Aerodynamic golf club head

Information

  • Patent Grant
  • 10888747
  • Patent Number
    10,888,747
  • Date Filed
    Monday, August 26, 2019
    5 years ago
  • Date Issued
    Tuesday, January 12, 2021
    3 years ago
  • CPC
  • Field of Search
    • US
    • 473 327000
    • 473 345000
    • CPC
    • A63B53/0466
    • A63B2060/006
    • A63B2053/0408
    • A63B53/0408
    • A63B53/0412
    • A63B53/0437
    • A63B60/006
    • A63B2225/01
  • International Classifications
    • A63B53/04
    • A63B60/00
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
An aerodynamic golf club head producing reduced aerodynamic drag forces via unique club head curvatures and relationships.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was not made as part of a federally sponsored research or development project.


TECHNICAL FIELD

The present invention relates to sports equipment; particularly, to a high volume aerodynamic golf club head.


BACKGROUND OF THE INVENTION

Modern high volume golf club heads, namely drivers, are being designed with little, if any, attention paid to the aerodynamics of the golf club head. This stems in large part from the fact that in the past the aerodynamics of golf club heads were studied and it was found that the aerodynamics of the club head had only minimal impact on the performance of the golf club.


The drivers of today have club head volumes that are often double the volume of the most advanced club heads from just a decade ago. In fact, virtually all modern drivers have club head volumes of at least 400 cc, with a majority having volumes right at the present USGA mandated limit of 460 cc. Still, golf club designers pay little attention to the aerodynamics of these large golf clubs; often instead focusing solely on increasing the club head's resistance to twisting during off-center shots.


The modern race to design golf club heads that greatly resist twisting, meaning that the club heads have large moments of inertia, has led to club heads having very long front-to-back dimensions. The front-to-back dimension of a golf club head, often annotated the FB dimension, is measured from the leading edge of the club face to the furthest back portion of the club head. Currently, in addition to the USGA limit on the club head volume, the USGA limits the front-to-back dimension (FB) to 5 inches and the moment of inertia about a vertical axis passing through the club head's center of gravity (CG), referred to as MOIy, to 5900 g*cm2. One of skill in the art will know the meaning of “center of gravity,” referred to herein as CG, from an entry level course on mechanics. With respect to wood-type golf clubs, which are generally hollow and/or having non-uniform density, the CG is often thought of as the intersection of all the balance points of the club head. In other words, if you balance the head on the face and then on the sole, the intersection of the two imaginary lines passing straight through the balance points would define the point referred to as the CG.


Until just recently the majority of drivers had what is commonly referred to as a “traditional shape” and a 460 cc club head volume. These large volume traditional shape drivers had front-to-back dimensions (FB) of approximately 4.0 inches to 4.3 inches, generally achieving an MOIy in the range of 4000-4600 g*cm2. As golf club designers strove to increase MOIy as much as possible, the FB dimension of drivers started entering the range of 4.3 inches to 5.0 inches. The graph of FIG. 1 shows the FB dimension and MOIy of 83 different club head designs and nicely illustrates that high MOIy values come with large FB dimensions.


While increasing the FB dimension to achieve higher MOIy values is logical, significant adverse effects have been observed in these large FB dimension clubs. One significant adverse effect is a dramatic reduction in club head speed, which appears to have gone unnoticed by many in the industry. The graph of FIG. 2 illustrates player test data with drivers having an FB dimension greater than 3.6 inches. The graph illustrates considerably lower club head speeds for large FB dimension drivers when compared to the club head speeds of drivers having FB dimensions less than 4.4 inches. In fact, a club head speed of 104.6 mph was achieved when swinging a driver having a FB dimension of less than 3.8 inches, while the swing speed dropped over 3% to 101.5 mph when swinging a driver with a FB dimension of slightly less than 4.8 inches.


This significant decrease in club head speed is the result of the increase in aerodynamic drag forces associated with large FB dimension golf club heads. Data obtained during extensive wind tunnel testing shows a strong correlation between club head FB dimension and the aerodynamic drag measured at several critical orientations. First, orientation one is identified in FIG. 11 with a flow arrow labeled as “Air Flow—90°” and is referred to in the graphs of the figures as “lie 90 degree orientation.” This orientation can be thought of as the club head resting on the ground plane (GP) with the shaft axis (SA) at the club head's design lie angle, as seen in FIG. 8. Then a 100 mph wind is directed parallel to the ground plane (GP) directly at the club face (200), as illustrated by the flow arrow labeled “Air Flow—90°” in FIG. 11. Secondly, orientation two is identified in FIG. 11 with a flow arrow labeled as “Air Flow—60°” and is referred to in the graphs of the figures as “lie 60 degree orientation.” This orientation can be thought of as the club head resting on the ground plane (GP) with the shaft axis (SA) at the club head's design lie angle, as seen in FIG. 8. Then a 100 mph wind is wind is oriented thirty degrees from a vertical plane normal to the face (200) with the wind originating from the heel (116) side of the club head, as illustrated by the flow arrow labeled “Air Flow—60°” in FIG. 11.


Thirdly, orientation three is identified in FIG. 12 with a flow arrow labeled as “Air Flow—Vert.—0°” and is referred to in the graphs of the figures as “vertical 0 degree orientation.” This orientation can be thought of as the club head being oriented upside down with the shaft axis (SA) vertical while being exposed to a horizontal 100 mph wind directed at the heel (116), as illustrated by the flow arrow labeled “Air Flow—Vert.—0°” in FIG. 12. Thus, the air flow is parallel to the vertical plane created by the shaft axis (SA) seen in FIG. 11, blowing from the heel (116) to the toe (118) but with the club head oriented as seen in FIG. 12.


Now referring back to orientation one, namely the orientation identified in FIG. 11 with a flow arrow labeled as “Air Flow—90°.” Normalized aerodynamic drag data has been gathered for six different club heads and is illustrated in the graph of FIG. 5. At this point it is important to understand that all of the aerodynamic drag forces mentioned herein, unless otherwise stated, are aerodynamic drag forces normalized to a 120 mph airstream velocity. Thus, the illustrated aerodynamic drag force values are the actual measured drag force at the indicated airstream velocity multiplied by the square of the reference velocity, which is 120 mph, then divided by the square of the actual airstream velocity. Therefore, the normalized aerodynamic drag force plotted in FIG. 5 is the actual measured drag force when subjected to a 100 mph wind at the specified orientation, multiplied by the square of the 120 mph reference velocity, and then divided by the square of the 100 mph actual airstream velocity.


Still referencing FIG. 5, the normalized aerodynamic drag force increases non-linearly from a low of 1.2 lbf with a short 3.8 inch FB dimension club head to a high of 2.65 lbf for a club head having a FB dimension of almost 4.8 inches. The increase in normalized aerodynamic drag force is in excess of 120% as the FB dimension increases slightly less than one inch, contributing to the significant decrease in club head speed previously discussed.


The results are much the same in orientation two, namely the orientation identified in FIG. 11 with a flow arrow labeled as “Air Flow—60°.” Again, normalized aerodynamic drag data has been gathered for six different club heads and is illustrated in the graph of FIG. 4. The normalized aerodynamic drag force increases non-linearly from a low of approximately 1.1 lbf with a short 3.8 inch FB dimension club head to a high of approximately 1.9 lbf for a club head having a FB dimension of almost 4.8 inches. The increase in normalized aerodynamic drag force is almost 73% as the FB dimension increases slightly less than one inch, also contributing to the significant decrease in club head speed previously discussed.


Again, the results are much the same in orientation three, namely the orientation identified in FIG. 12 with a flow arrow labeled as “Air Flow—Vert.—0°.” Again, normalized aerodynamic drag data has been gathered for several different club heads and is illustrated in the graph of FIG. 3. The normalized aerodynamic drag force increases non-linearly from a low of approximately 1.15 lbf with a short 3.8 inch FB dimension club head to a high of approximately 2.05 lbf for a club head having a FB dimension of almost 4.8 inches. The increase in normalized aerodynamic drag force is in excess of 78% as the FB dimension increases slightly less than one inch, also contributing to the significant decrease in club head speed previously discussed.


Further, the graph of FIG. 6 correlates the player test club head speed data of FIG. 2 with the maximum normalized aerodynamic drag force for each club head from FIG. 3, 4, or 5. Thus, FIG. 6 shows that the club head speed drops from 104.6 mph, when the maximum normalized aerodynamic drag force is only 1.2 lbf, down to 101.5 mph, when the maximum normalized aerodynamic drag force is 2.65 lbf.


The drop in club head speed just described has a significant impact on the speed at which the golf ball leaves the club face after impact and thus the distance that the golf ball travels. In fact, for a club head speed of approximately 100 mph, each 1 mph reduction in club head speed results in approximately a 1% loss in distance. The present golf club head has identified these relationships, the reason for the drop in club head speed associated with long FB dimension clubs, and several ways to reduce the aerodynamic drag force of golf club heads.


SUMMARY OF THE INVENTION

The claimed aerodynamic golf club head having a post apex attachment promoting region has recognized that the poor aerodynamic performance of large FB dimension drivers is not due solely to the large FB dimension; rather, in an effort to create large FB dimension drivers with a high MOIy value and low center of gravity (CG) dimension, golf club designers have generally created clubs that have very poor aerodynamic shaping. Several problems are the lack of proper shaping to account for airflow reattachment in the crown area trailing the face, the lack of proper shaping to promote airflow attachment after is passes the highest point on the crown, and the lack of proper trailing edge design. In addition, current large FB dimension driver designs have ignored, or even tried to maximize in some cases, the frontal cross sectional area of the golf club head which increases the aerodynamic drag force.


The present aerodynamic golf club head having a post apex attachment promoting region solves these issues and results in a high volume aerodynamic golf club head having a relatively large FB dimension with beneficial moment of inertia values, while also obtaining superior aerodynamic properties unseen by other large volume, large FB dimension, high MOI golf club heads. The golf club head obtains superior aerodynamic performance through the use of unique club head shapes and the incorporation of a having a post apex attachment promoting region directed to keeping the airflow attached to the club head as it passes the crown apex.


The club head has a crown section having a post apex attachment promoting region that at the crown apex and extends toward the back of the club head. The post apex attachment promoting region is a relatively flat portion of the crown section that is behind the crown apex, yet above the maximum height on the face of the club head. The post apex attachment promoting region aides in keeping airflow attached to the club head once it flows past the crown apex thereby resulting in reduced aerodynamic drag forces and producing higher club head speeds.





