Aerodynamic fairing structure for inkjet printing

Information

  • Patent Grant
  • 6565182
  • Patent Number
    6,565,182
  • Date Filed
    Thursday, January 31, 2002
    22 years ago
  • Date Issued
    Tuesday, May 20, 2003
    21 years ago
Abstract
A printing device is provided which includes ink-dispensing structure which carries a printhead with a leading edge, and which moves in a printing sweep downstream across a printzone, a fairing structure, and a mounting structure which supports the fairing structure for movement with the printhead downstream from the leading edge of the printhead in a position configured to reduce aerodynamic turbulence associated with the leading edge of the printhead during movement of the printhead downstream across the printzone.
Description




BACKGROUND




Swath-height error involves the variation in the swath of ink that printheads in a printing device, such as in an inkjet printer, print on media. Variation in the swath height may directly impact print quality, and may be responsible for so-called swath boundary banding. Single-pass printing is especially sensitive to boundary banding, because errors may be difficult to cover up with masking techniques. As printer carriage speeds have increased over time, dynamic swath-height error due to aerodynamic effects has become more and more prevalent, especially during single-pass, bi-directional printing. Single-pass printing, and rapid carriage speeds, are typical today to meet expected printer throughput goals. In the ink-dispensing printhead structure carried by a typical printer carriage, the end printheads in the usual group of printheads are the most affected by this phenomena of swath-height error.




SUMMARY OF THE INVENTION




A printing device is provided which includes ink-dispensing structure which carries a printhead with a leading edge, and which moves in a printing sweep downstream across a printzone, a fairing structure, and a mounting which supports mounting the fairing structure for movement with the printhead downstream from the leading edge of the printhead in a position configured to reduce aerodynamic turbulence associated with the leading edge of the printhead during movement of the printhead downstream across the printzone.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a top perspective view, with a portion broken away, illustrating a printing device which employs, and operates in accordance with, an embodiment of the present invention.





FIG. 2

is a somewhat larger-scale, fragmentary side elevation view, further illustrating an apparatus for reducing swath-height error as employed in the printing device of FIG.


1


.





FIG. 3

is a front elevation view taken generally along the line


3





3


in

FIG. 2

, showing fairing structure in a deployed position relative to associated ink-dispensing printhead structure and printhead carriage.





FIG. 4

is a bottom plan view taken generally along the line


4





4


in FIG.


3


.





FIG. 5

illustrates the fairing structure of

FIG. 4

under circumstances where the printhead carriage has entered a service station, and capping structure has been raised both to cap the printhead structure and to lift actuator structure associated with the capping structure, and to engage and shift fairing structure toward and into a nondeployed or retracted position from a spring-biased deployed position.





FIG. 6

is a front elevation view taken generally along the line


6





6


in FIG.


5


.





FIG. 7

is a view somewhat like that presented in

FIG. 3

, but here showing another embodiment of the invention, which includes a hinge-type, swingably movable fairing structure.





FIGS. 8 and 9

are fragmentary front elevation views depicting retraction of the hinged fairing structure in

FIGS. 7

, and engagement of the fairing structure to clean it of ink build-up and fibers.











DETAILED DESCRIPTION




As we have discovered, if printheads, and particularly leading edges of end printheads, are barriered aerodynamically by a skirt or a fairing, aerodynamic swath-height error can be reduced. For such a fairing to be effective, it typically will be proximate the printheads nozzle location, and proximate the surface of media being printed on in the printzone. As a consequence, aerosol ink may build up on such a fairing, and may attract fibers, both of which conditions can collectively result in fiber tracts. Effective use of a fairing therefore suggests cleaning the fairing structure periodically to deal with the build-up of ink and fibers.




A fairing structure which is deployable and undeployabie (retractable in the service station between deployed and nondeployed positions) may help to deal with space considerations as described above. To aid in handling the deployment/retraction matters, an actuator may be provided adjacent (or in) the service station for shifting the fairing structure between a deployed position (to which it may be biased normally by a yieldable biasing spring), and a nondeployed position. This actuator may also be associated with a wiping/blotting/doctoring structure in the form of a pad or wiper that may act to remove, or otherwise deal with, buildup of aerosol ink and/or media fibers. Actuator structure may be provided adjacent opposite ends of the printzone to permit doctoring of the fairing structure selectively at different times when the carriage and printhead structure are either within and outside of the service station.




