The field is multi-purpose multi-form rescue packages used in search and rescue missions.
This application claims priority from Australian Provisional Patent Application Number 2014901163. The contents of this application are hereby incorporated by reference in their entirety.
Rescue packages are used by many agencies for distribution in emergency situations to provide temporary relief to people in distress. Those people are typically in remote areas or areas adversely affected by natural and man-made disasters. Some packages are specifically developed for distribution by aircraft from the air as they fly over those areas. Others are delivered from helicopters and yet others from sea going vessels and in some cases delivered from more than one of these transport and rescue options. There are many names and descriptions for these rescue packages; some include air-deliverable search and rescue kits, assistance packages, search and survivor assistance kits, survival kit air droppable, survival kits, etc.
The packages include a variety of items, such as inflatable life rafts for water based rescues, multi-purpose (sea and land) survival stores that include: potable water, long-life food, matches, light sources, beacons, communication devices, batteries, rope, water proof sheet material, blankets, sunscreen, hats, insect repellent, containers, utensils, sea-sickness tablets, water bailer, sponges, etc. The make-up of the kits will vary for the type of rescue or assistance involved, although reasonable estimates are made so that such kits can be prepared well before they are needed and used for an anticipated range of situations.
These kits are delivered in a variety of ways. Much depends on their size, weight and configuration. The kits include life rafts, survival/emergency equipment and supplies, emergency radios, food, potable and sterilized water and medical supplies. Some are large and need to be dropped from cargo ramps or out of large aircraft doorways. Others are smaller and less sophisticated and are dropped to survivors at slow speeds out of the doors of the aircraft, including from helicopters. These kits vary in price from US$100,000 down to less than US$100.
One example of a current air deliverable search and survivor assistance kit used by the AP-3C Orion aircraft is the Air-deployable Search and Rescue Kits (ASRK). Two ASRKs can be loaded in the bomb bay and launched safely and remotely by the aircrew. Each kit contains two inflatable 10 man (Switlik SAR8) life rafts and two of Marine Stores Containers (MSC). Another kit the AP-3C Orion aircraft can deliver is a Heli-Box stores kit (which gets its name from the typical delivery aircraft being a Helicopter) containing, in one example, supplementary medical supplies, but this kit needs to be ejected from an open door of the alternative transport being a AP-3C Orion aircraft during flight. Other aircraft have the same issues.
There are a number of considerations, each ASRK costs between USD 50,000 and USD 100,000, but once delivered there is little else the aircraft can do for a spread out survivor field. There is no capacity for providing more and different kits, which would suit one and two persons in distress or that are in need of assistance, especially those persons located away from the larger groups that will be assisted by the delivered ASRKs. Furthermore the ASRK cannot be delivered by many other aircraft, even the Boeing P-8 Poseidon currently has no ASKR capability and the door of that aircraft cannot be opened during flight to deliver Heli-Boxes. Yet further there are a number of restrictions to the way in which such rescue packages can be launched and the types of aircraft that can be use to launch such packages.
There is a need for a rescue package that is less costly but can be delivered by a large number of aircraft, particularly of the search and rescue type, like the P-3 Orion, the P8-A and P-81, or other moving launch platforms, including ships, wherein the latter aircraft cannot at this time accommodate an ASRK and deal with Heli-Boxes at all or with difficulty.
In a broad aspect of a rescue package arrangement for launching from a moving platform having a launch tube, includes a container body externally sized and shaped to be launched from a moving platform using a launch tube; a main parachute located with the container; a drogue chute associated with the container deployed after deployment from the moving platform and connected to the main parachute by a drogue tether; a decelerator chute connected to the container and arranged to deploy with or after the drogue chute is deployed; and a delay mechanism arranged to delay deployment of the main parachute for a period of time after the drogue chute deployed from the container; wherein the container is adapted to contain a payload including at least one of the group of items: inflatable life raft, potable water, long-life food, matches, handheld light sources, handheld beacons, handheld communication devices, cell batteries, rope, water proof sheet material, blankets, sunscreen, hats, insect repellent, containers, utensils, sea-sickness tablets, water bailer, sponges, and wherein the decelerator chute assists the stabilisation of the container during at least a portion of the flight of the container.