BRIEF DESCRIPTION OF THE DRAWINGS

Without limiting the scope of the present aerodynamic golf club head as claimed below and referring now to the drawings and figures:



FIG. 1 shows a graph of FB dimensions versus MOIy;



FIG. 2 shows a graph of FB dimensions versus club head speed;



FIG. 3 shows a graph of FB dimensions versus club head normalized aerodynamic drag force;



FIG. 4 shows a graph of FB dimensions versus club head normalized aerodynamic drag force;



FIG. 5 shows a graph of FB dimensions versus club head normalized aerodynamic drag force;



FIG. 6 shows a graph of club head normalized aerodynamic drag force versus club head speed;



FIG. 7 shows a top plan view of a high volume aerodynamic golf club head, not to scale;



FIG. 8 shows a front elevation view of a high volume aerodynamic golf club head, not to scale;



FIG. 9 shows a toe side elevation view of a high volume aerodynamic golf club head, not to scale;



FIG. 10 shows a front elevation view of a high volume aerodynamic golf club head, not to scale;



FIG. 11 shows a top plan view of a high volume aerodynamic golf club head, not to scale;



FIG. 12 shows a rotated front elevation view of a high volume aerodynamic golf club head with a vertical shaft axis orientation, not to scale;



FIG. 13 shows a front elevation view of a high volume aerodynamic golf club head, not to scale;



FIG. 14 shows a top plan view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 15 shows a top plan view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 16 shows a top plan view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 17 shows a top plan view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 18 shows a partial isometric view of a high volume aerodynamic golf club head having a post apex attachment promoting region intersected by the maximum top edge plane, not to scale;



FIG. 19 shows a cross-sectional view taken through a center of the face of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 20 shows a cross-sectional view taken through a center of the face of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 21 shows a heel-side elevation view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 22 shows a toe-side elevation view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 23 shows a rear elevation view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale;



FIG. 24 shows a bottom plan view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale; and



FIG. 25 shows a top plan view of a high volume aerodynamic golf club head having a post apex attachment promoting region, not to scale.





These drawings are provided to assist in the understanding of the exemplary embodiments of the high volume aerodynamic golf club head as described in more detail below and should not be construed as unduly limiting the present golf club head. In particular, the relative spacing, positioning, sizing and dimensions of the various elements illustrated in the drawings are not drawn to scale and may have been exaggerated, reduced or otherwise modified for the purpose of improved clarity. Those of ordinary skill in the art will also appreciate that a range of alternative configurations have been omitted simply to improve the clarity and reduce the number of drawings.


DETAILED DESCRIPTION OF THE INVENTION

The claimed high volume aerodynamic golf club head (100) enables a significant advance in the state of the art. The preferred embodiments of the club head (100) accomplish this by new and novel arrangements of elements and methods that are configured in unique and novel ways and which demonstrate previously unavailable but preferred and desirable capabilities. The description set forth below in connection with the drawings is intended merely as a description of the presently preferred embodiments of the club head (100), and is not intended to represent the only form in which the club head (100) may be constructed or utilized. The description sets forth the designs, functions, means, and methods of implementing the club head (100) in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and features may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the club head (100).


The present high volume aerodynamic golf club head (100) has recognized that the poor aerodynamic performance of large FB dimension drivers is not due solely to the large FB dimension; rather, in an effort to create large FB dimension drivers with a high MOIy value and low center of gravity (CG) dimension, golf club designers have generally created clubs that have very poor aerodynamic shaping. The main problems are the significantly flat surfaces on the body, the lack of proper shaping to account for airflow reattachment in the crown area trailing the face, and the lack of proper trailing edge design. In addition, current large FB dimension driver designs have ignored, or even tried to maximize in some cases, the frontal cross sectional area of the golf club head which increases the aerodynamic drag force. The present aerodynamic golf club head (100) solves these issues and results in a high volume aerodynamic golf club head (100) having a large FB dimension and a high MOIy.


The present high volume aerodynamic golf club head (100) has a volume of at least 400 cc. It is characterized by a face-on normalized aerodynamic drag force of less than 1.5 lbf when exposed to a 100 mph wind parallel to the ground plane (GP) when the high volume aerodynamic golf club head (100) is positioned in a design orientation and the wind is oriented at the front (112) of the high volume aerodynamic golf club head (100), as previously described with respect to FIG. 11 and the flow arrow labeled “air flow—90°.” As explained in the “Background” section, but worthy of repeating in this section, all of the aerodynamic drag forces mentioned herein, unless otherwise stated, are aerodynamic drag forces normalized to a 120 mph airstream velocity. Thus, the above mentioned normalized aerodynamic drag force of less than 1.5 lbf when exposed to a 100 mph wind is the actual measured drag force at the indicated 100 mph airstream velocity multiplied by the square of the reference velocity, which is 120 mph, then divided by the square of the actual airstream velocity, which is 100 mph.


With general reference to FIGS. 7-9, the high volume aerodynamic golf club head (100) includes a hollow body (110) having a face (200), a sole section (300), and a crown section (400). The hollow body (110) may be further defined as having a front (112), a back (114), a heel (116), and a toe (118). Further, the hollow body (110) has a front-to-back dimension (FB) of at least 4.4 inches, as previously defined and illustrated in FIG. 7.


The relatively large FB dimension of the present high volume aerodynamic golf club head (100) aids in obtaining beneficial moment of inertia values while also obtaining superior aerodynamic properties unseen by other large volume, large FB dimension, high MOI golf club heads. Specifically, an embodiment of the high volume aerodynamic golf club head (100) obtains a first moment of inertia (MOIy) about a vertical axis through a center of gravity (CG) of the golf club head (100), illustrated in FIG. 7, that is at least 4000 g*cm2. MOIy is the moment of inertia of the golf club head (100) that resists opening and closing moments induced by ball strikes towards the toe side or heel side of the face. Further, this embodiment obtains a second moment of inertia (MOIx) about a horizontal axis through the center of gravity (CG), as seen in FIG. 9, that is at least 2000 g*cm2. MOIx is the moment of inertia of the golf club head (100) that resists lofting and delofting moments induced by ball strikes high or low on the face (200).


The golf club head (100) obtains superior aerodynamic performance through the use of unique club head shapes. Referring now to FIG. 8, the crown section (400) has a crown apex (410) located an apex height (AH) above a ground plane (GP). The apex height (AH), as well as the location of the crown apex (410), play important roles in obtaining desirable airflow reattachment as close to the face (200) as possible, as well as improving the airflow attachment to the crown section (400). With reference now to FIGS. 9 and 10, the crown section (400) has three distinct radii that improve the aerodynamic performance of the present club head (100). First, as seen in FIG. 9, a portion of the crown section (400) between the crown apex (410) and the front (112) has an apex-to-front radius of curvature (Ra-f) that is less than 3 inches. The apex-to-front radius of curvature (Ra-f) is measured in a vertical plane that is perpendicular to a vertical plane passing through the shaft axis (SA), and the apex-to-front radius of curvature (Ra-f) is further measured at the point on the crown section (400) between the crown apex (410) and the front (112) that has the smallest the radius of curvature. In one particular embodiment, at least fifty percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which intersect a portion of a face top edge (210), are characterized by an apex-to-front radius of curvature (Ra-f) of less than 3 inches. In still a further embodiment, at least ninety percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which intersect a portion of the face top edge (210), are characterized by an apex-to-front radius of curvature (Ra-f) of less than 3 inches. In yet another embodiment, at least fifty percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which intersect a portion of the face top edge (210) between the center of the face (200) and the toeward most point on the face (200), are characterized by an apex-to-front radius of curvature (Ra-f) of less than 3 inches. Still further, another embodiment has at least fifty percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which intersect a portion of the face top edge (210) between the center of the face (200) and the toeward most point on the face (200), are characterized by an apex-to-front radius of curvature (Ra-f) of less than 3 inches.


The center of the face (200) shall be determined in accordance with the USGA “Procedure for Measuring the Flexibility of a Golf Clubhead,” Revision 2.0, Mar. 25, 2005, which is incorporated herein by reference. This USGA procedure identifies a process for determining the impact location on the face of a golf club that is to be tested, also referred therein as the face center. The USGA procedure utilizes a template that is placed on the face of the golf club to determine the face center.


Secondly, a portion of the crown section (400) between the crown apex (410) and the back (114) of the hollow body (110) has an apex-to-rear radius of curvature (Ra-r) that is less than 3.75 inches. The apex-to-rear radius of curvature (Ra-r) is also measured in a vertical plane that is perpendicular to a vertical plane passing through the shaft axis (SA), and the apex-to-rear radius of curvature (Ra-r) is further measured at the point on the crown section (400) between the crown apex (410) and the back (114) that has the smallest the radius of curvature. In one particular embodiment, at least fifty percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which intersect a portion of the face top edge (210), are characterized by an apex-to-rear radius of curvature (Ra-r) of less than 3.75 inches. In still a further embodiment, at least ninety percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which intersect a portion of the face top edge (210), are characterized by an apex-to-rear radius of curvature (Ra-r) of less than 3.75 inches. In yet another embodiment, one hundred percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which intersect a portion of the face top edge (210) between the center of the face (200) and the toeward most point on the face (200), are characterized by an apex-to-rear radius of curvature (Ra-r) of less than 3.75 inches.


Lastly, as seen in FIG. 10, a portion of the crown section (400) has a heel-to-toe radius of curvature (Rh-t) at the crown apex (410) in a direction parallel to the vertical plane created by the shaft axis (SA) that is less than 4 inches. In a further embodiment, at least ninety percent of the crown section (400) located between the most heelward point on the face (200) and the most toeward point on the face (200) has a heel-to-toe radius of curvature (Rh-t) at the crown apex (410) in a direction parallel to the vertical plane created by the shaft axis (SA) that is less than 4 inches. A further embodiment has one hundred percent of the crown section (400) located between the most heelward point on the face (200) and the most toeward point on the face (200) exhibiting a heel-to-toe radius of curvature (Rh-t), at the crown apex (410) in a direction parallel to the vertical plane created by the shaft axis (SA), that is less than 4 inches.


Such small radii of curvature exhibited in the embodiments described herein have traditionally been avoided in the design of high volume golf club heads, especially in the design of high volume golf club heads having FB dimensions of 4.4 inches and greater. However, it is these tight radii produce a bulbous crown section (400) that facilitates airflow reattachment as close to the face (200) as possible, thereby resulting in reduced aerodynamic drag forces and facilitating higher club head speeds.


Conventional high volume large MOIy golf club heads having large FB dimensions, such as those seen in USPN D544939 and USPN D543600, have relatively flat crown sections that often never extend above the face. While these designs appear as though they should cut through the air, the opposite is often true with such shapes achieving poor airflow reattachment characteristics and increased aerodynamic drag forces. The present club head (100) has recognized the significance of proper club head shaping to account for rapid airflow reattachment in the crown section (400) trailing the face (200), which is quite the opposite of the flat steeply sloped crown sections of many prior art large FB dimension club heads.


