Claims
- 1. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof in lateral relation, each of said blocks having a body with a top side, a bottom side and leg means for spacing said bottom side from said roof to define a chamber therebetween, each block also having channel means providing fluid communication between said block top side and said chamber for enabling any aerodynamically induced pressure differential across said blocks to be equalized while permitting fluid to drain through said blocks to said chamber above said roof, said channel means being provided at selected locations between laterally abutting blocks and including means forming a plurality of labyrinth side channels disposed between adjacent blocks at said selected locations, whereby the ballast system is aerodynamically stable in unusual wind conditions.
- 2. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof in lateral relation, each of said blocks having a body with a top side, a bottom side and leg means for spacing said bottom side from said roof to define a chamber therebetween, each block also having channel means providing fluid communication between said block top side and said chamber for enabling any aerodynamically induced pressure differential across said blocks to be equalized while permitting fluid to drain through said blocks to said chamber above said roof, said channel means being provided at selected locations within said body of each of said blocks, extending at an angle between said top side and said bottom side, and providing in said top side an aperture that is vertically offset from an aperture it provides in said bottom side, whereby the ballast system is aerodynamically stable in unusual wind conditions.
- 3. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof in lateral relation, each of said blocks having a body with a top side, a bottom side, and leg means for spacing said bottom side from said roof to define a chamber therebetween, each block having selected edge faces with complementary means for operatively engaging adjacent blocks, each block also having channel means providing fluid communication between said block top side and said chamber for enabling any aerodynamically induced pressure differential across said blocks to be equalized while permitting fluid to drain through said blocks to said chamber above said roof, said complementary means including parallel edge faces on opposite side edges of said block for operatively engaging like surfaces on adjacent blocks, wherein said parallel edge faces are beveled, whereby the ballast system is aerodynamically stable in unusual wind conditions.
- 4. An aerodynamically stable roof ballast system according to claim 3, where one of said edge faces intersects said top side at an acute angle and another parallel one of said edge faces intersects said bottom side at the same acute angle.
- 5. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof in lateral relation, each of said blocks having a body with a top side, a bottom side, and leg means for spacing said bottom side from said roof to define a chamber therebetween, each block having selected edge faces with complementary means for operatively engaging adjacent blocks, each block also having channel means providing fluid communication between said block top side and said chamber for enabling any aerodynamically induced pressure differential across said blocks to be equalized while permitting fluid to drain through said blocks to said chamber above said roof, wherein said complementary edge faces are provided by mating tongues and grooves, whereby the ballast system is aerodynamically stable in unusual wind conditions.
- 6. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof, each of said blocks having a body with a top side, a bottom side, and leg means for spacing said bottom side from said roof to define a chamber therebetween, each block having selected edge faces with complementary means for operatively engaging adjacent blocks, each block also having channel means located within each said block providing fluid communication between said block top side and said chamber for enabling any aerodynamically induced pressure differential to cross said blocks to be equalized while permitting fluid to drain through said blocks through said chamber above said roof, whereby the ballast system is aerodynamically stable in unusual wind conditions.
- 7. An aerodynamically stable roof ballast system according to claim 6, wherein said means for operatively engaging adjacent blocks includes a tongue on one block adapted to engage a complementary groove on a laterally adjacent block.
- 8. An aerodynamically stable roof ballast system according to claim 6, wherein said selected edge faces extend perpendicular to the plane of said top side.
- 9. An aerodynamically stable roof ballast system according to claim 6, wherein said selected edge faces are beveled.
- 10. For assembly with like blocks to form an aerodynamically stable roof ballast system, a ballast block having a body, a top side and a bottom side with leg means for supporting said bottom side above an underlying roof structure, said body having formed therein at least one channel providing fluid communication between said top side and said bottom side of said block, wherein said at least one channel defines an aperture on said top side and said bottom side, wherein said top side aperture is vertically offset from said bottom side aperture, and said channel connects said apertures, whereby when the blocks are laid upon a roof in laterally abutting relation, said at least one channel in said block body accommodates aerodynamically induced forces tending to lift the block by equalizing air pressure on opposite sides of the block.
- 11. For assembly with like blocks to form an aerodynamically stable roof ballast system, a ballast block having a body, a top side and a bottom side with leg means for supporting said bottom side above an underlying roof structure, said body having formed therein at least one channel providing fluid communication between said top side and said bottom side of said block, wherein said channel defines an aperture on said top side and said bottom side and extends across the thickness of said block, and wherein said top side aperture and said bottom side aperture are aligned vertically, whereby when blocks are laid upon a roof in laterally abutting relation, said at least one channel in said block body accommodates aerodynamically induced forces tending to lift the block by equalizing air pressure on opposite sides of the block.
