The present disclosure relates generally to an applicator of viscous liquids. More particularly, the disclosure relates to an applicator of expanding foam chemicals for attachment to an aerosol container.
A variety of pressurized vessels that dispense expanding foam insulation chemicals are available on the market. When sprayed, these vessels must contain pressure sufficient to overcome the viscosity of the chemical mixture as it is forced through a spray nozzle. Professional services often utilize a refillable tank to store compressed gases, such as nitrogen, to pressurize the reusable foam chemical storage vessels for this purpose, while home-use kits typically come with pre-charged chemical vessels pressurized for a single use application.
Professional and home-use spray foam systems provide a fast curing and high quality end product. However, the price to hire a professional service or purchase small home-use kits can be unreasonably high. Therefore, when a person requires only a small quantity of spray foam insulation, such as when remodeling a room or repairing their home, the user often resorts to fiberglass batten or other economical solutions which do not offer the superior insulating and vapor barrier qualities of spray foam.
Foam chemicals dispensed from aerosol containers are inexpensive and readily available in small quantities, but unlike the professional and home-use spray system vessels, common aerosol containers cannot withstand the pressure required for spraying viscous liquids such as expanding foam chemicals. Therefore, these containers often use a different pre-mixed chemical formulation that cures with exposure to moisture in the atmosphere. Unfortunately, the combination of low surface area, low tear strength, slow cure-time, and low uncured adhesive properties of this type of foam has historically limited its use to filling small voids and recesses via straws, tubes, and similar apparatuses. Thus, while foam chemicals dispensed from aerosol containers are inexpensive and readily available, the current application methods are not suited for effectively insulating large areas such as the walls and ceilings of a home.
The present disclosure describes an applicator that provides for improved spraying and dispensing of expanding foam chemicals from aerosol containers with the optional use of a flow of compressed gas. The applicator for dispensing foam from an aerosol container according to the present disclosure has a body comprising a nozzle portion, an aerosol inlet for connection to an aerosol container having a discharge valve and comprising a foamable material, and a gas inlet for connection to a source of compressed gas. The nozzle portion comprises a first outlet for dispensing the foamable material and a second outlet for dispensing the compressed gas. An internal foam channel is disposed within the body and has an entry port at the aerosol inlet and an exit port at the first outlet. An internal gas channel is disposed within the body and has an entry port at the gas inlet and an exit port at the second outlet. A trigger positioned on a forward surface of the body, when depressed, causes the discharge valve of the aerosol container to open and allow a flow of the foamable material from the aerosol container to enter the internal foam channel.
Further features and advantages can be ascertained from the following detailed description that is provided in connection with the drawings described below:
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art of this disclosure. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well known functions or constructions may not be described in detail for brevity or clarity.
The terms “about” and “approximately” shall generally mean an acceptable degree of error or variation for the quantity measured given the nature or precision of the measurements. Typical, exemplary degrees of error or variation are within 20 percent (%), preferably within 10%, and more preferably within 5% of a given value or range of values. Numerical quantities given in this description are approximate unless stated otherwise, meaning that the term “about” or “approximately” can be inferred when not expressly stated.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well (i.e., at least one of whatever the article modifies), unless the context clearly indicates otherwise.
Spatially relative terms, such as “under,” “below,” “lower,” “over,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another when the apparatus is right side up as shown in the accompanying drawings.
The present disclosure provides a manually operated applicator for use with common aerosol containers that dispenses foam onto a variety of surfaces. The applicator described herein is able to dispense a powerful foam stream to quickly fill large voids in walls and other surfaces. The applicator described herein may also be connected to a compressed gas source to improve the dispersion of the expanding foams. For instance, compressed gas may be directed against the foam chemical as it exits the applicator to fragment the foam into a fine spray and evenly spray the foam onto surfaces. The resulting high fragment velocity, in addition to the improved surface-to-weight ratio of the smaller foam particles, allows the user of the applicator to uniformly coat surfaces with excellent adhesion. Moreover, the described applicator may utilize an extender tube or straw attachment to precisely apply beads of foam into small holes, recesses, and crevices.
The aerosol applicator 100 may be formed from any material and process suitable to produce a product of substantial strength to perform the functions as described herein. In one embodiment, the aerosol applicator 100 is formed from a plastic material that is durable, chemical resistant, and allows for the aerosol applicator 100 to be cleaned with acetone to remove residual uncured foam between uses. For example, the aerosol applicator 100 may be formed from nylon, various polyethylenes (such as high density polyethylene (HDPE), low density polyethylene (LDPE), and linear low density polyethylene (LLDPE)), polyvinyl chloride, polypropylene, ABS, biopolymers, and polystyrene. The aerosol applicator 100 may be constructed according to various manufacturing methods including injection molding, milling, forging, extrusion, pressing, and other related manufacturing methods.
