The present invention relates to tube shields and baffles generally. More specifically, the present invention relates to aerodynamic tube shields.
In many applications and environments, such as boilers (including evaporators therein), gas has a tendency towards certain areas. This unequal gas flow distribution can reduce heat transfer efficiency among tubes in these applications and environments, and further results in such tubes being fouled and worn more quickly.
Baffles may be used to redirect gas flow, but have many drawbacks and, correspondingly, are frequently not used in many applications and environments (including boilers). Baffles are typically solid, flat plates that run from one area in an application or environment to another. For example, in the context of a boiler, a baffle might run from a rear wall to the center of a pass. This eliminates portions of the tubes in the boiler from heat transfer and a substantial part of the gas net flow area, as well as increases gas velocity in other tube areas, resulting in the degradation of the tubes. Tube shields are known in the art to be useful to a protect a tube against the hostile environment in which the tube resides, but are not known to assist in gas flow distribution.
In view of the foregoing and for other reasons, there is a need in the art for an aerodynamic tube shield that can more efficiently and effectively redirect gas flow in an application or environment, while simultaneously providing a shield to protect the tube from its hostile application or environment.
Novel aerodynamic tube shields are presented herein. One embodiment may be comprised of a body, such as a semi-cylindrical body, for protecting against a tube's hostile environment and first and second fins, which may be tapered, for redirecting the flow of gas in the area around the tube.
a through 4c depict various views of an evaporator in a third pass of an energy-from-waste (EfW) boiler.
a through 6c are CFD simulation results of an evaporator where no aerodynamic tube shields of the present invention are used.
a through 7c are CFD simulation results of an evaporator where an embodiment of aerodynamic tube shields of the present invention are installed on tubes at the inlet and outlet of the evaporator.
a through 8c are CFD simulation results of an evaporator where another embodiment of aerodynamic tube shields of the present invention are installed on tubes at the inlet and outlet of the evaporator.
a and 9b are graphs relating to data collected regarding heat recovery in an evaporator in an EfW boiler before and after the use of aerodynamic tube shields of the present invention.
The invention disclosed herein can be conceptualized as an aerodynamic tube shield that can be used in a variety of applications to help maximize heat transfer efficiency and alleviate the effects of unequal gas flow distribution, while simultaneously providing a shield to protect a tube against an application's environment.
The body 10 may have a first edge 12a, a second edge 12b, a first end 14a, and a second end 14b. The first fin 20 may extend longitudinally along said first edge 12a of the body 10, and the second fin 20′ may extend longitudinally along said second edge 12b of the body 10. Said fins 20, 20′ may similarly each have an outside edge 22, 22′, a first end 24a, 24a′, and a second end 24b, 24b′. In certain embodiments, said fins 20, 20′ may be tapered, such that each said fin 20, 20′ is wider at or near its first end 24a, 24a′ than at or near its second end 24b, 24b′, and, correspondingly, the outside edge 22, 22′ of each said fin may be sloped. In certain other embodiments, the fins may not be sloped or tapered. The degree of tapering (if any) and length of each fin 20, 20′ may help to, among other things, control the flow and distribution of gas in an application or environment (such as a boiler) and, more specifically, in the banks of the tubes in such application or environment, and may be dictated by the desired redistribution of gas across such tubes. In some embodiments, the spacing of the tubes in the boiler may affect the tapering of the fins 20, 20′, and the farther apart said tubes are, the wider the fins 20, 20′ may be. In certain embodiments, the respective first ends 24a, 24a′ of the fins 20, 20′ may touch, or nearly touch, the respective first ends 24a, 24a′ of the fins 20, 20′ of the tube shields on the adjacent tubes. Also in certain embodiments, the respective first ends 24a, 24a′ or second ends 24b, 24b′ of the fins 20, 20′ may be interlocked or welded to the respective first ends 24a, 24a′ or, as the case may be, second ends 24b, 24b′ of the fins 20, 20′ of the tube shields on the adjacent tubes. Each fin 20, 20′ may be comprised of the same types of materials as the body 10, including, for example, steel (including carbon steel). It should also be appreciated the body 10 and the fins 20, 20′ may be formed from a single piece of material (such as a single piece of metal).