- 12. For assembly with like blocks to form an aerodynamically stable roof ballast system, a ballast block having a body, a top side and a bottom side with leg means for supporting said bottom side above an underlying roof structure, said body having formed therein at least one channel providing fluid communication between said top side and said bottom side of said block, wherein said channel defines an aperture on said top side and said bottom side and extends through said block at an angle, wherein said top side aperture is offset from said bottom side aperture, whereby when blocks are laid upon a roof in laterally abutting relation, said at least one channel in said block body accommodates aerodynamically induced forces tending to lift the block by equalizing air pressure on opposite sides of the block.
- 13. For assembly with like blocks to form an aerodynamically stable roof ballast system, a ballast block having a body with a top side, a bottom side and leg means for supporting said bottom side above an underlying roof structure, said body having formed therein at least one channel providing fluid communication between said top side and said bottom side of said block, said block having peripheral edges extending between said top side and said bottom side, at least a selected one of said peripheral edges having complementary means adapted to overlap laterally with an adjacent block of like construction, whereby when the blocks are laid upon a roof in laterally abutting relation, said at least one channel in said block body accommodates aerodynamically induced forces tending to lift the block by equalizing air pressure on opposite sides of the block.
- 14. A ballast block according to claim 13, wherein said at least one channel defines an aperture in said top side and said bottom side, and wherein said top side aperture is vertically offset from side bottom side aperture.
- 15. For assembly with like blocks to form an aerodynamically stable roof ballast system, a ballast block having a body with a top side, a bottom side, and leg means for supporting said bottom side above an underlying roof structure, said block having peripheral edges extending between said top side and said bottom side, said body having formed therein at least one channel providing fluid communication between said top side and said bottom side of said block, at least a selected one of said peripheral edges of said block having complementary matingly engageable means adapted to interlock laterally with an adjacent block of like construction, whereby when the blocks are laid upon a roof in laterally interlocked abutting relation, said at least one channel in said block body accommodates aerodynamically induced forces tending to lift the blocks by equalizing air pressure on opposite sides of the block.
- 16. A ballast block according to claim 15, wherein said at least one channel defines an aperture in said top side and said bottom side, and wherein said top side aperture is vertically offset from said bottom side aperture.
- 17. A ballast block according to claim 15, wherein said at least one channel defines a recess in a side edge of said block.
- 18. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof in lateral relation, each of said blocks having a topside and bottomside, each block having selected edge faces with complementary means for interlocking with adjacent blocks, said complementary interlocking means including a tongue extending along one edge of said block and a groove extending along another edge of said block opposite said tongue, wherein each of said blocks has channel means providing fluid communication between said topside and said bottomside for enabling any aerodynamically induced pressure differential across said blocks to be equalized.
- 19. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof in lateral relation, each of said blocks having a body with a topside and bottomside, each block having channel means providing fluid communication between said topside and said bottomside for enabling any aerodynamically induced pressure differential across said blocks to be equalized, said channel means being provided at selected locations between laterally abutting blocks and including means forming a plurality of labyrinth side channels disposed between adjacent blocks at said selected locations.
- 20. An aerodynamically stable roof ballast system for protecting a membrane type roof, said system comprising a plurality of blocks superposed on said roof in lateral relation, each of said blocks having a body with a topside and bottomside, each block having channel means providing fluid communication between said topside and said bottomside for enabling any aerodynamically induced pressure differential across said blocks to be equalized, wherein said channel means is provided in said body with at least one aperture on said topside and at least one aperture on said bottomside.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of U.S. application Ser. No. 08/053,917 filed Apr. 27, 1993, issued as U.S. Pat. No. 5,377,468 on Jan. 3, 1995.
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
102e Date |
371c Date |
PCT/US94/14995 |
12/29/1994 |
|
|
7/14/1995 |
7/14/1995 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO96/21068 |
7/11/1996 |
|
|
US Referenced Citations (23)
Foreign Referenced Citations (4)
Number |
Date |
Country |
517620 |
Jan 1921 |
FRX |
145908 |
Jun 1931 |
SEX |
144377 |
Jun 1920 |
GBX |
560822 |
Apr 1944 |
GBX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
53917 |
Apr 1993 |
|