In an aspect of a rescue package, the delay mechanism comprises a winding of the drogue tether located within the container adapted to play out as the drogue chute and the container separate in distance and the delay period being determined by the length of the drogue tether, the end of which is attached to a main parachute.
In yet a further aspect a drogue deployment mechanism having an air resistance element located external to the container connected to the drogue chute initiates the deployment of the drogue chute once the container is launched from the launch tube
and also begins the delay mechanism.
In another aspect of the rescue package a bulkhead partition is located between the main parachute and the payload, the bulkhead partition adapted to release the payload from containment in the container when the main parachute is spaced from the bulkhead by a length of main parachute tether.
In another form, there is a line connection between the main parachute and at least one item of the group of items, and the container.
In yet another aspect of the rescue package the order of connection is main parachute, the container and at least one item.
In another aspect of the rescue package the minimum weight of the rescue package is 7 kilograms.
In an aspect of the rescue package the maximum weight of the rescue package is 17.7 kilograms.
In yet another aspect of the rescue package the container is one of sizes A, B, C, D, E, F, or G of the military standard containers being suitable for launch from a chute sized to accommodate packages of a diameter equal to or less than 12.5 centimetres.
In an aspect, there is a secondary container sized to fit within the container wherein the secondary container is adapted to contain at least one of the group of items while the container contains the secondary container.
Throughout this specification and the provisional claims that follow unless the context requires otherwise, the words ‘comprise’ and ‘include’ and variations such as ‘comprising’ and ‘including’ will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
The reference to any background or prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that such background or prior art forms part of the common general knowledge.
Specific embodiments will now be described in some further detail with reference to and as illustrated in the accompanying figures. These embodiments are illustrative, and not meant to be restrictive of the scope of the appended claims. Suggestions and descriptions of other embodiments may be included within the scope of the appended claims but they may not be illustrated in the accompanying figures or alternatively features may be shown in the figures but not described in the specification. It will be appreciated that the invention is not limited to the embodiment or embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the scope of the invention as set forth and defined by the following claims.
In the following description, like reference characters designate like or corresponding parts throughout the figures.
An embodiment of a rescue package is configured using as a template a known sonobuoy for the container shape, size and weight.
Sonobuoys are launched from an aircraft using free-fall, pneumatics, or a Cartridge Actuated Device (CAD) (that can achieve launch acceleration of up to 500 G) from a launch tube designed to accommodate the various container lengths which are the main variable of a standard diameter container. When launched from aircraft the sonobuoy can use a decelerator (sometimes comprising a decelerator parachute (decelerator chute)) to retard their descent and provide descent stability, with the decelerator being deployed from an end of the sonobuoy container well after it has launched from the aircraft, the distance being more a function of the exit speed of the container caused by the typically active deployment type. The container can be actively launched from the aircraft at speeds of many hundreds of kilometres per hour reached less than a second after being launched from the launch tube.
Sonobuoy containers are classified by size (A, B, C, etc.). Most sonobuoys are A-size length 91 centimetres, diameter 12.5 centimetres. The A-size sonobuoy weight varies by manufacturer and buoy type, but does not exceed 17.7 kilograms or weigh less than 7 kilograms. Some sonobuoys using half size or A/2 as their standard container.
Container size for devices such as sonobuoys is a well understood standard used by the military and some search and rescue services. In particular, in a preferred embodiment of the rescue package container, the container is an “A” class sized storage container, since such containers are capable of being used in a large range of aircraft, which have as a standard fitting a standard container launch tube (sometimes also referred to as a sonobuoy launch chute (SLC) or a launch chute).
It is preferable that the container used for the rescue package be launched using any of the methods described since it will then be useable by more aircraft and other launch vehicles, even sea borne vehicles and helicopters even when a dedicated launch tube is not used or available.