With reference now to FIG. 10, the face (200) has a top edge (210) and a lower edge (220). Further, as seen in FIGS. 8 and 9, the top edge (210) has a top edge height (TEH) that is the elevation of the top edge (210) above the ground plane (GP). Similarly, the lower edge (220) has a lower edge height (LEH) that is the elevation of the lower edge (220) above the ground plane (GP). The highest point along the top edge (210) produces a maximum top edge height (TEH) that is at least 2 inches. Similarly, the lowest point along the lower edge (220) is a minimum lower edge height (LEH).


One of many significant advances of this embodiment of the present club head (100) is the design of an apex ratio that encourages airflow reattachment on the crown section (400) of the golf club head (100) as close to the face (200) as possible. In other words, the sooner that airflow reattachment is achieved, the better the aerodynamic performance and the smaller the aerodynamic drag force. The apex ratio is the ratio of apex height (AH) to the maximum top edge height (TEH). As previously explained, in many large FB dimension golf club heads the apex height (AH) is no more than the top edge height (TEH). In this embodiment, the apex ratio is at least 1.13, thereby encouraging airflow reattachment as soon as possible.


Still further, this embodiment of the club head (100) has a frontal cross sectional area that is less than 11 square inches. The frontal cross sectional area is the single plane area measured in a vertical plane bounded by the outline of the golf club head (100) when it is resting on the ground plane (GP) at the design lie angle and viewed from directly in front of the face (200). The frontal cross sectional area is illustrated by the cross-hatched area of FIG. 13.


In a further embodiment, a second aerodynamic drag force is introduced, namely the 30 degree offset aerodynamic drag force, as previously explained with reference to FIG. 11. In this embodiment the 30 degree offset normalized aerodynamic drag force is less than 1.3 lbf when exposed to a 100 mph wind parallel to the ground plane (GP) when the high volume aerodynamic golf club head (100) is positioned in a design orientation and the wind is oriented thirty degrees from a vertical plane normal to the face (200) with the wind originating from the heel (116) side of the high volume aerodynamic golf club head (100). In addition to having the face-on normalized aerodynamic drag force less than 1.5 lbf, introducing a 30 degree offset normalized aerodynamic drag force of less than 1.3 lbf further reduces the drop in club head speed associated with large volume, large FB dimension golf club heads.


Yet another embodiment introduces a third aerodynamic drag force, namely the heel normalized aerodynamic drag force, as previously explained with reference to FIG. 12. In this particular embodiment, the heel normalized aerodynamic drag force is less than 1.9 lbf when exposed to a horizontal 100 mph wind directed at the heel (116) with the body (110) oriented to have a vertical shaft axis (SA). In addition to having the face-on normalized aerodynamic drag force of less than 1.5 lbf and the 30 degree offset normalized aerodynamic drag force of less than 1.3 lbf, having a heel normalized aerodynamic drag force of less than 1.9 lbf further reduces the drop in club head speed associated with large volume, large FB dimension golf club heads.


A still further embodiment has recognized that having the apex-to-front radius of curvature (Ra-f) at least 25% less than the apex-to-rear radius of curvature (Ra-r) produces a particularly aerodynamic golf club head (100) further assisting in airflow reattachment and preferred airflow attachment over the crown section (400). Yet another embodiment further encourages quick airflow reattachment by incorporating an apex ratio of the apex height (AH) to the maximum top edge height (TEH) that is at least 1.2. This concept is taken even further in yet another embodiment in which the apex ratio of the apex height (AH) to the maximum top edge height (TEH) is at least 1.25. Again, these large apex ratios produce a bulbous crown section (400) that facilitates airflow reattachment as close to the face (200) as possible, thereby resulting in reduced aerodynamic drag forces and resulting in higher club head speeds.


Reducing aerodynamic drag by encouraging airflow reattachment, or conversely discouraging extended lengths of airflow separation, may be further obtained in yet another embodiment in which the apex-to-front radius of curvature (Ra-f) is less than the apex-to-rear radius of curvature (Ra-r), and the apex-to-rear radius of curvature (Ra-r) is less than the heel-to-toe radius of curvature (Rh-t). Such a shape is contrary to conventional high volume, long FB dimension golf club heads, yet produces a particularly aerodynamic shape.


Taking this embodiment a step further in another embodiment, a high volume aerodynamic golf club head (100) having the apex-to-front radius of curvature (Ra-f) less than 2.85 inches and the heel-to-toe radius of curvature (Rh-t) less than 3.85 inches produces a reduced face-on aerodynamic drag force. Another embodiment focuses on the playability of the high volume aerodynamic golf club head (100) by having a maximum top edge height (TEH) that is at least 2 inches, thereby ensuring that the face area is not reduced to an unforgiving level. Even further, another embodiment incorporates a maximum top edge height (TEH) that is at least 2.15 inches, further instilling confidence in the golfer that they are not swinging a golf club head (100) with a small striking face (200).


The foregoing embodiments may be utilized having even larger FB dimensions. For example, the previously described aerodynamic attributes may be incorporated into an embodiment having a front-to-back dimension (FB) that is at least 4.6 inches, or even further a front-to-back dimension (FB) that is at least 4.75 inches. These embodiments allow the high volume aerodynamic golf club head (100) to obtain even higher MOIy values without reducing club head speed due to excessive aerodynamic drag forces.


Yet a further embodiment balances all of the radii of curvature requirements to obtain a high volume aerodynamic golf club head (100) while minimizing the risk of an unnatural appearing golf club head by ensuring that less than 10% of the club head volume is above the elevation of the maximum top edge height (TEH). A further embodiment accomplishes the goals herein with a golf club head (100) having between 5% to 10% of the club head volume located above the elevation of the maximum top edge height (TEH). This range achieves the desired crown apex (410) and radii of curvature to ensure desirable aerodynamic drag while maintaining an aesthetically pleasing look of the golf club head (100).


The location of the crown apex (410) is dictated to a degree by the apex-to-front radius of curvature (Ra-f); however, yet a further embodiment identifies that the crown apex (410) should be behind the forwardmost point on the face (200) a distance that is a crown apex setback dimension (412), seen in FIG. 9, which is greater than 10% of the FB dimension and less than 70% of the FB dimension, thereby further reducing the period of airflow separation and resulting in desirable airflow over the crown section (400). One particular embodiment within this range incorporates a crown apex setback dimension (412) that is less than 1.75 inches. An even further embodiment balances playability with the volume shift toward the face (200) inherent in the present club head (100) by positioning the performance mass to produce a center of gravity (CG) further away from the forwardmost point on the face (200) than the crown apex setback dimension (412).


Additionally, the heel-to-toe location of the crown apex (410) also plays a significant role in the aerodynamic drag force. The location of the crown apex (410) in the heel-to-toe direction is identified by the crown apex ht dimension (414), as seen in FIG. 8. This figure also introduces a heel-to-toe (HT) dimension which is measured in accordance with USGA rules. The location of the crown apex (410) is dictated to a degree by the heel-to-toe radius of curvature (Rh-t); however, yet a further embodiment identifies that the crown apex (410) location should result in a crown apex ht dimension (414) that is greater than 30% of the HT dimension and less than 70% of the HT dimension, thereby aiding in reducing the period of airflow separation. In an even further embodiment, the crown apex (410) is located in the heel-to-toe direction between the center of gravity (CG) and the toe (118).


The present high volume aerodynamic golf club head (100) has a club head volume of at least 400 cc. Further embodiments incorporate the various features of the above described embodiments and increase the club head volume to at least 440 cc, or even further to the current USGA limit of 460 cc. However, one skilled in the art will appreciate that the specified radii and aerodynamic drag requirements are not limited to these club head sizes and apply to even larger club head volumes. Likewise, a heel-to-toe (HT) dimension of the present club head (100), as seen in FIG. 8, is greater than the FB dimension, as measured in accordance with USGA rules.


As one skilled in the art understands, the hollow body (110) has a center of gravity (CG). The location of the center of gravity (CG) is described with reference to an origin point, seen in FIG. 8. The origin point is the point at which a shaft axis (SA) with intersects with a horizontal ground plane (GP). The hollow body (110) has a bore having a center that defines the shaft axis (SA). The bore is present in club heads having traditional hosels, as well as hosel-less club heads. The center of gravity (CG) is located vertically toward the crown section (400) from the origin point a distance Ycg in a direction orthogonal to the ground plane (GP), as seen in FIG. 8. Further, the center of gravity (CG) is located horizontally from the origin point toward the toe (118) a distance Xcg that is parallel to a vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP). Lastly, the center of gravity (CG) is located a distance Zcg, seen in FIG. 14, from the origin point toward the back (114) in a direction orthogonal to the vertical direction used to measure Ycg and orthogonal to the horizontal direction used to measure Xcg.


Several more embodiments, seen in FIGS. 14-25, incorporate a post apex attachment promoting region (420) on the surface of the crown section (400) at an elevation above a maximum top edge plane (MTEP), illustrated in FIGS. 18, 19, and 22, wherein the post apex attachment promoting region (420) begins at the crown apex (410) and extends toward the back (114) of the club head (100). The incorporation of this post apex attachment promoting region (420) creates a high volume aerodynamic golf club head having a post apex attachment promoting region (100) as seen in several embodiments in FIGS. 14-25. The post apex attachment promoting region (420) is a relatively flat portion of the crown section (400) that is behind the crown apex (410), yet above the maximum top edge plane (MTEP), and aids in keeping airflow attached to the club head (100) once it flows past the crown apex (410).


As with the prior embodiments, the embodiments containing the post apex attachment promoting region (420) include a maximum top edge height (TEH) of at least 2 inches and an apex ratio of the apex height (AH) to the maximum top edge height (TEH) of at least 1.13. As seen in FIG. 14, the crown apex (410) is located a distance from the origin point toward the toe (118) a crown apex x-dimension (416) distance that is parallel to the vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP).


In this particular embodiment, the crown section (400) includes a post apex attachment promoting region (420) on the surface of the crown section (400). Many of the previously described embodiments incorporate characteristics of the crown section (400) located between the crown apex (410) and the face (200) that promote airflow attachment to the club head (100) thereby reducing aerodynamic drag. The post apex attachment promoting region (420) is also aimed at reducing aerodynamic drag by encouraging the airflow passing over the crown section (400) to stay attached to the club head (100); however, the post apex attachment promoting region (420) is located between the crown apex (410) and the back (114) of the club head (100), while also being above the maximum top edge height (TEH), and thus above the maximum top edge plane (MTEP).