Turning attention now to the drawings, and referring first to

FIG. 1

, indicated generally at


20


is an inkjet printer which includes one embodiment of swath-height error-reducing apparatus constructed in accordance with an embodiment of the present invention, and generally illustrated at


22


. It will be appreciated that although an inkjet printer is shown for illustrative purposes, the present invention may be employed in various printing devices, including copiers, facsimile machines, etc.




Included in printer


20


, and mounted on the printer's frame, which is shown fragmentarily at


24


, is a bidirectionally reciprocating carriage


26


which rides back and forth on a supporting carriage rail


28


. Carriage


26


carries ink-dispensing printhead structure


30


, which here includes a group of four printheads


30




a


,


30




b


,


30




c


,


30




d


, in which group, printheads


30




a


and


30




d


are referred to as end printheads. Each printhead includes an array of plural ink-dispensing nozzles, such as the several nozzles whose ink exit faces are shown generally at


31


for printhead


30




d


in FIG.


4


.




Under the influence of appropriate reciprocal drive mechanism, carriage


30


, during a printing operation, may move the printhead structure back and forth in successive reverse-direction printing sweeps—single-pass printing sweeps—generally in the direction of double-ended arrow


32


over a printzone


34


(

FIG. 3

) wherein print media is transported closely adjacent the underside printhead-tip or nozzle surfaces (typically co-planar surfaces) in the adjacent printheads.




Located appropriately adjacent one end of the printzone, near one end of carriage travel along rail


28


, is a home or service station shown generally at


36


, wherein carriage


26


and printhead structure


30


may park and remain between printing operations. In this service station, servicing activities for the printhead structure take place, such as protective capping of the printhead nozzles by a capping structure shown generally at


38


in FIG.


1


. As will be described shortly, attached or joined to a moveable sled component in capping structure


38


are a pair of spaced actuators, or engagement structures, which may be employed to shift a pair of fairing structures between deployed and nondeployed (or retracted) positions relative to the printhead structure, and to the printheads in the printhead structure. Shown at the left side of

FIG. 1

are X, Y and Z orthogonal axes usually referred to with respect to the positionings and motions of things in the structure and operation of printer


20


.




Turning attention now to

FIGS. 2-6

along with

FIG. 1

, opposite end printheads


30




a


,


30




d


in the printhead structure define what are referred to herein as leading edges


30




a




1


and


30




d




1


, respectively. These leading edges are the edges of the end printheads which lead the respective forward advances of these printheads across the printzone during the different reversible directions of travel of a printing operation, indicated by arrow


32


. This printzone, which is shown generally at


34


in

FIG. 1

, is pictured in

FIG. 3

as a zone generally lying between a dash-dot line


40


and a dash-double-dot line


42


. Printzone


34


is pictured toward the left side in

FIG. 3

because

FIG. 3

illustrates the carriage and the printhead structure generally stationed within service station


36


. Accordingly, reversible travel of the carriage along rail


28


to transport the printhead structure back and forth over and across printzone


34


takes place to the left of station


36


in

FIG. 3

, and also to the left, generally of station


36


as such is pictured in FIG.


1


.




Referring now particularly to

FIG. 3

, Printhead edge


30




a




1


is the leading, advancing edge of printhead


30




a


with travel of this printhead generally in the direction of arrowhead


32




a


of arrow


32


, downstream across printzone


34


. Edge


30




d




1


of printhead


30




d


plays the same role with respect to printhead


30




d


during advancing motion of that printhead downstream across printzone


34


, generally in the direction of arrowhead


32




b


of arrow


32


. It is the respective leading motions of printheads


30




a


,


30




d


, and their respective leading edges


30




a




1


and


30




d




1


which may create the kind of aerodynamic turbulence that generates swath-height error of the type which is now addressed.




One thing which should be noted with respect to printheads


30




a


-


30




d


, and as can be seen particularly well in

FIG. 3

, is that the underside nozzle surfaces (and thus the previously-mentioned nozzle exit faces) in these printheads typically lie substantially in a common plane, which is also illustrated by previously-mentioned dash-dot line


40


.




Apparatus


22


, in the embodiment of the invention now being described, includes a pair of downwardly spring-biased fairing structures


44


,


46


which are carried for vertical, reversible reciprocation adjacent the opposite ends of carriage


26


and printhead structure


30


. These fairing structures


44


,


46


may be carried by mounting structures


48


,


50


, respectively. Yieldable biasing springs


52


,


54


, in turn may be operatively interposed, and acting between, the respecting associated fairing and mounting structures to produce actions which will shortly be described.