In one preferred embodiment a container which is launched from a moving platform, such as an aircraft, contains a survivor assistance package or a rescue package. The content of the package can in one embodiment comprise a life raft; a small multi-purpose (sea and land) survival stores container; and a utility buoy and in another embodiment it can contain two life rafts, in yet another embodiment it can contain a collection of equipment and stores suitable for land based survival, and in yet a further embodiment it can contain a task dependant collection of equipment and stores.
The launch tube is designed to handle each of the different launch methods described above, and they all have in common the ability to launch different container sizes but those containers must all have the same outer diameter dimension of 12.5 centimetres and depending on how and what they are packed with, the largest anticipated volume for packing is the usable volume being about 11½ litres.
The containers that could be used are as variable in volume as is provided by the different classes A, B, C, etc. as described previously, and the numbers and types of object they can be packed with will vary with the available volume as will the number of configurations of life rafts supplies and the like. However, it is a preferred embodiment to use an A class container, which is well known and the form of the container is well catered for with respect to the storage, handling and launching from military and search and rescue aircraft and other moving platforms.
Sonobuoys devices are a specialised device used by the military and search and rescue teams, on occasions, to locate, track, and identify sources of noise within a water body. The sonobuoy is launched from the aircraft is launched from the aircraft above a body of water and once landed deploys an array of vibration sensors tuned to receive sound in the body of water. A sonobuoy can be launched from sea vessels but most usefully they can be launched from aircraft that are especially equipped to launch in a predetermined array of locations in the body of water, which when active receive and relay and sometimes analyse the signals received.
A sonobuoy is designed to be launched from the aircraft while in flight and is thus equipped with self-ejecting parachutes. The sonobuoy container has sufficient structural strength to withstand landing in the sea, having used or not used a decelerator, at which time it may also be arranged to disengage with the used parachutes, deploy a buoy/float from which depend into the water an array of sensors (typically referred to a sonar sensors), which when active sends the collected signals to the aircraft or other communication equipment.
The launching of sonobuoys can involve sequential launching of multiple sonobuoys, from an altitude of about 150 meters while the aircraft is traveling at a speed of about 180 knots and in another example from much higher altitudes of kilometres at even greater speed of about 280 knots.
Once the sonobuoy is clear of the aircraft slipstream it is stable enough to be landed at the desired location with or without deploying a parachute. In certain applications it is desirable to not use a parachute and in others it is, but, in all cases the parachutes' primary task is to reduce the speed of the container and a secondary task is to stabilise the flight characteristics of the container. At present, an algorithm performed on a computer on board the aircraft calculates the best aerial location from which to launch a sonobuoy to ensure it will land in the water at a desired target location or zone. Calculations are based on the type (size, weight and shape, etc.) of the container, wind conditions and the accuracy of determination of such characteristics along the flight profile path, aircraft altitude and speed, so as to effect a desired minimum time in flight. Typically operations are conducted at low altitudes to reduce the uncertainty of the actual target locations or zone due to wind drift and other environment conditions. Landing location uncertainty becomes a significant problem at the high operational altitudes, which can, for various reasons be many kilometers above the sea or ground level.
Adaption of a container of the same external size and shape for storage of rescue related items, preferably in one embodiment, involves an A class container being used, which has according to the relevant known standards a maximum inner length of 91.75 cm and with its cylindrical form a maximum inner diameter of 12.38 cm, which equates to a total volume of 11.58 litres, which is considered suitable for the loading of up to 14 kilograms of content (parachute/s and rescue related items) making the total weight of the container about 17 kilograms which is similar to a sonobuoy.
There can thus be allowance for a great variety of rescue and survival equipment to be packed within the available volume of the container.
Preferably, the container and its contents are also capable of being launched and deploying its contents in extremes of temperature, for example from −15° C. to +45° C. as well as a range of humidity conditions.
The container will preferably have the similar storage and launch characteristics as a sonobuoy so that it can be assimilated into the known handling procedures without affecting operational safety (handling, and airworthiness for fire, smoke and fumes) for the aircraft and crew.