Many conventional high volume, large MOIy golf club heads having large FB dimensions have crown sections that often never extend above the face. Further, these prior clubs often have crown sections that aggressively slope down to the sole section. While these designs appear as though they should cut through the air, the opposite is often true with such shapes achieving poor airflow reattachment characteristics and increased aerodynamic drag forces. The present club head (100) has recognized the significance of proper club head shaping to account for rapid airflow reattachment in the crown section (400) trailing the face (200) via the apex ratio, as well as encouraging the to airflow remain attached to the club head (100) behind the crown apex (410) via the apex ratio and the post apex attachment promoting region (420).


With reference to FIG. 14, the post apex attachment promoting region (420) includes an attachment promoting region length (422) measured along the surface of the crown section (400) and orthogonal to the vertical plane defined by the shaft axis (SA). The attachment promoting region length (422) is at least as great as fifty percent of the crown apex setback dimension (412). The post apex attachment promoting region (420) also has an apex promoting region width (424) measured along the surface of the crown section (400) in a direction parallel to the vertical plane defined by the shaft axis (SA). The attachment promoting region width (424) is at least as great as the difference between the crown apex x-dimension (416) and the distance Xcg. The relationship of the attachment promoting region length (422) to the crown apex setback dimension (412) recognizes the natural desire of the airflow to separate from the club head (100) as it passes over the crown apex (410). Similarly, the relationship of the attachment promoting region width (424) to the difference between the crown apex x-dimension (416) and the distance Xcg recognizes the natural desire of the airflow to separate from the club head (100) as it passes over the crown apex (410) in a direction other than directly from the face (200) to the back (114). Incorporating a post apex attachment promoting region (420) that has the claimed length (422) and width (424) establishes the amount of the club head (100) that is above the maximum top edge plane (MTEP) and behind the crown apex (410). In the past many golf club heads sough to minimize, or eliminate, the amount of club head (100) that is above the maximum top edge plane (MTEP)


While the post apex attachment promoting region (420) has both a length (422) and a width (424), the post apex attachment promoting region (420) need not be rectangular in nature. For instance, FIG. 16 illustrates an elliptical post apex attachment promoting region (420) having both a length (422) and a width (424), which may be thought of as a major axis and a minor axis. Thus, the post apex attachment promoting region (420) may be in the shape of any polygon or curved object including, but not limited to, triangles (equilateral, scalene, isosceles, right, acute, obtuse, etc.), quadrilaterals (trapezoid, parallelogram, rectangle, square, rhombus, kite), polygons, circles, ellipses, and ovals. The post apex attachment promoting region (420) is simply an area on the surface of the crown section (400) possessing the claimed attributes, and one skilled in the art will recognize that it will blend into the rest of the crown section (400) and may be indistinguishable by the naked eye.


Like the previous embodiments having aerodynamic characteristics in front of the crown apex (410), the present embodiment incorporating the post apex attachment promoting region (420) located behind the crown apex (410) also has a face-on normalized aerodynamic drag force of less than 1.5 lbf when exposed to a 100 mph wind parallel to the ground plane (GP) when the high volume aerodynamic golf club head having a post apex attachment promoting region (100) is positioned in a design orientation and the wind is oriented at the front (112) of the high volume aerodynamic golf club head having a post apex attachment promoting region (100), as previously explained in detail.


In a further embodiment, a second aerodynamic drag force is introduced, namely the 30 degree offset aerodynamic drag force, as previously explained with reference to FIG. 11. In this embodiment the 30 degree offset normalized aerodynamic drag force is less than 1.3 lbf when exposed to a 100 mph wind parallel to the ground plane (GP) when the high volume aerodynamic golf club head having a post apex attachment promoting region (100) is positioned in a design orientation and the wind is oriented thirty degrees from a vertical plane normal to the face (200) with the wind originating from the heel (116) side of the high volume aerodynamic golf club head having a post apex attachment promoting region (100). In addition to having the face-on normalized aerodynamic drag force less than 1.5 lbf, introducing a 30 degree offset normalized aerodynamic drag force of less than 1.3 lbf further reduces the drop in club head speed associated with large volume, large FB dimension golf club heads.


Yet another embodiment introduces a third aerodynamic drag force, namely the heel normalized aerodynamic drag force, as previously explained with reference to FIG. 12. In this particular embodiment, the heel normalized aerodynamic drag force is less than 1.9 lbf when exposed to a horizontal 100 mph wind directed at the heel (116) with the body (110) oriented to have a vertical shaft axis (SA). In addition to having the face-on normalized aerodynamic drag force of less than 1.5 lbf and the 30 degree offset normalized aerodynamic drag force of less than 1.3 lbf, having a heel normalized aerodynamic drag force of less than 1.9 lbf further reduces the drop in club head speed associated with large volume, large FB dimension golf club heads.


Just as the embodiments that don't incorporate a post apex attachment promoting region (420) benefit from a relatively high apex ratio of the apex height (AH) to the maximum top edge height (TEH), so to do the embodiments incorporating a post apex attachment promoting region (420). After all, by definition the post apex attachment promoting region (420) is located above the maximum top edge plane (MTEP), which means that if the apex ratio is less than 1 then there can be no post apex attachment promoting region (420). An apex ratio of at least 1.13 provides for the height of the crown apex (410) that enables the incorporation of the post apex attachment promoting region (420) to reduce aerodynamic drag forces. Yet another embodiment further encourages airflow attachment behind the crown apex (410) by incorporating an apex ratio that is at least 1.2, thereby further increasing the available area on the crown section (400) above the maximum top edge height (TEH) suitable for a post apex attachment promoting region (420). The greater the amount of crown section (400) behind the crown apex (410), but above the maximum top edge height (TEH), and having the claimed attributes of the post apex attachment promoting region (420); the more likely the airflow is to remain attached to the club head (100) as it flows past the crown apex (410) and reduce the aerodynamic drag force.


With reference to FIGS. 14-17, in one of many embodiments the attachment promoting region length (422) is at least as great as seventy five percent of the crown apex setback dimension (412). As the attachment promoting region length (422) increases in proportion to the crown apex setback dimension (412), the amount of airflow separation behind the crown apex (410) is reduced. Further, as the attachment promoting region length (422) increases in proportion to the crown apex setback dimension (412), the geometry of the club head (100) is partially defined in that the amount of crown section (400) above the maximum top edge plane (MTEP) is set, thereby establishing the deviation of the crown section (400) from the crown apex (410) in the area behind the crown apex (410). Thus, at least a portion of the crown section (400) behind the crown apex (410) must be relatively flat, or deviate from an apex plane (AP), seen in FIG. 22, by less than twenty degrees thereby reducing the amount of airflow separation behind the crown apex (410).


In a further embodiment seen in FIG. 15, the apex promoting region width (424) is at least twice as great as the difference between the crown apex x-dimension (416) and the distance Xcg. As the apex promoting region width (424) increases, more airflow coming over the crown apex (410) is exposed to the post apex attachment promoting region (420) further promoting airflow attachment to the club head (100) behind the crown apex (410) and reducing aerodynamic drag force.


Yet another embodiment focuses not solely on the size of the post apex attachment promoting region (420), but also on the location of it. It is helpful to define a new dimension to further characterize the placement of the post apex attachment promoting region (420); namely, as seen in FIG. 17, the hollow body (110) has a crown apex-to-toe dimension (418) measured from the crown apex (410) to the toewardmost point on the hollow body (110) in a direction parallel to the vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP). The present embodiment recognizes the significance of having the major portion of the crown section (400) between the crown apex (410) and the toe (118) incorporating a post apex attachment promoting region (420). Thus, in this embodiment, the post apex attachment promoting region width (424) is at least fifty percent of the crown apex-to-toe dimension (418). In a further embodiment, at least fifty percent of the crown apex-to-toe dimension (418) includes a portion of the post apex attachment promoting region (420). Generally it is easier to promote airflow attachment to the club head (100) on the crown section (400) behind the crown apex (410) in the region from the crown apex (410) to the toe (118), when compared to the region from the crown apex (410) to the heel (116), because of the previously explained airflow disruption associated with the hosel of the club head (100).


Another embodiment builds upon the post apex attachment promoting region (420) by having at least 7.5 percent of the club head volume located above the maximum top edge plane (MTEP), illustrated in FIG. 18. Incorporating such a volume above the maximum top edge plane (MTEP) increases the surface area of the club head (100) above the maximum top edge height (TEH) facilitating the post apex attachment promoting region (420) and reducing airflow separation between the crown apex (410) and the back (114) of the club head (100). Another embodiment, seen in FIG. 19, builds upon this relationship by incorporating a club head (100) design characterized by a vertical cross-section taken through the hollow body (110) at a center of the face (200) extending orthogonal to the vertical plane through the shaft axis (SA) has at least 7.5 percent of the cross-sectional area located above the maximum top edge plane (MTEP).


As previously mentioned, in order to facilitate the post apex attachment promoting region (420), at least a portion of the crown section (400) has to be relatively flat and not aggressively sloped from the crown apex (410) toward the ground plane (GP). In fact, in one embodiment, a portion of the post apex attachment promoting region (420) has an apex-to-rear radius of curvature (Ra-r), seen in FIG. 20, that is greater than 5 inches. In yet another embodiment, a portion of the post apex attachment promoting region (420) has an apex-to-rear radius of curvature (Ra-r) that is greater than both the bulge and the roll of the face (200). An even further embodiment has a portion of the post apex attachment promoting region (420) having an apex-to-rear radius of curvature (Ra-r) that is greater than 20 inches. These relatively flat portions of the post apex attachment promoting region (420), which is above the maximum top edge plane (MTEP), promote airflow attachment to the club head (100) behind the crown apex (410).


Further embodiments incorporate a post apex attachment promoting region (420) in which a majority of the cross sections taken from the face (200) to the back (114) of the club head (100), perpendicular to the vertical plane through the shaft axis (SA), which pass through the post apex attachment promoting region (420), have an apex-to-rear radius of curvature (Ra-r) that is greater than 5 inches. In fact, in one particular embodiment, at least seventy five percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which pass through the post apex attachment promoting region (420), are characterized by an apex-to-rear radius of curvature (Ra-r) that is greater than 5 inches within the post apex attachment promoting region (420); thereby further promoting airflow attachment between the crown apex (410) and the back (114) of the club head (100).