Fairing structure


44


, its associated mounting structure


48


, and biasing spring


52


are shown adjacent printhead


30




a


, with mounting structure


48


being suitably anchored to the corresponding adjacent side of carriage


26


. Fairing structure


46


, its associated mounting structure


50


, and biasing spring


54


are shown adjacent printhead


30




d


, with mounting structure


50


being suitably anchored to the corresponding adjacent side of carriage


26


. These fairing, mounting and biasing structures are substantially mirror-images of one another, and accordingly, only the structural assembly of structures


46


and biasing spring


54


will now be described in further detail.




Fairing structure


46


typically includes a downwardly-facing plate


46




a


which has a perimeter outline that is most clearly shown in FIG.


4


. The underside of plate


46




a


has a planar face


46




b


which typically lies in the same plane (dash-dot line


40


) occupied by the bottom faces of printheads


30




a


-


30




d


and the nozzle exit faces earlier mentioned. In the particular assembly now being described, plate


46




a


has a dimension measured generally in the direction of carriage travel (the X direction), shown at D


1


in

FIG. 3

, of approximately 6- to 10-millimeters, a dimension extending normal to the plane of

FIG. 3

(the Y direction) which is typically substantially the same as the dimension measured in the same direction of printhead edge


30




d




1


(which is approximately 32-millimeters in a typical range of approximately 30- to approximately 35-millimeters), and a thickness measured in a vertical direction (the Z direction) in

FIG. 3

of approximately 2-millimeters. The distance between an edge


46




d


of plate


46




a


(which edge is referred to herein as a trailing edge in this plate) and edge


30




d




1


, such distance being shown at D


2


in

FIG. 3

herein, typically is approximately 2-millimeters. The result of this arrangement is that the distance between edge


30




d




1


, and the right-most extremity or leading edge


46




e


in plate


46




a


, as shown in

FIGS. 3 and 4

(in the X direction), is approximately 8- to 12-millimeters. This dimension is shown at D


3


in FIG.


3


.




In fairing structure


46


, plate


46




a


is joined to a pair of laterally-spaced, upwardly-extending legs


46




c


, which may be slidably received in downwardly-extending tubes


50




a


of mounting structure


50


. An appropriate travel-limit interference structure (not shown) associated with the interface between legs


46




c


and tubes


50




a


may limit downward travel of fairing structure


46


relative to mounting structure


50


to that which is pictured for this fairing structure in FIG.


3


. This position for the fairing structure is referred to herein as the deployed position for that fairing structure. Slightly compressed biasing spring


54


may yieldably urge the fairing structure to this deployed condition by acting, as generally indicated, between fairing structure


46


and its associated mounting structure


50


.




With the fairing structures in their deployed positions relative to the printhead structure during a printing operation, these fairing structures (and particularly the plates thereof, like plate


46




a


) may act as leading-edge surrogates for printhead edges


30




a




1


,


30




d




1


, depending upon the direction of travel of the carriage and printhead structure through and across the printzone. As such, these fairing structures may change the aerodynamic experience of the leading edges of the end printheads, and may do so in a fashion which reduces turbulence normally experienced by these printhead edges such that swath-height error discussed earlier may be significantly reduced.




While certain dimensions have been given as useful illustrations for the fairing structures described so far, there is a range of sizes and dimensions in each of the categories mentioned earlier which have been found to produce operating structures that are very satisfactory for different operating conditions. For example, while the Y dimension of the fairing structures' plates (such as plate


46




a


) typically may be at least the same as the Y dimensions of the printheads' leading edges, the X dimension of these fairing plate structures might typically lie in the range of between just a few millimeters and approximately 15-millimeters. The Z-axis dimension of the plates in the fairing structures might typically lie in the range of approximately 1- to 4-millimeters. The distance, shown at D


2


in

FIG. 3

, between the leading edge of an end printhead and the adjacent fairing structure plate, might typically lie in the range of approximately 1- to 15-millimeters. None of these dimensions are independently critical.




