The present invention relates generally to devices for obtaining samples for analysis and more particularly to an aerodynamic sampler for chemical and/or biological trace detection.
Modern chemical detectors, such as artificial (electronic) noses, ion-mobility spectrometers, gas chromatographs and the like, have evolved such that miniaturized and hand-held, briefcase-sized-or-smaller chemical trace detectors are now available. If chemical signals are thoroughly dispersed in the atmosphere (e.g. nitrogen compounds in city smog), the application of a small suction at a device inlet can be sufficient to bring chemical traces to bear upon the sensor, thus affording the possibility of a detection step. However, many other cases exist where aerodynamic sampling is required before detection can occur. Canines, for example, are natural chemical trace detectors with a built-in aerodynamic sampler, the slit canine nostril [1], that is positioned in proximity to a trace chemical source with sampling and subsequent detection occurring, or that samples chemical plumes carried by the natural wind. Similarly, an active, air-moving sampler is required to “reach out” from a manmade hand-held or otherwise mobile detector in order to acquire vapor and/or particulate traces from surfaces being sampled.
There has been a variety of attempts to provide aerodynamic samplers. The potential-flow suction inlet is well known in fluid dynamics with the application of that science to heating, ventilation and air conditioning documented in many textbooks, e.g. [2]. The potential-flow suction inlet can take on several forms such as a blank tube, flanged tube, bellmouth inlet, etc. However, the “reach” of the potential-flow suction inlet is severely limited by the nature of potential flow. To overcome this limitation, scenting animals have developed long noses and the mobility to position them in close proximity to a scent source [1].
Another approach to aerodynamic sampling uses an intake vortex. Helmholtz's vortex laws reveal that a line vortex cannot end in free air, but it can attach to a solid surface. For example, jet engines can “suck up” rubble from runways through vortex impingement [3] and a tornado represents a vortex tube that attaches to the ground and extends powerful suction due to the low pressure in the vortex core. The vortex concept has been disclosed in relation to a sampling device with a small tornado-like swirling flow that may “reach out” to a surface and convey vapor/particulate traces from the surface to a sensor element of a trace detector [4]. The upward axial flow along the vortex core transports a trace sample to the inlet of the device, where suction applied to a small central tube captures some of the trace-bearing airstream. Thereafter, the trace-bearing airstream can be interrogated for chemical content by a suitable trace detector such as an ion mobility spectrometer (IMS).
An aerodynamic sampler for sampling particles from a surface or a flowing gas stream is provided. The sampler can include an arcuate-shaped shroud having a first opening and a second opening, the first opening being directed in a first direction and the second opening oppositely disposed and spaced apart from the first opening. A gas nozzle having at least one gas outlet directed generally in the first direction can be included and may or may not be located at least partially within the shroud. The gas nozzle is operable to supply a jet of gas to a surface that is proximate the first opening of the shroud. In addition, a suction device operable to pull or suck or otherwise induce a flow of the gas proximate the first opening through the second opening and afford for the gas to enter a detector is provided. The arcuate-shaped shroud can be a bell-shaped shroud with the first opening located at a bottom of the bell-shape.
In some instances, the suction device is provided by a fan or blower, while in other instances the suction device is provided by a second gas nozzle that provides a flow of gas in the second direction. Other gas movers may be used, e.g. a positive-displacement pump.
Research experience at the Penn State University Gas Dynamics Laboratory and elsewhere has demonstrated that trace contaminants are effectively dislodged from a surface (e.g. from people's clothing) by a brief turbulent jet impact [8, 9]. It is known to those in the art that shear stress generated by the jet impact in a direction parallel to the surface being sampled is active in detaching trace-bearing particles from that surface. It is also known that the jet impact “rolls out” along the impacted surface in a “starting vortex” [10] and forms a “wall jet” that can be made to separate from the impacted surface. Capturing the wall jet by suction through an appropriately designed “shroud” can thus afford for a particulate and/or a vapor signal dislodged from the surface to be examined. Such an airborne sampling process can be quite brief (e.g. milliseconds) such that a volume of air sampled is small and can avoid the need for undue pre-concentration. It is thus possible to interrogate the volume of air sampled directly, e.g. using an ion mobility spectrometer (IMS) detector, with appropriate concern for the desorption of trace chemicals from any particles that are captured.
Turning now to
A source of compressed gas 18, illustratively including compressed air, nitrogen, argon, oxygen and the like, is connected to the outlet nozzle 14 to provide a jet 19, namely a pulse of gas, to a sampling surface S. In some instances, the jet 19 has a pressure up to 10 atmospheres. In other instances, the jet 19 has a pressure of between 1 and 10 atmospheres, while in still yet other instances the jet 19 has a pressure between 2 and 8 atmospheres. A standoff distance h defined as the distance from the shroud 12 to the sampling surface S is preferably small, typically comparable to or preferably less than the shroud diameter, for successful operation. In the alternative, the sampler 10 can be placed in a moving stream and used to sample a moving airstream and the like.