Another embodiment incorporates features that promote airflow attachment both in front of the crown apex (410) and behind the crown apex (410). In this embodiment, seen in FIG. 20, the previously described vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which pass through the post apex attachment promoting region (420), also have an apex-to-front radius of curvature (Ra-f) that is less than 3 inches, and wherein at least fifty percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), which pass through the post apex attachment promoting region (420), are characterized by an apex-to-front radius of curvature (Ra-f) of at least 50% less than the apex-to-rear radius of curvature (Ra-r). This combination of a very curved crown section (400) from the crown apex (410) to the face (200), along with a relatively flat crown section (400) from the crown apex (410) toward the back (114), both being above the maximum top edge plane (MTEP), promotes airflow attachment over the crown section (400) and reduces aerodynamic drag force. Yet another embodiment takes this relationship further and increases the percentage of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA), previously discussed, to at least seventy five percent of the vertical plane cross sections taken perpendicular to a vertical plane passing through the shaft axis (SA); thus further promoting airflow attachment over the crown section (400) of the club head (100).


The attributes of the claimed crown section (400) tend to keep the crown section (400) distant from the sole section (300). One embodiment, seen in FIGS. 21 and 22, incorporates a skirt (500) connecting a portion of the crown section (400) to the sole section (300). The skirt (500) includes a skirt profile (550) that is concave within a profile region angle (552), seen in FIG. 25, originating at the crown apex (410) wherein the profile region angle (552) is at least 45 degrees. With specific reference to FIG. 21, the concave skirt profile (550) creates a skirt-to-sole transition region (510), also referred to as “SSTR,” at the connection to the sole section (300) and the skirt-to-sole transition region (510) has a rearwardmost SSTR point (512) located above the ground plane (GP) at a rearwardmost SSTR point elevation (513). Similarly, a skirt-to-crown transition region (520), also referred to as “SSCR,” is present at the connection to the crown section (400) and the skirt-to-crown transition region (520) has a rearwardmost SCTR point (522) located above the ground plane (GP) at a rearwardmost SCTR point elevation (523).


In this particular embodiment the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) need not be located vertically in-line with one another, however they are both located within the profile region angle (552) of FIG. 25. Referring again to FIG. 21, the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are vertically separated by a vertical separation distance (530) that is at least thirty percent of the apex height (AH); while also being horizontally separated in a heel-to-toe direction by a heel-to-toe horizontal separation distance (545), seen in FIG. 23; and horizontally separated in a front-to-back direction by a front-to-back horizontal separation distance (540), seen in FIG. 22. This combination of relationships among the elements of the skirt (500) further promotes airflow attachment in that it establishes the location and elevation of the rear of the crown section (400), and thus a profile of the crown section (400) from the crown apex (410) to the back (114) of the club head (100). Further, another embodiment incorporating a rearwardmost SSTR point elevation (513) that is at least twenty five percent of the rearwardmost SCTR point elevation (523) defines a sole section (300) curvature that promotes airflow attachment on the sole section (300).


In a further embodiment, illustrated best in FIG. 23, the rearwardmost SCTR point (522) is substantially in-line vertically with the crown apex (410) producing the longest airflow path over the crown section (400) along the vertical cross section that passes through the crown apex (410) and thus maximizing the airflow attachment propensity of the crown section (400) design. Another variation incorporates a heel-to-toe horizontal separation distance (545) is at least at great as the difference between the crown apex x-dimension (416) and the distance Xcg. A further embodiment has the front-to-back horizontal separation distance (540) is at least thirty percent of the difference between the apex height (AH) and the maximum top edge height (TEH). These additional relationships further promote airflow attachment to the club head (100) by reducing the interference of other airflow paths with the airflow passing over the post apex attachment promoting region (420).


Another embodiment advancing this principle has the rearwardmost SSTR point (512) is located on the heel (116) side of the center of gravity, and the rearwardmost SCTR point (522) is located on the toe (118) side of the center of gravity, as seen in FIG. 23. An alternative embodiment has both the rearwardmost SSTR point and the rearwardmost SCTR point (522) located on the toe (118) side of the center of gravity, but offset by a heel-to-toe horizontal separation distance (545) that is at least as great as the difference between the apex height (AH) and the maximum top edge height (TEH).


All of the previously described aerodynamic characteristics with respect to the crown section (400) apply equally to the sole section (300) of the high volume aerodynamic golf club head (100). In other words, one skilled in the art will appreciate that just like the crown section (400) has a crown apex (410), the sole section (300) may have a sole apex. Likewise, the three radii of the crown section (400) may just as easily be three radii of the sole section (300). Thus, all of the embodiments described herein with respect to the crown section (400) are incorporated by reference with respect to the sole section (300).


The various parts of the golf club head (100) may be made from any suitable or desired materials without departing from the claimed club head (100), including conventional metallic and nonmetallic materials known and used in the art, such as steel (including stainless steel), titanium alloys, magnesium alloys, aluminum alloys, carbon fiber composite materials, glass fiber composite materials, carbon pre-preg materials, polymeric materials, and the like. The various sections of the club head (100) may be produced in any suitable or desired manner without departing from the claimed club head (100), including in conventional manners known and used in the art, such as by casting, forging, molding (e.g., injection or blow molding), etc. The various sections may be held together as a unitary structure in any suitable or desired manner, including in conventional manners known and used in the art, such as using mechanical connectors, adhesives, cements, welding, brazing, soldering, bonding, and other known material joining techniques. Additionally, the various sections of the golf club head (100) may be constructed from one or more individual pieces, optionally pieces made from different materials having different densities, without departing from the claimed club head (100).


Numerous alterations, modifications, and variations of the preferred embodiments disclosed herein will be apparent to those skilled in the art and they are all anticipated and contemplated to be within the spirit and scope of the instant club head. For example, although specific embodiments have been described in detail, those with skill in the art will understand that the preceding embodiments and variations can be modified to incorporate various types of substitute and or additional or alternative materials, relative arrangement of elements, and dimensional configurations. Accordingly, even though only few variations of the present club head are described herein, it is to be understood that the practice of such additional modifications and variations and the equivalents thereof, are within the spirit and scope of the club head as defined in the following claims. The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or acts for performing the functions in combination with other claimed elements as specifically claimed.