Referring now to

FIGS. 3

,


5


and


6


, it will be noted that suitably formed on, and/or mounted adjacent, opposite ends (in the X-axis direction) of capping structure


38


are a pair of actuators shown at


56


,


58


which may effectively directly underlie fairing structures


44


,


46


, respectively, when the printhead structure is in the servicing position. Except with respect to the presence of actuators


56


,


58


, capping structure


38


may be in other ways conventional in construction. As indicated, capping structure


38


may include a vertically-shiftable sled


60


which may carry four individual capping elements


62


,


64


,


66


,


68


configured to cap off the nozzles in printheads


30




a


,


30




b


,


30




c


,


30




d


, respectively. Sled


60


may be supported for raising and lowering relative to frame


24


by conventional motor-driven pantograph mechanism, including sets of pivoted pantograph arms, such as those shown at


70


.




Included in actuators


56


,


58


, are fairing plate engagement pads


56




a


,


58




a


, respectively, which may be blotter-like pads. These pads may be configured to engage the undersides of the fairing plates (such as underside


46




b


of fairing plate


46




a


), and to doctor and clean them of accumulated aerosol ink and fibers (or to compress such deposits so that they are effectively not the creators of problems, such as fiber tract problems, during a printing operation).




When the carriage and the printhead structures have moved into service station


36


, initially the capping structure may be spaced beneath the carriage and the printhead structure, as illustrated in FIG.


3


. Thereafter, the pantograph mechanism which raises sled


60


in the capping structure may be operated, with the result that the capping structure moves upwardly to close off and protect the nozzles in the overlying printheads. At the same time, the capping structure may drive actuators


56


,


58


upwardly to engage the undersides of the plates of fairing structures


44


,


46


. When this fairing plate engagement occurs, the fairing structures may be shifted upwardly in the positive Z direction in the printer against the yieldable resistance of biasing springs


52


,


54


, thereby shifting the fairing structures toward their undeployed and retracted positions. Pads


56




a


,


58




a


thus provide servicing (as indicated earlier) to the undersurfaces of the fairing plates and capping elements


62


-


68


, engage and cap off the nozzles of printheads


30




a


-


30




d


, respectively. This combined condition of capped-off nozzles, and lifted and undeployed fairing structures is pictured in

FIGS. 5 and 6

.




When a new printing operation is called for, the capping structure may return to the condition shown in

FIG. 3

, the fairing structures, under the influences of biasing springs


52


,


54


, may return to their respective deployed positions from their nondeployed positions, and a printing operation can take place with the fairing structures performing in accordance with the aerodynamic barriering operation of the present invention.





FIGS. 7

,


8


and


9


illustrate apparatus, shown generally at


72


in FIG.


7


. With respect to the description of apparatus


72


, this description will be given for one only of the structural assemblies shown, just as was done with respect to one only of the two fairing, mounting and spring-biasing structures of apparatus


22


. As was true with respect to the “opposite-end” components in apparatus


22


, those in apparatus


72


can be thought of as being substantial mirror-image duplicates.




Thus, on the right side of carriage


26


in

FIGS. 7

,


8


and


9


, the portion of apparatus


72


which is specifically pictured includes a generally planar fairing plate


74


which may be hinged at


76


for swinging reversibly, as indicated by double-ended curved arrow


78


, about an axis which is generally normal to the plane of

FIGS. 7

,


8


and


9


(the Y direction). Plate


74


thus may be pivoted to the lower end of a mounting structure


80


that may be suitably formed on, or anchored to, the right side of carriage


26


in

FIGS. 7

,


8


and


9


, next to end printhead


30




d


. As pictured in

FIG. 7

, the lower surface


74




a


in fairing plate


74


typically lies in the same plane previously discussed with respect to the lower faces of printheads


30




a


-


30




d


, which plane, as in

FIG. 3

, is represented by dash-dot line


40


. This is the deployed position for plate


74


. The fairing plates, such as plate


74


, may be urged into these deployed positions, relative to their respective mounting structures, by yieldable torsion biasing springs, such as spring


82


which may act between fairing plate


74


and mounting structure


80


.




With the fairing plates in apparatus


72


deployed as indicated in

FIG. 7

, these plates may perform aerodynamically during a printing operation in a similar manner to that described earlier for the fairing plates in apparatus


22


. In apparatus


72


, as pictured in

FIGS. 7

,


8


and


9


, the dimensions and overall configurations of the fairing plates, and the spatial relationships of these plates to end printheads


30




a


-


30




d


, may be substantially the same as those described earlier with reference to apparatus


22


.