It is also preferable that the container and its content have a bench life of greater than 5 years and require less maintenance than a sonobuoy container, since the active components in a sonobuoy are largely electronic and mechanical and they have higher levels of complexity than the rescue package arrangement.
When parachute 18 is to be used, its function, in a predetermined manner, is to retard and stabilise the falling container since importantly different from a sonobuoy, the container may land close to a person in need of rescue and not just land in the water as is the case for a sonobuoy. Furthermore the container can have useable volume of approximately 10 litres once the required parachutes of various types are accommodated. It is thus useful to use one or more parachutes to stabilise the flight path and reduce the speed of the container, such that when it lands it preferably does not inadvertently harm any person in need of the content of the container.
In one embodiment depicted in
Two Inflatable Single Person Life Rafts (ISPLR) can be stored within the available volume and when deployed from the container can be of assistance and life saving for two persons in distress with a single delivery.
The container 10 is shown within a launch tube 12 (designed for holding and launching multiple life rafts). Launch tubes are a standard fit for search and rescue aircraft. Two folded life rafts 14 and 16 are depicted in part cut-away within the container 10. There is no scale to these figures, so the container 10 shown in the launch tube is not the same scale as the life raft illustrations shown immediately below.
Preferably there is consideration of the size, weight and weight distribution of the life rafts in their folded state as well as the need to ensure that the force of launch and landing does not adversely affect the step of deployment/release of the life rafts if not already deployed. The adaption of not only the shape of the folded life rafts and their positioning within the container is considered so as to ensure that the life rafts can be deployed from the landed container and inflated so as to be of immediate assistance to persons in need, who are very likely not to be capable of providing any assistance in the circumstance.
In one embodiment the operation of the decelerator chute 18 is independent of the continuing storage of the two folded life rafts.
Once the container hits the water the decelerator chute 18 will be spread out across the top of the water and the container activates a release mechanism which allows the two life rafts to enter the water from their storage location within the container and to inflate themselves according to their own design requirements but not be affected by the fact that they were prior folded away in the container. The arrows merely show where the two types of life raft come from.
In one embodiment the drogue chute, decelerator chute 18, and both the life rafts, as well as the now essentially empty container are all connected to each other, in the order described.
The connection between these items can in one embodiment be provided by rope (twine or nylon), but may be of other elongate material suitable for the purpose described. The spacing of the items is in one embodiment substantially even along a total length of the connected items of about 20 metres. The length of the connection material will also add to the weight of the content of the packed container, so relatively light but strong connection material is desirable such as for example, 4 millimetre diameter rope or 2 to 3 millimetre diameter light steel cable. The connector itself may be selected to be a material that will float on the water and that would be of assistance to those in distress.
The delivery of the connected rescue package elements can be arranged so that, for example, when delivery is to the surface of a water body the connected elements can be positioned along a path where a majority of persons in need can access them.
In a further embodiment the container contains a secondary container including a flotation device, such as a MOM600, a Man Overboard and recovery Module (MOM).
In a yet further embodiment the container contains a Life Raft Unit (LRU)-16P which has been adapted to fit by being tightly folded and vacuum packed and is thus able to be fitted within at least a part of the available volume within the container. The bottom half of the life raft without the standard inflation bottle of CO2 can be located within the container, thus part of the adaption is the provision of a substitute gas cylinder of reduced diameter and increased length, and configured so as to leave room for a small survivor supply kit, including for example, potable water, space blanket, sunscreen and a chap stick.
In yet a further embodiment depicted in
The container is packed according to an understanding of the required ballistic characteristics of the container, in one example; the centre of balance is located so that the flight characteristics are the same when the container deploys the various chutes, while considering the size and weight of the container. Further, the flight characteristics are more likely to be similar to those of a sonobuoy when the load exceeds about 7 kilograms weight, which ensures that the rescue package exhibits appropriate flight characteristics when the included chutes are deployed.