Claims
  • 1. A golf club head comprising: A) a hollow body (110) having a club head volume of at least 400 cc, a face (200), a sole section (300), a crown section (400), a front (112), a back (114), a heel (116), and a toe (118), wherein i) the hollow body (110) has a front-to-back dimension (FB) of at least 4.4 inches; ii) the hollow body (110) has a bore having a center that defines a shaft axis (SA) which intersects with a horizontal ground plane (GP) to define an origin point; and iii) the hollow body (110) has a center of gravity (CG) located: (a) vertically toward the crown section (400) from the origin point a distance Ycg in a direction orthogonal to the ground plane (GP); (b) horizontally from the origin point toward the toe (118) a distance Xcg that is parallel to a vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP); and (c) a distance Zcg from the origin toward the back (114) in a direction orthogonal to the vertical direction used to measure Ycg and orthogonal to the horizontal direction used to measure Xcg; B) the face (200) having a top edge (210) and a lower edge (220), wherein a top edge height (TEH) is the elevation of the top edge (210) above the ground plane (GP) and a maximum top edge height (TEH) is at least 2 inches, and a lower edge height (LEH) is the elevation of the lower edge (220) above the ground plane (GP); C) the crown section (400) having a crown apex (410) located an apex height (AH) above the ground plane (GP), wherein; i) the crown apex (410) is located behind the forwardmost point on the face (200) a distance that is a crown apex setback dimension (412) measured in a direction toward the back (114) and orthogonal to the vertical direction used to measure Ycg and orthogonal to the horizontal direction used to measure Xcg; ii) the crown apex (410) is located a distance from the origin toward the toe (118) a crown apex x-dimension (416) distance that is parallel to the vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP); and iii) the crown section (400) includes a post apex attachment promoting region (420) on the surface of the crown section (400) at an elevation above a maximum top edge plane (MTEP) wherein the post apex attachment promoting region (420) begins at the crown apex (410) and extends toward the back (114), and the post apex attachment promoting region (420) includes: (a) an attachment promoting region length (422) measured orthogonal to the vertical plane defined by the shaft axis (SA) from the crown apex (410) to a most rearward point of the post apex attachment promoting region (420), and the attachment promoting region length (422) is at least as great as fifty percent of the crown apex setback dimension (412); (b) an attachment promoting region width (424) measured in a direction parallel to the vertical plane defined by the shaft axis (SA), and parallel to the horizontal ground plane (GP), from a most heelward point of the post apex attachment promoting region (420) to a most toeward point of the post apex attachment promoting region (420), and the attachment promoting region width (424) is at least as great as the difference between the crown apex x-dimension (416) and the distance Xcg; and (c) a portion having an apex-to-rear radius of curvature (Ra-r) greater than 5 inches within a vertical section through the crown apex (410) and perpendicular to the vertical plane created by the shaft axis (SA); D) wherein a first moment of inertia (MOIy) about a vertical axis through a center of gravity of the golf club head is at least 4000 g*cm2, and a second moment of inertia (MOIx) about a horizontal axis through the center of gravity is at least 2000 g*cm2.
  • 2. The golf club head of claim 1, wherein the hollow body (110) has a crown apex-to-toe dimension (418) measured from the crown apex (410) to the toewardmost point on the hollow body (110) in a direction parallel to the vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP), and the attachment promoting region width (424) is at least fifty percent of the crown apex-to-toe dimension (418).
  • 3. The golf club head of claim 2, wherein a portion of the post apex attachment promoting region (420) extends from the crown apex (410) toward the toe (118) a dimension that is at least fifty percent of the crown apex-to-toe dimension (418).
  • 4. The golf club head of claim 2, wherein the attachment promoting region length (422) is at least as great as seventy five percent of the crown apex setback dimension (412), and the attachment promoting region width (424) is at least twice as great as the difference between the crown apex x-dimension (416) and the distance Xcg.
  • 5. The golf club head of claim 2, wherein 5-10 percent of the club head volume is located above the maximum top edge plane (MTEP).
  • 6. The golf club head of claim 1, wherein a vertical cross-section taken through the hollow body (110) at a center of the face (200) extending orthogonal to the vertical plane through the shaft axis (SA) has at least 7.5 percent of the cross-sectional area located above the maximum top edge plane (MTEP).
  • 7. The golf club head of claim 1, wherein a skirt (500) connects a portion of the crown section (400) to the sole section (300), and the skirt (500) includes a skirt profile (550) within a profile region angle (552) originating at the crown apex (410), wherein the profile region angle (552) is 45 degrees, and wherein the skirt (500) includes: (i) a skirt-to-sole transition region (510) at the connection to the sole section (300) and the skirt-to-sole transition region (510) has a rearwardmost SSTR point (512) located above the ground plane (GP) at a rearwardmost SSTR point elevation (513); and(ii) a skirt-to-crown transition region (520) at the connection to the crown section (400) and the skirt-to-crown transition region (520) has a rearwardmost SCTR point (522) located above the ground plane (GP) at a rearwardmost SCTR point elevation (523); wherein (a) the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are located within the profile region angle (552);(b) the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are vertically separated by a vertical separation distance (530) that is at least thirty percent of the apex height (AH); and(c) the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are horizontally separated in a front-to-back direction by a front-to-back horizontal separation distance (540).
  • 8. The golf club head of claim 7, wherein the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are horizontally separated in a heel-to-toe direction by a heel-to-toe horizontal separation distance (545) that is at least as great as the difference between the crown apex x-dimension (416) and the distance Xcg.
  • 9. The golf club head of claim 7, wherein both the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are located on the toe (118) side of the center of gravity.
  • 10. The golf club head of claim 7, wherein a portion of the skirt profile (550) is concave between the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522).
  • 11. The golf club head of claim 10, wherein the front-to-back horizontal separation distance (540) is at least thirty percent of the difference between the apex height (AH) and the maximum top edge height (TEH).
  • 12. The golf club head of claim 7, wherein the rearwardmost SSTR point elevation (513) is at least 25% of the rearwardmost SCTR point elevation (523).
  • 13. The golf club head of claim 1, wherein a portion of the crown section (400) has (a) the heel-to-toe radius of curvature in contact with the crown apex (410) that is less than 4 inches, or (b) the apex-to-front radius of curvature in contact with the crown apex (410) is at least 25% less than a portion of the apex-to-rear radius of curvature located above the top edge height (TEH) within the vertical section through the crown apex (410) and perpendicular to the vertical plane created by the shaft axis (SA).
  • 14. The golf club head of claim 1, wherein an apex ratio of the apex height (AH) to the maximum top edge height (TEH) is at least 1.13.
  • 15. The golf club head of claim 14, wherein the front-to-back dimension (FB) is at least 4.6 inches, and the crown apex setback dimension (412) is less than a distance from a vertical projection of the center of gravity on the ground plane (GP) to a second vertical projection of the forwardmost point on the face (200) on the ground plane (GP).
  • 16. The golf club head of claim 14, wherein the maximum top edge height (TEH) is at least 2.15 inches and the apex ratio is at least 1.20.
  • 17. The golf club head of claim 7, wherein an apex plane is horizontal, parallel to the ground plane (GP), and passes through the crown apex (410), wherein a tilted plane is the apex plane rotated twenty degrees downward toward the rear (114) about a line passing through the crown apex (410) and (a) parallel to the vertical plane defined by the shaft axis (SA) and (b) parallel to the horizontal ground plane (GP), and wherein the post apex attachment promoting region (420) is located between the tilted plane and the apex plane.
  • 18. The golf club head of claim 17, wherein in a vertical plane passing through the rearwardmost SSTR point (512), the sole section (300) is within twenty degrees of the ground plane (GP).
  • 19. A golf club head comprising: A) a hollow body (110) having a club head volume of at least 400 cc, a face (200), a sole section (300), a crown section (400), a skirt (500) connecting a portion of the crown section (400) to the sole section (300), a front (112), a back (114), a heel (116), and a toe (118), wherein i) the hollow body (110) has a front-to-back dimension (FB) of at least 4.4 inches; ii) the hollow body (110) has a bore having a center that defines a shaft axis (SA) which intersects with a horizontal ground plane (GP) to define an origin point; and iii) the hollow body (110) has a center of gravity (CG) located: (a) vertically toward the crown section (400) from the origin point a distance Ycg in a direction orthogonal to the ground plane (GP); (b) horizontally from the origin point toward the toe (118) a distance Xcg that is parallel to a vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP); and (c) a distance Zcg from the origin toward the back (114) in a direction orthogonal to the vertical direction used to measure Ycg and orthogonal to the horizontal direction used to measure Xcg; B) the face (200) having a top edge (210) and a lower edge (220), wherein a top edge height (TEH) is the elevation of the top edge (210) above the ground plane (GP) and a maximum top edge height (TEH) is at least 2 inches, and a lower edge height (LEH) is the elevation of the lower edge (220) above the ground plane (GP); C) the crown section (400) having a crown apex (410) located an apex height (AH) above the ground plane (GP), wherein; i) the crown apex (410) is located behind the forwardmost point on the face (200) a distance that is a crown apex setback dimension (412) measured in a direction toward the back (114) and orthogonal to the vertical direction used to measure Ycg and orthogonal to the horizontal direction used to measure Xcg; ii) the crown apex (410) is located a distance from the origin toward the toe (118) a crown apex x-dimension (416) distance that is parallel to the vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP); and iii) the crown section (400) includes a post apex attachment promoting region (420) on the surface of the crown section (400) at an elevation above a maximum top edge plane (MTEP) wherein the post apex attachment promoting region (420) begins at the crown apex (410) and extends toward the back (114), and the post apex attachment promoting region (420) includes: (a) an attachment promoting region length (422) measured orthogonal to the vertical plane defined by the shaft axis (SA) from the crown apex (410) to a most rearward point of the post apex attachment promoting region (420), and the attachment promoting region length (422) is at least as great as fifty percent of the crown apex setback dimension (412); and (b) an attachment promoting region width (424) measured in a direction parallel to the vertical plane defined by the shaft axis (SA) and parallel to the horizontal ground plane (GP), from a most heelward point of the post apex attachment promoting region (420) to a most toeward point of the post apex attachment promoting region (420), and the attachment promoting region width (424) is at least as great as the difference between the crown apex x-dimension (416) and the distance Xcg, and the hollow body (110) has a crown apex-to-toe dimension (418) measured from the crown apex (410) to the toewardmost point on the hollow body (110) in a direction parallel to the vertical plane defined by the shaft axis (SA) and parallel to the ground plane (GP), and the attachment promoting region width (424) is at least fifty percent of the crown apex-to-toe dimension (418); D) the skirt (500) includes a skirt profile (550) within a profile region angle (552) originating at the crown apex (410), wherein the profile region angle (552) is 45 degrees, and wherein the skirt (500) includes: (i) a skirt-to-sole transition region (510) at the connection to the sole section (300) and the skirt-to-sole transition region (510) has a rearwardmost SSTR point (512) located above the ground plane (GP) at a rearwardmost SSTR point elevation (513); and (ii) a skirt-to-crown transition region (520) at the connection to the crown section (400) and the skirt-to-crown transition region (520) has a rearwardmost SCTR point (522) located above the ground plane (GP) at a rearwardmost SCTR point elevation (523); wherein (a) the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are located within the profile region angle (552); (b) the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are vertically separated by a vertical separation distance (530) that is at least thirty percent of the apex height (AH); (c) the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are horizontally separated in a front-to-back direction by a front-to-back horizontal separation distance (540); and E) wherein a first moment of inertia (MOIy) about a vertical axis through a center of gravity of the golf club head is at least 4000 g*cm2, and a second moment of inertia (MOIx) about a horizontal axis through the center of gravity is at least 2000 g*cm2.
  • 20. The golf club head of claim 19, wherein both the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522) are located on the toe (118) side of the center of gravity, a portion of the skirt profile (550) is concave between the rearwardmost SSTR point (512) and the rearwardmost SCTR point (522), and the front-to-back horizontal separation distance (540) is at least thirty percent of the difference between the apex height (AH) and the maximum top edge height (TEH).
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 15/959,896, filed on Apr. 23, 2018, which is a continuation application of U.S. patent application Ser. No. 15/334,790, filed on Oct. 26, 2016, now U.S. Pat. No. 9,950,221, which is a continuation of U.S. patent application Ser. No. 14/789,263, filed on Jul. 1, 2015, now U.S. Pat. No. 9,504,886, which is a continuation application of U.S. patent application Ser. No. 14/259,475, filed on Apr. 23, 2014, now U.S. Pat. No. 9,168,433, which is a continuation application of U.S. patent application Ser. No. 14/069,448, filed on Nov. 1, 2013, now U.S. Pat. No. 8,771,101, which is a continuation application of U.S. patent application Ser. No. 13/960,879, now U.S. Pat. No. 8,597,137, filed on Aug. 7, 2013, which is a continuation application of U.S. patent application Ser. No. 13/683,299, now U.S. Pat. No. 8,540,586, filed on Nov. 21, 2012, which is a continuation application of U.S. patent application Ser. No. 13/305,978, now abandoned, filed on Nov. 29, 2011, which is a continuation application of U.S. patent application Ser. No. 12/409,998, now U.S. Pat. No. 8,088,021, filed on Mar. 24, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 12/367,839, now U.S. Pat. No. 8,083,609, filed on Feb. 9, 2009, which claims the benefit of U.S. provisional patent application Ser. No. 61/080,892, filed on Jul. 15, 2008, and U.S. provisional patent application Ser. No. 61/101,919, filed on Oct. 1, 2008, all of which are incorporated by reference as if completely written herein.