Apparatus


72


may employ camming, ramp-like curved actuators, such as actuator


84


which is shown fragmentarily at the right sides of

FIGS. 7

,


8


and


9


in association with fairing plate


74


for urging the fairing plates (by swinging them) away from their deployed positions and toward nondeployed (retracted) positions. In

FIG. 7

, carriage


26


and printhead structure


30


are shown in conditions just entering service station


36


. Specifically, they are shown in conditions where the right-hand side of fairing plate


74


has just begun to engage the upper, concavely-curved surface of ramp


84


. It will be appreciated, however, that the camming actuator may take various other forms. As shown, ramp


84


may be mounted to the frame of the printing device within service station


36


. A corresponding ramp (not shown) may be mounted adjacent an opposite end of carriage travel.




Joined to the upper surface of ramp


84


, at the location generally indicated, there may be an upwardly-extending and slightly inclined, thin and very flexible wiper blade


86


. Wiper blade


86


may function herein, along with the ramp, as a servicing and doctoring structure to deal with the build-up of ink and fiber accumulation on fairing plate


74


, and on its undersurface


74




a


. Wiper blade


86


may be formed of any suitable material, such as synthetic rubber material, which typically is compatible with wiping ink.




As the carriage and printhead structure continue to advance into the service station, ramp


84


may cause plate


74


to swing upwardly about axis


76


toward a nondeployed, retracted angular position relative to mounting structure


80


. As this occurs, the upper surface portion of ramp


84


(which engages plate


74


), along with flexible blade


86


, may perform a wiping, doctoring and cleaning action with respect to fairing plate


74


. When the carriage and printhead structure are fully stationed in service station


36


, as illustrated fragmentarily in

FIG. 9

, fairing plate


74


may be fully angularly retracted. Furthermore, there may be sufficient room and clearance beneath and beside the printhead structure to allow normal raising (and later lowering) operation of a conventional capping structure shown at


88


.




A printing device equipped with the apparatus form of the invention pictured in

FIGS. 7

,


8


and


9


may also preferably be provided with a suitable internal system which allows a user, typically through operation of a connected computer, or through a selection device provided and accessible on the printer per se, to select, periodically, to perform a servicing operation on either fairing structure. Such may be done by placing the printing device in a mode of operation which causes the carriage and printhead structure to shift appropriately toward this or the other end of the printzone a sufficient distance to cause the corresponding ramp and wiper to furnish cleaning and/or servicing of the corresponding fairing plate. Alternatively, or in addition, the so-called cleaning operation may occur automatically, under normal operating conditions of the printing device.




The leading edges of printheads that move back and forth across a printzone in an inkjet printer are prone to generate a printing quality issue called swath-height error. This error occurs as a consequence of aerodynamic turbulence associated with leading-edge motion of a printhead as it advances at high speed, and close to print media, across such a zone. Illustrated herein are structure and methodology which reduces swath-height error by introducing and employing aerodynamic barriering and guarding of these edges through fairing structure which is selectively disposed operatively downstream (in advance) of printhead leading-edge structure.




While the invention has been particularly shown and described with reference to the foregoing preferred embodiments, those skilled in the art will understand that many variations may be made therein without departing from the spirit and scope of the invention as defined in the following claims. The description of the invention should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. Where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.



