The present disclosure relates in general to aerial delivery systems. The disclosure relates in particular to fluidic delivery by aircraft.
Aerial delivery systems are used to carry and dispense materials to desired locations. Aerial delivery systems include cable lines for picking up and delivering materials. One example involves helicopters equipped with a cable to collect or deploy equipment and supplies. A similar example includes having a bucket attached to the cable and dropping the bucket to ground level for delivery or receipt of material.
Conventional fluidic aerial delivery systems allow fluid delivery to areas and objects otherwise impractical to approach by ground. For instance, aircraft deliver fertilizer and pesticides to crops by dispensing fluid at low altitudes. Aircraft deliver water and fire retardant to forest fires both by plane and suspended buckets from helicopters.
The disclosure below relates to another approach.
The present disclosure is directed to an aerial fluid delivery system. The aerial fluid delivery system comprises a dispenser, a loiter-line, and an aircraft. The dispenser capable of releasing controlled amounts of a fluid. The loiter-line connected to the dispenser and connected to an aircraft, wherein the aircraft can maneuver the dispenser via the loiter-line such that the dispenser is positioned at about a temporally sustained position for accurate fluid delivery to a target.
The dispenser fluid can be an aerosol, a dispersion, optical taggants, or powder based and can be dispensed directly from the dispenser via an orifice or a nozzle, or otherwise projected by the dispenser. For instance the fluid can be contained within a capsule, the capsule projected from the dispenser, the capsule breaking upon impact with the target. The aircraft can be controlled manually or by an autopilot.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred methods and embodiments of the present disclosure. The drawings together with the general description given above and the detailed description of preferred methods and embodiments given below, serve to explain principles of the present disclosure.
Referring now to the drawings, wherein like components are designated by like reference numerals. Methods and various embodiments of the present invention are described further hereinbelow.
Referring to
Dispenser 12 can contain a variety of fluids for dispensement dependent on the application. Here, the term fluid means any substance, or aggregate of substances that can be dispensed and applied to the target. Nonlimiting examples of fluids are liquids, aerosol, or powder. The dispenser can have an orifice or nozzle for dispensing the fluid. For instance, the fluid can be a liquid, aerosol, or fine powder sprayed from the dispenser. Alternatively the fluids can be contained with a breakable capsule, the capsule projected from the dispenser toward a target, breaking upon impact. The fluid can be or contain a taggant for application to the target. The taggant can be optically identifiable particles, such as nanoparticles, with unique spectral signatures for tracking marked targets. The taggant in general can be something attached to an item to be located and tracked, increasing the ability to identify the item by a surveillance system tuned to the taggant.
For taggant applications, nanoparticle can us used. The nanoparticles can include semiconductor based or quantum dot materials made of core, core-shell, and core-shell ligand architectures. Nonlimiting examples of the nanoparticles useful as taggants include CdSe, PbSe, InSb, CulnSe, CeZnTe, ZnO, ZnSe, YVO4, La Br3, and LaF3. The type and the size of the nanoparticles allows unique spectral signatures of the fluid. Further a plurality of the nanoparticle types can be implemented. Both up-converting and down-converting nanoparticle types can be used.
Dispenser 12 can be connected to loiter-line 14 via a simple mechanical connection, or can be gimbal mounted. The dispenser can include fins, rotors, drogue parachute and of such aerodynamic directional stability features. The dispenser can be equipped with an optical camera, a laser range finder, a GPS module, laser rangefinder (LRF), an anemometer, and other such metrology equipment.
Loiter-line 14 can be made from a monofilament, braided filament, and other such cabling, the size of cabling dependent on the weight of the dispenser and particular application. For instance, the dispensers for pesticide application may require the loiter-line to can handle a heavier payload. Similarly, a dispenser for tagging a target may need to be more discrete and require the loiter-line to a lightweight monofilament or a lightweight braided filament. The loiter-line can include electrical or optical communication lines to allow communication between the aircraft and the dispenser.
The loiter-line can optionally include a mass 18 between the dispenser and the aircraft. The mass can provide stability to the dispenser. The mass can also house additional fluid reservoirs, electrical control equipment, communication equipment, metrology equipment, and other such apparatus.
The loiter-line is connected to the aircraft. The connection can be a simple mechanical connection such as a hook, or can be an actuated reel or winch. The reel be housed within the aircraft allowing the dispenser to be carried within the aircraft until required deployment. The reel can lower and raise the dispenser for accurate dispensement. The retractable reel or winch can include a breaking system, a line-cutter, and a clutch to accommodate fast dispenser retraction and deployment.