US Referenced Citations (318)
Number Name Date Kind
1526438 Scott Feb 1925 A
2083189 Crooker Jun 1937 A
2460435 Schaffer Feb 1949 A
3085804 Pieper Apr 1963 A
3166320 Onions Jan 1965 A
3266805 Bulla Aug 1966 A
3468544 Antonious Sep 1969 A
3637218 Carlino Jan 1972 A
3893672 Schonher Jul 1975 A
3941390 Hussey Mar 1976 A
3985363 Jepson Oct 1976 A
3997170 Goldberg Dec 1976 A
4043563 Churchward Aug 1977 A
4065133 Gordos Dec 1977 A
4077633 Studen Mar 1978 A
4139196 Riley Feb 1979 A
4147349 Jeghers Apr 1979 A
4165076 Cella Aug 1979 A
4193601 Reid, Jr. et al. Mar 1980 A
D256709 Reid, Jr. et al. Sep 1980 S
4247105 Jeghers Jan 1981 A
D265112 Lyons Jun 1982 S
4431192 Stuff, Jr. Feb 1984 A
4432549 Zebelean Feb 1984 A
4471961 Masghati et al. Sep 1984 A
4527799 Solheim Jul 1985 A
4592552 Garber Jun 1986 A
4754974 Kobayashi Jul 1988 A
4787636 Honma Nov 1988 A
4811950 Kobayashi Mar 1989 A
4881739 Garcia Nov 1989 A
4895367 Kajita et al. Jan 1990 A
4919428 Perkins Apr 1990 A
5000454 Soda Mar 1991 A
5054784 Collins Oct 1991 A
5092599 Okumoto Mar 1992 A
5116054 Johnson May 1992 A
5190289 Nagai et al. Mar 1993 A
5193810 Antonious Mar 1993 A
5193811 Okumoto et al. Mar 1993 A
5219408 Sun Jun 1993 A
5221086 Antonious Jun 1993 A
5255919 Johnson Oct 1993 A
5301944 Koehler Apr 1994 A
5318297 Davis et al. Jun 1994 A
D349543 MacDougall Aug 1994 S
5340106 Ravaris Aug 1994 A
5435558 Iriarte Jul 1995 A
5482280 Yamawaki Jan 1996 A
5499814 Lu Mar 1996 A
5501459 Endo Mar 1996 A
5511786 Antonious Apr 1996 A
5518243 Redman May 1996 A
5547427 Rigal et al. Aug 1996 A
5558332 Cook Sep 1996 A
D375130 Hlinka et al. Oct 1996 S
D378770 Hlinka et al. Apr 1997 S
5632695 Hlinka et al. May 1997 A
5676606 Schaeffer et al. Oct 1997 A
5695412 Cook Dec 1997 A
5700208 Nelms Dec 1997 A
5720674 Galy Feb 1998 A
5759114 Bluto et al. Jun 1998 A
5785608 Collins Jul 1998 A
5797807 Moore Aug 1998 A
RE35931 Schroder et al. Oct 1998 E
D401650 Burrows Nov 1998 S
5851160 Rugge et al. Dec 1998 A
5876293 Musty Mar 1999 A
5885166 Shiraishi Mar 1999 A
5890971 Shiraishi Apr 1999 A
5935020 Stites et al. Aug 1999 A
5954595 Antonious Sep 1999 A
5967905 Nakahara et al. Oct 1999 A
6001029 Kobayashi Dec 1999 A
6033319 Farrar Mar 2000 A
6074308 Domas Jun 2000 A
6083115 King Jul 2000 A
6093113 Mertens Jul 2000 A
6123627 Antonious Sep 2000 A
6139445 Werner et al. Oct 2000 A
6162132 Yoneyama Dec 2000 A
6168537 Ezawa Jan 2001 B1
6248025 Murphy et al. Jun 2001 B1
6332848 Long et al. Dec 2001 B1
6344002 Kajita Feb 2002 B1
6402639 Iwata Jun 2002 B1
6458042 Chen Oct 2002 B1
6464598 Miller Oct 2002 B1
6471604 Hocknell et al. Oct 2002 B2
6491592 Cackett et al. Dec 2002 B2
6530847 Antonious Mar 2003 B1
6565452 Helmstetter et al. May 2003 B2
6575845 Galloway et al. Jun 2003 B2
6582323 Soracco et al. Jun 2003 B2
6592466 Helmstetter et al. Jul 2003 B2
6607452 Helmstetter et al. Aug 2003 B2
D482420 Burrows Nov 2003 S
6645086 Chen Nov 2003 B1
6648773 Evans Nov 2003 B1
6663504 Hocknell et al. Dec 2003 B2
6669578 Evans Dec 2003 B1
6676536 Jacobson Jan 2004 B1
6723002 Barlow Apr 2004 B1
6739982 Murphy et al. May 2004 B2
6739983 Helmstetter et al. May 2004 B2
6758763 Murphy et al. Jul 2004 B2
6773359 Lee Aug 2004 B1
6776723 Bliss et al. Aug 2004 B2
D501903 Tanaka Feb 2005 S
6855068 Antonious Feb 2005 B2
6860818 Mahaffey et al. Mar 2005 B2
6860824 Evans Mar 2005 B2
6875129 Erickson et al. Apr 2005 B2
6881159 Galloway et al. Apr 2005 B2
6890267 Mahaffey et al. May 2005 B2
6926619 Helmstetter et al. Aug 2005 B2
6929565 Nakahara et al. Aug 2005 B2
6939247 Schweigert et al. Sep 2005 B1
6955612 Lu Oct 2005 B2
6988960 Mahaffey et al. Jan 2006 B2
6991558 Beach et al. Jan 2006 B2
D515643 Oritz Feb 2006 S
6994636 Hocknell et al. Feb 2006 B2
6994637 Murphy et al. Feb 2006 B2
7004849 Cameron Feb 2006 B2
7025692 Erickson et al. Apr 2006 B2
7025695 Mitsuba Apr 2006 B2
D522601 Schweigert Jun 2006 S
7066835 Evans et al. Jun 2006 B2
7070517 Cackett et al. Jul 2006 B2
7086962 Galloway et al. Aug 2006 B2
7097573 Erickson et al. Aug 2006 B2
7118493 Galloway Oct 2006 B2
7121957 Hocknell et al. Oct 2006 B2
7125344 Hocknell et al. Oct 2006 B2
7128661 Soracco et al. Oct 2006 B2
7128664 Onoda et al. Oct 2006 B2
7144333 Murphy et al. Dec 2006 B2
7163470 Galloway et al. Jan 2007 B2
7166038 Williams et al. Jan 2007 B2
7169058 Fagan Jan 2007 B1
D537495 Schweigert Feb 2007 S
7175541 Lo Feb 2007 B2
7189165 Yamamoto Mar 2007 B2
D543600 Oldknow May 2007 S
D544939 Radcliffe et al. Jun 2007 S
7229362 Tavares Jun 2007 B2
D549792 Parise Aug 2007 S
7252599 Hasegawa Aug 2007 B2
7258625 Kawaguchi et al. Aug 2007 B2
7258630 Erickson et al. Aug 2007 B2
7258631 Galloway et al. Aug 2007 B2
7273419 Evans et al. Sep 2007 B2
D552198 Schweigert Oct 2007 S
D554720 Barez et al. Nov 2007 S
7291074 Kouno et al. Nov 2007 B2
7291075 Williams et al. Nov 2007 B2
7294064 Tsurumaki et al. Nov 2007 B2
7306527 Williams et al. Dec 2007 B2
7311614 Kumamoto Dec 2007 B2
D564611 Llewellyn Mar 2008 S
7338390 Lindsay Mar 2008 B2
7344452 Imamoto et al. Mar 2008 B2
7371191 Sugimoto May 2008 B2
7377860 Breier et al. May 2008 B2
7390266 Gwon Jun 2008 B2
7402113 Mori et al. Jul 2008 B2
7413520 Hocknell et al. Aug 2008 B1
7416496 Galloway et al. Aug 2008 B2
7431667 Vincent et al. Oct 2008 B2
7435190 Sugimoto Oct 2008 B2
7452286 Lin et al. Nov 2008 B2
7462109 Erickson et al. Dec 2008 B2
7470201 Nakahara et al. Dec 2008 B2
7476161 Williams et al. Jan 2009 B2
7481720 Tavares Jan 2009 B2
D589103 Kohno Mar 2009 S
7497789 Burnett et al. Mar 2009 B2
7503854 Galloway et al. Mar 2009 B2
7524249 Breier et al. Apr 2009 B2
7549935 Foster et al. Jun 2009 B2
7607991 Sorenson Oct 2009 B2
7628713 Tavares Dec 2009 B2
7632193 Thielen Dec 2009 B2
7637822 Foster et al. Dec 2009 B2
7658686 Soracco Feb 2010 B2
7674187 Cackett et al. Mar 2010 B2
7674189 Beach et al. Mar 2010 B2
7674190 Galloway et al. Mar 2010 B2
7691008 Oyama Apr 2010 B2
7731603 Beach et al. Jun 2010 B2
7749097 Foster et al. Jul 2010 B2
7758454 Burnett et al. Jul 2010 B2
D622338 Kohno Aug 2010 S
D622795 Furutate Aug 2010 S
7766765 Oyama Aug 2010 B2
7771291 Willett et al. Aug 2010 B1
7785212 Lukasiewicz, Jr. et al. Aug 2010 B2
7803065 Breier et al. Sep 2010 B2
7811178 Davis Oct 2010 B2
7846038 Foster et al. Dec 2010 B2
7927229 Jertson et al. Apr 2011 B2
7931546 Bennett et al. Apr 2011 B2
7934998 Yokota May 2011 B2
7938740 Breier et al. May 2011 B2
7980964 Soracco Jul 2011 B2
7993216 Lee Aug 2011 B2
8007371 Breier et al. Aug 2011 B2
8012038 Beach et al. Sep 2011 B1
8012039 Greaney et al. Sep 2011 B2
8038545 Soracco Oct 2011 B2
8043167 Boyd et al. Oct 2011 B2
8062151 Boyd et al. Nov 2011 B2
8083609 Burnett et al. Dec 2011 B2
8088021 Albertsen et al. Jan 2012 B2
8100781 Burnett et al. Jan 2012 B2
8133135 Stites et al. Mar 2012 B2
8147354 Hartwell et al. Apr 2012 B2
8167739 Lukasiewicz, Jr. et al. May 2012 B2
8187115 Bennett et al. May 2012 B2
8187119 Rae et al. May 2012 B2
8216087 Breier et al. Jul 2012 B2
8221260 Stites et al. Jul 2012 B2
8226499 Soracco Jul 2012 B2
8303433 Roach et al. Nov 2012 B2
8337326 Lukasiewicz, Jr. et al. Dec 2012 B2
8409032 Myrhum et al. Apr 2013 B2
8419569 Bennett et al. Apr 2013 B2
8425827 Lee Apr 2013 B2
8435134 Tang et al. May 2013 B2
8460592 Breier et al. Jun 2013 B2
D686679 Greensmith et al. Jul 2013 S
8475292 Rahrig et al. Jul 2013 B2
8496544 Curtis et al. Jul 2013 B2
8506421 Stites et al. Aug 2013 B2
8523705 Breier et al. Sep 2013 B2
8529368 Rice et al. Sep 2013 B2
D692077 Greensmith et al. Oct 2013 S
8550935 Stites et al. Oct 2013 B2
D696366 Milo et al. Dec 2013 S
D696367 Taylor et al. Dec 2013 S
D697152 Harbert et al. Jan 2014 S
8622847 Beach et al. Jan 2014 B2
8663029 Beach et al. Mar 2014 B2
8715109 Bennett et al. May 2014 B2