In an example operation a drogue chute is deployed almost immediately the rescue package is launched from the aircraft. The drogue chute is deployed after a period of about 2 seconds, when in most circumstances the rescue package is out of the boundary layer of the air about the aircraft which can vary in thickness as a function of the air density, the speed of the aircraft and the shape of the aircraft. The launch method used will result in different launch velocities through the boundary layer and then applied so that the deployment of the decelerator chute will stabilise the rescue package thereafter and thus dissuade it from tumbling and may because of the shape of the various chutes rotate the rescue package to effect a smooth decent profile as assisted by one or more other parachutes.
Following or along with the drogue chute deployment a decelerator chute is deployed, to cause the rescue package to slow down the speed and momentum of the rescue package. The use of a main parachute may then be more effective and the delay in deployment of the main chute being controllable to the benefit of the overall deployment of the rescue package by a delay mechanism.
Due to the variety of landing environments to be encountered by the rescue package, it is important that the load be chosen and stowed accordingly so that it can be accessed or will self-deploy its contents appropriately, such as life rafts when the container hits the water. For example, it is known that both ends of the container are operable to open, but operationally the end that deploys a drogue chute and or decelerator chute 18 is already open and it is the end which allows access to the stowed contents that needs to be activated to open when it lands on land or water.
One embodiment is to have the rescue and survival assistance items pre-packed into a secondary container 20 as depicted in
In all the embodiments described thus far when the packet items and container weigh less than 7 kilograms then it may be necessary to add weight to the container, by way of example, potable water filled into a suitable container or dead weight/s located appropriately into the container so as to allow for weight distribution and redistribution during flight.
In one example, the end which provides access to the contents of the container, is arranged to be opened when the container lands, one way of doing so, is to provide a pressure plate that only activates when a predetermined g-force is experienced when the container lands on land, and when that is the case, the end of the container opens or is easily opened by the recipient, or the contents are ejected by the use of an explosive charge, a gas blast or alternatively there are electrical contacts that make a circuit when the container is in the water, and when that is the case the end of the container is opened by the release of a CO2 container which ejects a life raft and/or other contents.
In another embodiment the container has a crumple zone or zones (not depicted) located at an end of the container that are designed to reduce the deceleration of the container when it hits the water or land. The crumple zone is designed in one embodiment to reduce the internal volume of the container but in a manner and shape that is intended to lessen or avoid damage to the content of the container. The crumple zone can be formed by, in one embodiment, pre-weakening of portions of the material of the container, which is typically sheet metal of 4 to 5 millimetre thickness so that the material in the region of the weakness concertinas over a predetermined distance along the impact direction. The crumple zone may also be created by application of a coating to the container body in selected regions which acts to reinforce that portion but leave uncoated portions to have less strength relative to the reinforced regions and thus to encourage crumpling of the mixture of regions in a controlled manner. There are many further ways to create a crumple region or zone in the container of the rescue package when it is assumed that the impact forces might be between 20 G and 50 G.
A rescue package having a crumple zone allows for delivery to both water and land locations with greater accuracy since although there will still be use of a decelerator chute or drogue chute shortly after launch there may not be a main parachute so as to increase the accuracy of the delivery to the water or land desired location. The rescue package is then effectively a missile and as long as the flight characteristics are known then the aircraft operators can effect an accurate pre-delivery flight path, at an appropriate launch speed and altitude, taking in to consideration wind direction and speed to effect a targeted landing at higher speeds than would be desirable if there are people in the vicinity.
The order of the packaging of items into the container can have an effect of the utility of the package or packages being deployed. In one embodiment, the order is determined by the need to eject the life raft first, in another the protection of the payload requires that the compressible items are preferably isolated to survive intact the landing forces as gentle as they may be.
The proposed deployment envelope of different embodiments of the container includes deployment at an airspeed between 150 knots and 250 knots from an altitude of between 160 feet and 500 feet with a launch velocity of about 10.3 meters per second at 30° aft from an aircraft (P3 Orion, but for the P8 the launch angle will be vertical) and a maximum launch acceleration along the longitudinal axis of the container of 50 g for a container that may vary in weight between a nominal minimum of 7 kgs to a nominal maximum of 17 kgs, since those are the minimum and maximum weights of sonobuoys, and a maximum decent rate of 8.4 meters per second. These criteria are merely indicative for the embodiments to be described in this specification. There may be various standards that need to be satisfied before the container can be launched from an aircraft and those standards will be well known to those of skill in the art. The proximity of the launch vehicle to the persons needing rescue package is part of the requirement for the use of parachutes and the proposed deployment envelope.
