than the plurality of porous tubes 37 to facilitate the delivery of the gas to the mixing chamber 30.
The function of the plurality of porous tubes 37 and the main pipe 35 is to diffuse a gas, such as oxygen or nitrogen, into a liquid, such as water, however, in an alternative embodiment, such as wastewater clean-up a chemical is diffused into the water.
The bubble generator 33 is made of a main pipe 35, at least one manifold 36 and a plurality of porous tubes 37. The porous tubes 37 and main pipe 35 are positioned longitudinally in the bubble generator 33. The gas enters at the proximal opening 31 of the mixing chamber 30 and a portion of the gas flows through the plurality of porous tubes 37 and another portion flows through main pipe 35 to at least one manifold 36. The at least one manifold 36 is attached perpendicularly with respect to the main pipe 35 and the plurality of porous tubes 37.
The function of the propeller 47 is to propel a liquid into the mixing chamber 30. The propeller 47 is positioned substantially adjacent at the proximal opening 31 of the mixing chamber 30. A second motor 45 has a shaft 46 connected to propeller 47. The second motor 45 is sized to operate propeller 47. The propeller 47 produces a current of liquid that is propelled through mixing chamber 30 to deliver oxygenated water to the pond or column of water. The water is propelled into mixing chamber 30 at a variable rate depending on the configuration of the apparatus. A diffuser 39 is positioned at the distal opening 32 of the mixing chamber 30. The function of the diffuser 39 is to disperse the gas into the liquid. In the preferred embodiment, the diffuser 39 is a deflector which deflects the liquid downwardly.
In the embodiment shown in 2B, the bubble generator 33 is attached directly to mixing chamber 30. More specifically in this embodiment, the least one manifold 36 can be bolted (not shown) to the enclosing wall 34 to fix the bubble generator 33 to the mixing chamber 30.
The function of the manifold 36 is to spread the flow of gas over a number of porous tubes 37 which are located parallel to main pipe 35. In the preferred embodiment shown in
Now referring to
The removable housing 40 can include a plurality of mixing means to facilitate the mixing of the gas into the liquid. In the preferred embodiment, the mixing means are a plurality of mixing vanes 51 as shown in
Referring now to
Now referring to
The combination of aerator apparatus 10 of the present invention and the floatable frame 60 is referred to as the aeration assembly 65. The aeration assembly 65 can be disposed into the liquid to be treated. More specifically, the aeration assembly can be disposed into a pond or a column of water. The blower 14 then blows air into the bubble generator 33 and the propeller 47 is rotated to induce the flow of liquid by the propeller 47 through the mixing chamber 30. The gas in the bubble generator 33 then diffuses into the liquid in the mixing chamber 30. The liquid containing the diffused gas is then propelled from the aerator assembly 65 into the pond or column of water.
*Temp = average of four stations in basin, approximately 0.5 m depth
*DOs = saturation DO concentration for specific temperature (from Colt, 1984), corrected to ambient station barometric pressure (773 mmHg) using the formula DOa = DOs(BP/760)
DOt = average of four stations in basin, approximately 0.5 m depth
Three linear regressions were performed to determine KLa: 1) all 16 data pairs; 2) 13 data pairs from 20% saturation (time=1.50) till end of test; 3) 10 data pairs in the visually “linear” segment of the relationship (time=2.25 till the end of test).
Numerous characteristics and advantages of my invention have been set forth in the foregoing description, together with details of the structure and function of the invention, and the novel features thereof are pointed out in the appended claims. The disclosure, however, is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts, within the principle of the invention, to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.