8747252 Lukasiewicz, Jr. et al. Jun 2014 B2
8784232 Jertson et al. Jul 2014 B2
8834289 de la Cruz et al. Sep 2014 B2
8834290 Bezilla et al. Sep 2014 B2
8834294 Seluga et al. Sep 2014 B1
8894508 Myrhum et al. Nov 2014 B2
8938871 Roach et al. Jan 2015 B2
8986133 Bennett et al. Mar 2015 B2
9044653 Wahl et al. Jun 2015 B2
9205311 Stokke Dec 2015 B2
9308423 Tang et al. Apr 2016 B1
9320949 Golden et al. Apr 2016 B2
9393471 Beno et al. Jul 2016 B2
9421438 Beno et al. Aug 2016 B2
9440123 Beno et al. Sep 2016 B2
9457245 Lee Oct 2016 B2
9474946 Bennett et al. Oct 2016 B2
9498688 Galvan et al. Nov 2016 B2
9504889 Mitzel et al. Nov 2016 B2
9616301 Clausen et al. Apr 2017 B2
9636559 de la Cruz et al. May 2017 B2
9682299 Tang et al. Jun 2017 B2
9821198 Stokke Nov 2017 B2
9855474 Beno et al. Jan 2018 B2
9901794 Beno et al. Feb 2018 B2
9908013 Hettinger et al. Mar 2018 B2
10004958 Tang et al. Jun 2018 B2
10076689 de la Cruz et al. Sep 2018 B2
10076694 Galvan et al. Sep 2018 B2
10130855 Stokke Nov 2018 B2
10155144 Lee Dec 2018 B2
10213663 Goudarzi et al. Feb 2019 B2
20020183130 Pacinella Dec 2002 A1
20020183134 Allen et al. Dec 2002 A1
20030083151 Nakahara et al. May 2003 A1
20030114239 Mase Jun 2003 A1
20030220154 Anelli Nov 2003 A1
20040097299 Soracco May 2004 A1
20040157678 Kohno Aug 2004 A1
20040162156 Kohno Aug 2004 A1
20040192463 Tsurumaki et al. Sep 2004 A1
20050009622 Antonious Jan 2005 A1
20050059508 Burnett et al. Mar 2005 A1
20060009305 Lindsay Jan 2006 A1
20060094535 Cameron May 2006 A1
20060100028 Kuo May 2006 A1
20060116218 Burnett et al. Jun 2006 A1
20060258481 Oyama Nov 2006 A1
20060281581 Yamamoto Dec 2006 A1
20070105657 Hirano May 2007 A1
20070275792 Horacek et al. Nov 2007 A1
20080039234 Williams et al. Feb 2008 A1
20080132356 Chao et al. Jun 2008 A1
20080146374 Beach et al. Jun 2008 A1
20080171610 Shin Jul 2008 A1
20090069114 Foster et al. Mar 2009 A1
20090124411 Rae et al. May 2009 A1
20090137338 Kajita May 2009 A1
20090149275 Rae et al. Jun 2009 A1
20090170632 Beach et al. Jul 2009 A1
20090191980 Greaney et al. Jul 2009 A1
20090286611 Beach et al. Nov 2009 A1
20100016095 Burnett et al. Jan 2010 A1
20110014992 Morrissey Jan 2011 A1
20120071267 Burnett et al. Mar 2012 A1
20120071268 Albertsen et al. Mar 2012 A1
20120172146 Greaney et al. Jul 2012 A1
20120316007 Burnett et al. Dec 2012 A1
20130123040 Willett et al. May 2013 A1
20140256461 Beach et al. Sep 2014 A1
20180361216 Galvan et al. Dec 2018 A1
20190070469 Lee Mar 2019 A1
Foreign Referenced Citations (134)
Number Date Country
0446935 Sep 1991 EP
H06190088 Jul 1994 JP
07112041 May 1995 JP
H10225538 Aug 1998 JP
H10263118 Oct 1998 JP
H11114102 Apr 1999 JP
H11155982 Jun 1999 JP
4703085 May 2000 JP
2000202075 Jul 2000 JP
3070587 Aug 2000 JP
2000245876 Sep 2000 JP
2001212272 Aug 2001 JP
2002119627 Aug 2001 JP
2002-052099 Feb 2002 JP
2002136625 May 2002 JP
2003135632 May 2003 JP
2003199848 Jul 2003 JP
2003210621 Jul 2003 JP
2003524487 Aug 2003 JP
2003320061 Nov 2003 JP
2004174224 Jun 2004 JP
2004232397 Aug 2004 JP
2004261451 Sep 2004 JP
2004265992 Sep 2004 JP
2004271516 Sep 2004 JP
2004313762 Nov 2004 JP
2004351054 Dec 2004 JP
2004351173 Dec 2004 JP
2005073736 Mar 2005 JP
2005111172 Apr 2005 JP
2005137494 Jun 2005 JP
2005137788 Jun 2005 JP
2005137940 Jun 2005 JP
4138378 Jul 2005 JP
3719924 Nov 2005 JP
2006006975 Jan 2006 JP
3744814 Feb 2006 JP
3762906 Apr 2006 JP
3762906 Apr 2006 JP
4500296 Oct 2006 JP
3895571 Mar 2007 JP
2007136068 Jun 2007 JP
3953299 Aug 2007 JP
3963999 Aug 2007 JP
2007229002 Sep 2007 JP
2007275552 Oct 2007 JP
4033035 Jan 2008 JP
4047682 Feb 2008 JP
4052113 Feb 2008 JP
4054316 Feb 2008 JP
4097666 Jun 2008 JP
4212616 Jan 2009 JP
2009000292 Jan 2009 JP
4222118 Feb 2009 JP
4222119 Feb 2009 JP
4241779 Mar 2009 JP
4287769 Jul 2009 JP
4291834 Jul 2009 JP
4299844 Jul 2009 JP
4355245 Aug 2009 JP
4326559 Sep 2009 JP
4326562 Sep 2009 JP
4365676 Nov 2009 JP
4365871 Nov 2009 JP
4398880 Jan 2010 JP
4403084 Jan 2010 JP
4410594 Jan 2010 JP
4410606 Feb 2010 JP
4441462 Mar 2010 JP
4451797 Apr 2010 JP
4528281 Aug 2010 JP
4563062 Oct 2010 JP
5467717 Dec 2010 JP
3165282 Jan 2011 JP
4632342 Feb 2011 JP
4634828 Feb 2011 JP
5223844 May 2011 JP
4741388 Aug 2011 JP
4758177 Aug 2011 JP
4758178 Aug 2011 JP
4783579 Sep 2011 JP
4786889 Oct 2011 JP
5542147 Apr 2012 JP
4944830 Jun 2012 JP
5601669 Jun 2012 JP
4993471 Aug 2012 JP
4993481 Aug 2012 JP
5007332 Aug 2012 JP
5037445 Sep 2012 JP
5037446 Sep 2012 JP
5075143 Nov 2012 JP
5086884 Nov 2012 JP
5102084 Dec 2012 JP
5106503 Dec 2012 JP
5107404 Dec 2012 JP
5583717 Feb 2013 JP
5174129 Apr 2013 JP
5181052 Apr 2013 JP
5185992 Apr 2013 JP
5238628 Jul 2013 JP
5249257 Jul 2013 JP
5264899 Aug 2013 JP
5280914 Sep 2013 JP
5280975 Sep 2013 JP
5324992 Oct 2013 JP
5341993 Nov 2013 JP
5342393 Nov 2013 JP
5349006 Nov 2013 JP
5359782 Dec 2013 JP
5374108 Dec 2013 JP
5377299 Dec 2013 JP
5952655 Jan 2014 JP
5152431 Feb 2014 JP
5421147 Feb 2014 JP
5427598 Feb 2014 JP
5451187 Mar 2014 JP
5601726 Oct 2014 JP
5637864 Dec 2014 JP
5671507 Feb 2015 JP
5690766 Mar 2015 JP
5785893 Sep 2015 JP
5785895 Sep 2015 JP
5795919 Oct 2015 JP
5823121 Nov 2015 JP
5823122 Nov 2015 JP
5886595 Mar 2016 JP
5886652 Mar 2016 JP
5996573 Sep 2016 JP
6002713 Oct 2016 JP
6011044 Oct 2016 JP
6074924 Feb 2017 JP
6082366 Feb 2017 JP
6476226 Feb 2019 JP
2005009543 Feb 2005 WO
Non-Patent Literature Citations (14)
Entry
Willett Declaration (hereinafter “R7”) (Year: 2012).
International Searching Authority (USPTO), International Search Report and Written Opinion for International Application No. PCT/US 09/49742, dated Aug. 27, 2009, 11 pages.
Excerpts from Golf Digest; magazine; Feb. 2004; Article entitled: “The Hot List”, cover page from magazine and article on pp. 82-88.
Excerpts from Golf Digest; magazine; Feb. 2005; Article entitled: “The Hot List”, cover page from magazine and article on pp. 119-130. (Part 1).
Excerpts from Golf Digest; magazine; Feb. 2005; Article entitled: “The Hot List”, article on pp. 131-143. (Part 2).
Excerpts from Golf Digest; magazine; Feb. 2006; Article entitled: “The Hot List”, cover page from magazine and article on pp. 122-132. (Part 1).
Excerpts from Golf Digest; magazine; Feb. 2006; Article entitled: “The Hot List”, article on pp. 133-143. (Part 2).
Excerpts from Golf Digest; magazine; Feb. 2007; Article entitled: “The Hot List”, cover page from magazine and article on pp. 130-151.
Excerpts from Golf Digest; magazine; Feb. 2008; Article entitled: “The Hot List”, cover page from magazine and article on pp. 114-139.
Excerpts from Golf Digest; magazine; Feb. 2009; Article entitled: “The Hot List”, cover page from magazine and article on pp. 101-127.
International Searching Authority (USPTO), International Search Report and Written Opinion for International Application No. PCT/US2009/049418, dated Aug. 26, 2009, 10 pages.
Declaration.
“Cleveland HiBore Driver Review,” http://thesandtrip.com , 7 pages, May 19, 2006.
“Invalidity Search Report for Japanese Registered Patent No. 4128970,” 4pg. dated (Nov. 29, 2013.).
Related Publications (1)
Number Date Country
20190374824 A1 Dec 2019 US
Provisional Applications (2)
Number Date Country
61080892 Jul 2008 US
61101919 Oct 2008 US
Continuations (9)
Number Date Country
Parent 15959896 Apr 2018 US
Child 16550361 US
Parent 15334790 Oct 2016 US
Child 15959896 US
Parent 14789263 Jul 2015 US
Child 15334790 US
Parent 14259475 Apr 2014 US
Child 14789263 US
Parent 14069448 Nov 2013 US
Child 14259475 US
Parent 13960879 Aug 2013 US
Child 14069448 US
Parent 13683299 Nov 2012 US
Child 13960879 US
Parent 13305978 Nov 2011 US
Child 13683299 US
Parent 12409998 Mar 2009 US
Child 13305978 US
Continuation in Parts (1)
Number Date Country
Parent 12367839 Feb 2009 US
Child 12409998 US