The use of a tethered ‘chute system’ is the delay mechanism for this embodiment, as will be described in the following embodiments, the ‘chute system” using a drogue chute will create a delay between launch of the container with the almost immediate deployment of the drogue chute and the delay until the deployment of the main parachute. It is anticipated that a 100 meter drogue chute tether between the drogue chute and the main parachute (in one embodiment the main parachute is bagged) will provide a suitable delay. The storage volume required for the drogue chute and associated drogue chute tether, and a secondary (for example stabilisation or deceleration) chute are also considerations. The deceleration chute is required since the stabilisation of the container occurs during the time the drogue chute feeds out the length of drogue chute tether.
In the embodiment to be described in this specification, the proposed deployment sequence including the working of a delay mechanism, is achieved in a way designed to deploy and land the contents of the container accurately and safely not only at the time of launch, during flight but at the time of landing.
In one embodiment the container is formed from 606-T5 aluminium with a wall thickness of 1.6 mm in a tubular shape.
There can be alternative drogue chute deployment mechanisms, for example, an explosive release, a tether located between the container and the launch platform, an air stream actuated flap, etc. Such mechanisms are well known in the parachute field.
The air vane cap deployment from the container provides a very small delay before any of the chutes (drogue chute and decelerator chute in this embodiment) are extracted from the container thus ensuring that the container is a safe distance from the aircraft or deployment platform.
In an embodiment, the container is generally a cylindrical shape from one end to the other and consists of a bulkhead partition separating a lower payload compartment containing the payload from the parachute compartment.
In an embodiment there is a collection of chutes (
Once the bag is removed from the chutes the two chutes independently open as depicted in
The decelerator chute can in one embodiment have a redundant attachment feature to prevent separation of the decelerator chute from the container and should deploy completely within 0.8 seconds after the container clears the launch tube at airspeed greater than 150 knots IAS.
The delay mechanism in this embodiment is the delay in fully extracting the length of drogue chute tether by the drogue chute before deployment of the main chute ensures that the main parachute is deployed well away from the aircraft or deployment platform and that the reduction in airspeed of the container allows for a smaller and lighter construction of main parachute. In an embodiment the drogue chute tether is attached to a bag containing the main parachute. The bag is deployed from the container and is removed from the main parachute as the drogue chute (and decelerator chute operates as designed) continues to separate in distance from the container and the main parachute. Indicative periods of delay are 0.48 seconds and 0.8 seconds. This period will ensure that the container is clear of the moveable platform, especially of antenna and other external elements of an aircraft.
The main chute deploys as a result of the drawing of a bag off the main parachute. Then the main parachute begins to fill with air and continues to draw out the main line connecting the main parachute to the bulkhead partition which is fixed to the container. Details of the partition (bulkhead) and the tasks it performs will be described in greater detail later in the specification. The drogue chute and decelerator chute are released from the process and fall independent of the following process.
An alternative delay mechanism embodiment comprises a former having at least a portion of the material of the drogue chute helically wound about the former and the delay mechanism exposed to the open end of the container and the time to unwind the drogue chute delays its deployment plus the playout of a drogue chute tether. A yet further alternative delay mechanism is the time it takes for the drogue chute tether to unwind from a former, located so that the drogue chute tether can be drawn out of the open end of the container. In yet a further embodiment, the end of the drogue chute tether moves a portion of an assembly mounted to a body fixed to the inner wall of the container, and only once a predetermined movement, which may be a predetermined number of rotations, is effected by the forces pulling on the drogue chute tether, will sufficient delay have occurred before the main parachute is deployed.