The aircraft can be a conventional airplane, piloted directly onboard or an unmanned aerial vehicle (UAV) piloted remotely. Here, aircraft 16 is a rotor 17 based airplane. The aircraft can be a helicopter or UAV quadcopter. The aircraft can have an autopilot or an autopilot-mode. The autopilot maneuvering the aircraft such the dispenser is positioned for accurate fluid delivery to the target. The autopilot can be engaged after identification of the target by the autopilot, or the autopilot can both identify the target and begin the approach and control maneuvering or orbiting patterns for delivery to the target.
Orbit radius 36 will depend on a variety of factors. Such factors for positioning the dispenser with respect to the target include, the weight and size of the dispenser, the dispenser fluid, the dispensing mechanism and dispenser flow, the proximity of the target to the dispenser, the amount of fluid to be delivered to the target, the target surface area and size, the targets trajectory if any, the weight, rigidity, the height of the aircraft, the release rate of the loiter-line, the length of the loiter-line, the drag of the loiter-line, and environmental factors such as humidity, rain, and wind or crosswinds. The aircraft can be manually piloted or can be controlled by an autopilot.
The dispenser is in a temporally sustained position when the dispenser is position in proximity to the target for sufficient time to dispense the required amount of fluid for the particular application. For instance, a stationary target or a target that requires a greater amount of fluid may require the dispenser to be positioned with respect to the target for a longer period of time. If the dispensement mechanism and type of fluid allow for quick dispensement, the dispenser may be in motion, the moving dispenser dispensing fluid at an appropriate position with respect to the target for the fluid to intercept and apply to the target.
To deliver fluid to a moving target, the aircraft can approach the vehicle, match the vehicle speed, and adjust altitude or the loiter-line length so that the dispenser is positioned at a temporally sustained position with respect to the target for accurate fluid delivery. If the application requires a faster or more discrete fluid delivery, the aircraft can maneuver the dispenser by sweeping the dispenser so that the dispenser trajectory is about the same as the target trajectory and in proximity with the target for at least sufficient time for accurate fluid delivery. Such maneuvering allows the aircraft to travel at a different velocity, direction, or both with respect to the target.
Referring to
Referring to
A microcontroller unit 98 controls the dispenser and operates a solenoid controller 96, which opens and closes solenoid 90. Here, the dispenser has an infrared (IR) light-emitting diode (LED) transceiver 102, the transceiver in connection with microcontroller board by a communication cable 104. IR-LED transceiver 102 allows communication between the dispenser and the aircraft. Alternatively an optical fiber can be routed along the loiter-line, or be the loiter-line, to allow communication between the dispenser and aircraft. A battery 106 powers the microcontroller unit and all apparatus on the dispenser.
The dispenser has an optical camera 108, the optical camera providing targeting and positioning data to the microcontroller. If transmitted to the aircraft, an operator can release fluid based on the imagery. With machine vision software the fluid can be released based on preprogrammed image information. Alternatively or in addition to an optical camera, the dispenser can be equipped with an ultrasonic range finder. The ultrasonic rangefinder allows fluid dispensement to be triggered based on proximity to a target and can allow fluid release without any communication required to and from the aircraft.
Referring to
Projectile dispenser 110 operates similar to a paintball gun. Reservoir 116 is in connection with a chamber 120. Chamber 120 receives at least one of the vessels. Chamber 120 leads to a barrel 122 and the chamber is connected with a pressurized source via a regulator 123. Here, the pressurized source is a CO2 cartridge 124. Upon firing, chamber 120 is isolated from the reservoir and receives a burst of pressurized gas, projecting the vessels down the barrel and towards the target. Similar to that shown in
The present embodiments and methods described in the present disclosure invention have a variety of useful applications. For instance, the aerial deliverer system can be utilized in any application requiring accurate fluid delivery. Applications include those in agriculture, forestry, and military. In particular, the aerial fluid delivery system is useful for discrete tagging.
From the description of the present disclosure provided herein one skilled in the art can manufacture the apparatus and practice the methods disclosed in accordance with the present disclosure. While the present invention has been described in terms of particular embodiments and examples, others can be implemented without departing from the scope of the present invention. In summary, the present disclosure above describes particular embodiments. The invention, however, is not limited to the embodiments described and depicted herein. Rather, the invention is limited only by the claims appended hereto.
This invention was made with government support under Contract No. FA8650-13-C-2319 awarded by the United States Air Force Research Laboratory (AFRL). The government has certain rights in this invention.