The aerodynamic tube shield 2 of the present invention may be secured to a tube 4 by various means. In certain embodiments, one or more fasteners may be used to secure said tube shield 2 to said tube 4. Said fasteners may include, without limitation, a number of different types of fasteners, including snaps, clips, bolts, and straps. During installation of an aerodynamic tube shield 2, a thin layer of a high thermal conductivity material, such as mortar, may be deposited under each tube shield 2 or on the surface of the applicable tube 4 on which the tube shield 2 is to be placed. Said tube shield 2 may be installed on any side of the applicable tube 4, including the top or bottom surface, as may be dictated by or desired under the circumstances. In certain embodiments, a tube shield 2 may be installed on the top surface of the applicable tube 4 and a second tube shield 2 may be installed on the bottom of such tube 4 (or vice versa).
a depicts a view of a section of a side elevation of a third pass in an EfW boiler in which aerodynamic tube shields 2 of the present invention may be installed. In this particular boiler, hot gas may enter from the bottom, lefthand side of the evaporator 52 to heat the tubes 4 therein. To maximize heat transfer efficiency in this boiler (as well as in other applications), it is important that such gas be distributed evenly across the length of such tubes 4. In many cases, however, such gas may be predisposed towards certain areas in the application. By way of example, in
Computational fluid dynamics (CFD) simulation results for such an EfW boiler evaporator will next be described. These simulation results show pressure, temperature, and velocity contour plots for a cross-section of such evaporator with and without aerodynamic tube shields of the present invention.
At the outset, it is noted that
With reference again to
a through 6c are the CFD simulation results of the evaporator 52 without the use of an aerodynamic tube shield 2 of the present invention.
a through 7c are CFD simulation results of the evaporator 52 where Test Embodiment One of the aerodynamic tube shields 2 is installed on the tubes 4 at the inlet 58 and outlet 60 of the evaporator 52.
a through 8c are CFD simulation results of the evaporator 52 where Test Embodiment Two of the aerodynamic tube shields 2 is installed on the tubes 4 at the inlet 58 and outlet 60 of the evaporator 52.
The following results were also determined from the foregoing CFD simulations using CFD Ansys Fluent software:
As can be seen from the foregoing, there is a pressure drop in the evaporator 52 between the inlet 58 and the outlet 60 when either Test Embodiment One or Test Embodiment Two is used. The pressure drop with Test Embodiment Two is slightly smaller because such embodiment is shorter than Test Embodiment One. As can also be seen from the foregoing, in this particular boiler, Test Embodiment One enhances gas velocity and uniformity more than Test Embodiment Two. (These are measures of the uniformity of gas velocity and temperature throughout the evaporator.) As can further be seen from the foregoing, in this particular boiler, Test Embodiment One enhances heat transfer slightly more than Test Embodiment Two. (This is a measure of the energy being absorbed from the gas into the evaporator tubes.) As noted elsewhere, however, the dimensions (including length, width, and thickness) and placement of the aerodynamic tube shield that will work most effectively and efficiently for a given application will depend on such application. For example, in certain applications, gas velocity and temperature uniformity and heat transfer may further be improved by including aerodynamic tube shields on a row of tubes in the middle of the evaporator, as well as at the inlet and outlet. It is further noted that the foregoing CFD simulation results relate to only a cross-section of the evaporator (i.e., five of the 29 total tubes). Thus, if the additional 24 tubes in this particular simulated evaporator were taken into the account, the gas velocity and temperature uniformity and heat enhancements could be even higher.
Additional data was collected from the field regarding heat recovery in an evaporator in an EfW boiler before and after the use of aerodynamic tube shields with the dimensions of Test Embodiment One.
Although the foregoing application of the present invention relates to an evaporator in an EfW boiler, it should be appreciated that the aerodynamic tube shield of the present invention may be used in a wide range of applications, including a wide range of boilers, gasifiers, and heat exchangers and components therein. Indeed, the tube shields of the present invention may be used in any application where there is unequal gas flow distribution to help alleviate the effects of such unequal distribution and maximize heat transfer efficiency, while simultaneously providing a shield to protect the tube from the environment of the application.
Further, although the foregoing application of the present invention discussed the installation of aerodynamic tube shields at the evaporator inlet and outlet, it should be appreciated the aerodynamic tube shields of the present invention may be installed in various locations in EfW boilers (as well as boilers of various other types and designs), depending on the tendencies of the relevant gas passing through the applicable boiler, as may be determined by engineering analysis (such as CFD modeling).
This application claims priority to U.S. patent application No. 61/355,783, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61355783 | Jun 2010 | US |