Claims
  • 1. A printing device, comprising:an ink-dispensing structure which carries a printhead with a leading edge, and which moves in a printing sweep downstream across a printzone; a fairing structure; and a mounting structure which supports the fairing structure for movement with the printhead downstream from the leading edge of the printhead in a position configured to reduce aerodynamic turbulence associated with the leading edge of the printhead during movement of the printhead downstream across the printzone, the fairing structure being mounted for movable adjustment between deployed and nondeployed positions relative to the printhead, and being disposed closer to the printzone when in the deployed position than when in the nondeployed position.
  • 2. A printing device according to claim 1, wherein the leading edge lies substantially in a plane which generally faces the printzone, and wherein the fairing structure defines a surface which, with the fairing structure in the deployed position, lies substantially in the plane, and which, with the fairing structure in the nondeployed position, lies spaced from the plane.
  • 3. A printing device according to claim 1, wherein the fairing structure is yieldably spring-biased toward the deployed position.
  • 4. A printing device according to claim 1, which further comprises an actuator structure disposed along a travel path of the printhead, the actuator structure being configured to operatively engage the fairing structure on selected movement of the fairing structure to shift the fairing structure from the deployed position toward the nondeployed position.
  • 5. A printing device according to claim 4, wherein the actuator structure includes a camming ramp structure mounted adjacent at least one end of travel.
  • 6. A printing device according to claim 5, further comprising a cleaning structure operatively associated with the actuator structure and operable to clean the fairing structure.
  • 7. A printing device according to claim 1, which further comprises a moveable capping structure movable into and out of a capping condition, and wherein the capping structure includes an engagement structure movable with the capping structure to selectively operatively engage the fairing structure to shift the fairing structure from the deployed position toward the nondeployed position.
  • 8. A printing device according to claim 7, further comprising a cleaning structure operatively associated with the engagement structure and operable to clean the fairing structure.
  • 9. A printing device according to claim 1, wherein the fairing structure is pivotally attached to the ink-dispensing structure.
  • 10. A printing device according to claim 1, wherein the fairing structure is slidably attached to the ink-dispensing structure.
  • 11. A printing device, comprising:an ink-dispensing structure which receives one or more printheads having opposite edges, each of which leads in a different, opposite-direction printing sweep downstream across a printzone during a printing operation; a pair of spaced aerodynamic fairing structures; and mounting structure movably mounting the fairing structures with at least a leading one of the fairing structures capable of selected shifting thereof between a nondeployed position and a deployed position wherein the leading fairing structure is configured to reduce aerodynamic turbulence in a vicinity of a leading edge of an advancing ink-dispensing structure.
  • 12. A method of reducing aerodynamic swath-height error in a printer having an ink-dispensing structure with a leading edge, comprising:moving the ink-dispensing structure in a printing sweep downstream across a printzone during a printing operation; establishing an aerodynamic fairing structure capable of reducing aerodynamic turbulence which would otherwise result in a vicinity of the leading edge of the printhead as the ink-dispensing structure; selectively positioning the fairing structure in a position adjacent the leading edge of the ink-dispensing structure to reduce aerodynamic turbulence in the vicinity of the leading edge during said moving; and mounting the fairing structure in such a manner that the fairing structure is moveable between deployed and nondeployed positions, wherein placement of the fairing structure in the deployed position places the fairing structure closer to the printzone than does placement of the fairing structure in the nondeployed position, and wherein the fairing structure is positioned to occupy the deployed position during the printing operation to reduce aerodynamic turbulence in the vicinity of the leading edge of the printhead as the printhead advances downstream across the printzone.
  • 13. The method of claim 12, wherein moving the fairing structure from the nondeployed position to the deployed position is performed by a yieldable biasing spring, and moving the fairing structure from the deployed position to the nondeployed position is performed by a moveable actuator which moves with capping structure provided in a service station of the printer.
  • 14. The method of claim 13 which further includes cleaning the fairing structure with an engaging pad associated with the movable actuator.
  • 15. The method of claim 12, wherein moving the fairing structure from the nondeployed position to the deployed position is performed by a yieldable biasing spring, and moving the fairing structure from the deployed position to the nondeployed position is performed by a camming ramp which engages the fairing structure adjacent an end of travel of the printhead across the printzone.
  • 16. The method of claim 15 which further includes cleaning the fairing structure with a flexible wiping blade associated with the camming ramp.