The main parachute chute size, as can all chutes, be sized according to known calculations involving the weight of the container, the ballistic coefficient of the container, the assumed air density, the parachute drag coefficient and then the size of the parachute can be determined. However, alternative characteristics could also be used, for example a drag coefficient of 0.9. The size of the chute being important because of the volume it would take up in the parachute compartment and its weight. In most calculations there is a desire for the characteristics of known sonobuoys to be the same or similar so that deployment and landing prediction calculations are consistent.
The main parachute deployment bag is pulled off the main parachute by the drogue chute tether and the bag, drogue chute and decelerator chute are then free to fall separate from the rescue package.
The life rafts are but examples of the payload and an alternative could be a secondary container or multiple secondary containers arranged in the same manner as depicted in
The top cap 140 when in place creates a partition between the drogue chute, deceleration chute and drogue chute tether line and the main parachute deployment bag containing the main parachute. The next partition lies between the main parachute and associated main tether line and the payload and is referred to herein as the bulkhead assembly 200 depicted in
It is an alternative for the payload to be extracted out of the end of the container from which the parachutes are extracted/deployed.
The bulkhead 220 is connected to the container 58 using screws in the various screw receiving apertures radially distributed about the periphery of the bulkhead. With the bulkhead firmly attached to the container, tether attachment lug 254 is connected to the line 234 the other end of which is connected to the first of the life rafts 232. Thus when the payload leaves the container it is still attached to it by the line 234, as is the second of the life rafts 232 by the interconnecting line 234. A lanyard (not shown) is connected between the second of the life rafts and the payload support strap or straps 222 and connected base plate 230.
So as to allow the payload to be manually attached and disengaged to the bulkhead, the locking pins 252 are operable manually as depicted in
Thus based on the embodiment described herein the method of deployment of a rescue package from a moving platform includes deploying a drogue chute from the container wherein the deployment occurs only after the rescue package clears the moving platform. There may also be a further chute deployed from the container, such as for example a decelerator chute, which may deploy at the same time or later than the drogue chute. The next step is separating the drogue chute from the container after a time delay dependant on the distance separation of the drogue chute from the rescue package. Following the separation the main parachute is able to deploy from the container. The deployment of the payload from the container is caused by the main parachute retarding the descent of then remaining container and payload to such an extent as to mechanically unlock the payload freeing it from the container wherein the main parachute, container and payload are tethered together.
Based upon initial estimates and existing operational scenarios, the rescue package arrangement offers the following potential benefits:
Greater flexibility compared with the ASRK alone as multiple rescue package arrangements have the potential to be provided to more people especially in geographically spread rescue tasks.
Great flexibility in terms of being able to be used in types of aircraft supporting “A” Class containers (typically military and specialised search and rescue aircraft) which are air deliverable and that any aircraft carrying such containers can be redirected to be involved in a fast response Search And Rescue (SAR) task.
Ability for all flights to be instantly re-assigned to a SAR task by having pre-installed and pre-filled rescue package arrangements as a standard fit lessens response times in disaster and emergency situations and that can translate directly into more lives saved.
Provides the opportunity to add capability to those aircraft that may already be capable of carrying and deploying ASRKs that also have a conventional sonobuoy deployment capability.
Cost effective for small number of survivors (current estimated cost being US$3,000 per apparatus as opposed to US$50,000 per ASRK which would be deployed for a single person rescue) and one of each type of the apparatus can be carried on every applicable aircraft as ‘standard fit” to enable in-flight flexibility to be reassigned and respond so as to deliver appropriate rescue equipment and supplies over water or land.
Up to 124 of the apparatus can be fitted to a dedicated SAR mission aircraft for multiple rescues depending on the aircraft.
Maintenance efficiency in the anticipated reduced number of controlled launch jettison checks on applicable aircraft (as are required for ASRK use on the same aircraft).
Safety for aircrew by reduced exposure to door opening in flight risks associated with delivery of Heli-Boxes and other non-standard size and shape containers.
Number | Date | Country | Kind |
---|---|---|---|
2014901163 | Mar 2014 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2015/000184 | 3/31/2015 | WO | 00 |