A suction device 16 in the form of a fan, blower or the like draws a sample flow into the shroud 12 through a first opening, also known as a shroud inlet 11, and through a second opening, also known as a shroud outlet 21, as indicated by arrows 1. It is appreciated that the sample flow or a portion thereof can be delivered to a detector for analysis, for example to optional chemical analyzer 100, or to a pre-concentrator if so required. It is further appreciated that the jet 19 can be provided by a source of compressed gas, modern synthetic jet technology [11] or the like, the jet 19 providing an axisymmetric wall jet 13 that separates from the sample surface S as shown in
The supply of compressed gas to the nozzle 14 and 14′ can be controlled by solenoid valves known to those skilled in the art and can range from intermittent duration of a few milliseconds to continuous operation. In order to scour a surface and remove particles and/or vapor, a shear stress in the range of 10-30 Pascals (Pa) (0.0015-0.0045 pounds per square inch (psi)) can be used. For example, and for illustrative purposes only, an outlet nozzle having an exit opening with an inside diameter of 1 millimeter (mm) (0.04 inch (in.)) with a standoff distance of 25 mm (1 in.) and a nozzle-exit stagnation pressure of 14 kPa (2 psi) above atmospheric pressure can provide such a shear stress. Such a pressure would result in a mass flow rate through the nozzle of 0.00015 kilograms per sec (kg/sec), corresponding to a volume flow rate of 1.17×10−4 cubic meters per second (m3/sec) (0.25 standard cubic feet per minute (SCFM)). Taking for example a shroud that can collect 5 to 10 times the volume flow rate of the outlet nozzle, i.e. 5.85×10−4-1.17×10−3 m3/sec (1.25-2.5 SCFM), a diameter of such a shroud could be of the order of 12 centimeters (cm) (4.7 in.). Larger diameter outlet nozzles could naturally result in higher mass flow rates out of the nozzle and thus larger shrouds. Smaller devices may likewise be designed.
In an alternate embodiment shown in
As noted in earlier discussion, the “reach” of heretofore inlets is quite limited. The flow into a bulbous-shaped shroud (i.e., shaped like an animal nose) could be focused in a forward direction to improve the “reach” of sniffing if inlet walls were able to generate vorticity aimed towards a central suction opening. One method to generate such vorticity aimed towards the central suction opening is with moving walls. However, this method requires great mechanical complexity. In the alternative, the same effect can be accomplished with a Coanda-inlet sampler 30 shown schematically in
The sampler 30 includes a shroud 32 with an outer portion 34 and an inner portion 36. An outward “step” nozzle 38 is disposed between the outer portion 34 and the inner portion 36 and can be formed by a gap 39 therebetween. It is appreciated that the shroud 32 and/or step nozzle 38 can be axisymmetric in orientation and/or position, or in the alternative, not be axisymmetric. Attached surface jets 35, generated by compressed gas 37 flowing through the step nozzle 38 and aimed inward, entrain air in order to “focus” the flow. The sampler 30 functions in some sense similarly to the ejector 22 shown in
It is appreciated that the location of the step nozzle 38 in
For example, and in no way limiting the scope of the embodiment, the sampler 30 could have an inside diameter of shroud 36 of 51 mm (2 inches (in)) with the sample tube 40 having an inside diameter of 13 mm (0.5 inch). Thus in operation, a centrifugal blower known to those in the art could supply the Coanda jet flow 37 with a volume flow rate of 0.014 m3/sec (30 SCFM) that would be drawn into the sampler 30 through the inside diameter of shroud 36. Such a volume flow rate would produce a velocity of 7 meters per second (m/sec) and the sample tube 40 could draw in a volume flow rate of 9.4×10−4 m3/sec (2 SCFM). It is appreciated that the gas flow could be drawn from a region 42 that can be of similar diameter as the inside diameter of the shroud 36 and located as much as, or more than one diameter away from the sampler 30.
Another embodiment of a sampler or sniffer according to the present invention is shown generally at reference numeral 50 in
It is appreciated that if the nozzle shroud 52 and flare 54 are angled sharply downward toward the surface S as shown in
Another embodiment of a sampler or sniffer is shown in
The sniffer 70 includes a sampling tube 73, plenum 74 and radial nozzle 75 as shown in
Thus, with the modifications described above, a parabolic dish antenna can also serve a second purpose of directional sniffing for the aerodynamic interrogation of a suspected explosive device, an automobile, a person, etc. for trace chemical species. In
Such a parabolic dish antenna 61 for a mobile electromagnetic communication device could have a diameter of 46 cm (18 in.) with a collection tube 73 having an inner diameter of 2.5 cm (1 in.) and a slot nozzle 75 having a width of 5 mm (0.2 in.) and a circumference of 23 cm (9 in.). Such dimensions would allow for a gas flow rate of 0.36 m3/sec (77 SCFM) out of the slot nozzle 75 and a suction flow of 0.005 m3/sec (11 SCFM) through the capture tube 73, thereby affording for a “reach” of the captured stream-tube 68 to extend from the end of the capture tube 73 to a distance ahead of the parabolic dish antenna 61 equal to, if not greater than the diameter of the dish antenna 61.
As will be clear to those of skill in the art, the embodiments of the present invention described and illustrated herein may be altered in various ways without departing from the scope or teaching of the present invention. For example, all of the embodiments can be used to sample a moving airstream as well as a surface and heated air can be used in the puffer jets in order to better desorb volatile chemicals from a surface. As such, the invention is not restricted to the illustrative examples and/or embodiments described above and the scope of the invention is defined by the scope of the claims.
The following are incorporated herein in their entirety by reference:
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/944,923 filed on Jun. 19, 2007, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60944923 | Jun 2007 | US |