  • 17. Apparatus for reducing aerodynamic swath-height error in a printing device having an ink-dispensing structure which moves with an advancing leading edge in a printing sweep downstream across a printzone during a printing operation, the apparatus comprising:fairing means for impacting air flow in the printzone; and mounting means for mounting the aerodynamic fairing for movement with the printhead at a location downstream from the leading edge of the printhead, and in a position relative to the printhead which is effective, during movement of the printhead downstream, to displace aerodynamic turbulence which would otherwise result in a vicinity of the leading edge of the printhead during advancement of the printhead downstream; wherein the aerodynamic fairing is mounted for moveable adjustment between deployed and nondeployed positions relative to the ink-dispensing structure, and wherein the aerodynamic fairing is disposed closer to the printzone when in the deployed position than when in the nondeployed position.
  • 18. The apparatus of claim 17, wherein the leading edge of the printhead lies substantially in a plane which generally faces the printzone, and wherein the aerodynamic fairing defines a surface which, with the aerodynamic fairing in the deployed position, lies substantially in the plane, and which, with the aerodynamic fairing in the nondeployed position, lies spaced away from the plane.
  • 19. The apparatus of claim 18 which further includes spring-biasing means for yieldably biasing the aerodynamic fairing toward the deployed position.
  • 20. The apparatus of claim 19, wherein the printhead moves reversibly between opposite ends of travel during a printing operation, and wherein the apparatus further comprises actuator means disposed adjacent at least one of the ends of travel for engaging the aerodynamic fairing on movement of the aerodynamic fairing to adjacent the at least one end of travel, and for shifting the aerodynamic fairing from the deployed position toward the nondeployed position.
  • 21. The apparatus of claim 20, wherein the printing device further includes a moveable capping structure moveable into and out of a capping condition when the printhead structure has moved to adjacent the at least one end of travel, and wherein the actuator means includes engagement means moveable with the capping structure for operatively engaging the aerodynamic fairing to shift the aerodynamic fairing from the deployed position toward the nondeployed position.
  • 22. The apparatus of claim 21, which further comprises cleaning means operatively associated with the actuator means, for cleaning the aerodynamic fairing.
  • 23. The apparatus of claim 20, wherein the actuator means includes a ramp camming means for shifting the aerodynamic fairing between the deployed position and the nondeployed position.
  • 24. The apparatus of claim 23, which further comprises cleaning means operatively associated with the actuator means, for cleaning the aerodynamic fairing.
  • 25. Apparatus for reducing aerodynamic swath-height error in a printing device having ink-dispensing printhead structure including an elongate group of plural printheads having opposite-end printheads, each of which defines an advancing leading edge which leads the printhead structure downstream in an opposite-direction printing sweep across a printzone during a printing operation, and a service station adjacent an end of the printzone, the printheads including nozzles with exit faces lying in a plane, the apparatus comprising:for each of the opposite-end printheads, a generally planar fairing plate which lies in a plane that substantially parallels the plane of the nozzle faces, and which includes a downwardly-facing planar surface substantially co-extensive with the plane of the nozzle faces and facing the printzone during a printing operation, the fairing plate including a leading edge spaced downstream from the leading edge of the associated printhead where such printhead leads advance of the printhead structure downstream across the printzone, and a trailing edge spaced closely adjacent and substantially paralleling the leading edge of the associated printhead, and mounting structure mounting the fairing plate adjacent the leading edge of the associated printhead for movement relative to the leading edge of the associated printhead between a deployed position wherein the planar surface of the fairing plate lies coextensive with the common plane of the nozzle faces and a nondeployed position generally away from the printzone relative the deployed position; spring-biasing structure operatively interposed the fairing plate and the mounting structure, acting between the fairing plate and the mounting structure and normally urging the fairing plate yieldably into the deployed position; and actuator structure selectively operatively engageable with the fairing plate to shift the fairing plate, against yieldable biasing action of the biasing spring, from the deployed position toward the nondeployed position.
US Referenced Citations (21)
Number Name Date Kind
4080607 Van Breemen et al. Mar 1978 A
4260996 Wittwer Apr 1981 A
4458255 Giles Jul 1984 A
4591869 Katerberg et al. May 1986 A
4623897 Brown et al. Nov 1986 A
4628331 Ishikawa Dec 1986 A
4638327 Sutera et al. Jan 1987 A
4806032 Gragg et al. Feb 1989 A
4870431 Sousa et al. Sep 1989 A
5062364 Lewis et al. Nov 1991 A
5266974 Koitabashi et al. Nov 1993 A
5625398 Milkovits et al. Apr 1997 A
5732751 Schmidt et al. Mar 1998 A
5760802 Ebinuma et al. Jun 1998 A
6142601 Sharma et al. Nov 2000 A
6247782 Takata Jun 2001 B1
6281910 Nakano et al. Aug 2001 B1
6328442 Brinkly Dec 2001 B1
6390618 Wotton et al. May 2002 B1
6422680 Hayakawa et al. Jul 2002 B1
6491364 Pietrzyk et al. Dec 2002 B2
Foreign Referenced Citations (6)
Number Date Country
54010732 Jan 1979 JP
57212066 Dec 1982 JP
58089372 May 1983 JP
62042849 Feb 1987 JP
63114658 May 1988 JP
06023998 Feb 1994 JP