In one embodiment, as shown in
The aerosol connector 10 is used to connect a foam dispensing aerosol container (not shown) to the aerosol applicator 100. In this aspect, the aerosol connector 10 serves as an inlet for a foam stream from the aerosol container. The foam dispensing aerosol container may comprise any conventional aerosol can containing a foamable material, for example, a pre-mixed expanding foam chemical. The foam dispensing aerosol container should be capable of releasing the foamable material through a discharge valve (not shown) at the top of the foam dispensing aerosol container. The aerosol connector 10 may comprise an adapter 24 for attaching a variety of foam dispensing aerosol containers (not shown) to the aerosol applicator 100. The adapter 24 is a tubular component which, at a lower end 25, is formed internally with a connection means for attachment to the foam dispensing aerosol container. For example, the adapter 24 may include internal threading so that the foam dispensing aerosol container may be attached to the adapter 24 via threaded coupling. However, as will be apparent to one of ordinary skill in the art, the design and configuration of the aerosol connector 10 and adapter 24 may be modified to connect to a variety of different aerosol containers used to dispense viscous foam chemicals. In another embodiment, the discharge valve housed on top of the aerosol container may be incorporated within the aerosol connector 10 and affixed to the aerosol container as a single unit.
The trigger 22 controls the flow of the foam stream from the foam dispensing aerosol container that is attached at the aerosol connector 10. The trigger 22 is positioned below the nozzle 14 and adjacent to the aerosol connector 10. The trigger 22 is arranged for actuation by a finger or fingers of a user holding the aerosol applicator 100. Upon actuation of the trigger 22, the trigger 22 applies pressure onto the aerosol connector 10 and readily forces the discharge valve (not shown) of the foam dispensing aerosol container to an angle sufficient to open the discharge valve and allow the foam stream to flow from the foam dispensing aerosol container to a foam channel (not shown) within the aerosol applicator 100. That is, upon actuation of the trigger 22, the trigger 22 torques the discharge valve, which results in the opening of a fluid pathway of foam into the aerosol applicator 100. When the trigger 22 is released, the flow of foam into the aerosol applicator 100 stops.
Due to the proximity of the trigger 22 to the nozzle 14, the length of the trigger 22 should extend sufficiently far enough away from the nozzle 14 so that the foam and compressed gas exiting the nozzle 14 does not contact the user's hand or fingers when placed on the trigger 22. For example, in one embodiment, the length of the trigger 22 should be at least 2 inches. The length of the trigger 22 is the vertical distance from the nozzle 14. In another embodiment, the length of the trigger 22 should be at least 3 inches.
The shape of the trigger 22 may vary so long as the shape allows for the trigger 22 to be sufficiently strong and sturdy enough to open the discharge valve of the foam dispensing aerosol container upon actuation. In the illustrated embodiment, the trigger 22 comprises an elongated handle-like structure having at least two curved scallop shapes for grasping by the user's fingers. In another embodiment, the trigger 22 may incorporate one or more loops on the handle-like structure so that the user may interlock their fingers within the one or more loops for a more secure grip.
The gas connector 12 is used to connect a compressed gas source (not shown) to the aerosol applicator 100. In this aspect, the gas connector 12 serves as an inlet for compressed or pressurized gas from the compressed gas source. The compressed gas helps to improve the adhesiveness of the foam by fragmenting the foam as it exits the aerosol applicator 100. The use of compressed gas is advantageous when applying the foam to vertical and overhead surfaces.
In one embodiment, the air from the compressed gas source is unfiltered. Typically, unfiltered compressed air is not used when applying foam because it may contain water which can hinder the curing process of multi-resin spray systems. However, with the use of the foam dispensing aerosol containers described herein, it is actually advantageous that the foam react with water in the atmosphere to cure. As such, the water present in the unfiltered compressed air used in accordance with the present disclosure will not significantly hinder the physical properties of the cured foam.
In the illustrated embodiment, the gas connector 12 comprises a standard male pneumatic quick connect coupling 26 for securely connecting the compressed gas source to the aerosol applicator 100. The pneumatic quick connect coupling 26 has a tubular end 27 for receiving a connection end of the compressed gas source via a standard female pneumatic quick connect coupling. In an alternative embodiment, the tubular end 27 may be a male or female component having threading for connecting to compatible compressed gas sources. For example, the compressed gas may be transferred through an air line, pipe, or hose that can attach to the tubular end 27 via threaded coupling. While the gas connector 12 has been illustrated herein as a pneumatic quick connect coupling, one of ordinary skill in the art will understand that the compressed gas source may be secured to the gas connector 12 by any other suitable means including, but not limited to, threaded compression coupling, clamps, screws, pins, or projections.
The flow of the compressed gas from the compressed gas source may be controlled by disconnecting the compressed gas source from the aerosol applicator 100. In another embodiment, the flow of the compressed gas may be controlled by a valve on the air line, pipe, or hose. For instance, the valve on the air line, pipe, or hose may operate between an open and closed position to control the flow of compressed gas from the compressed gas source. In still another embodiment, the trigger 22 may be designed to pivot from a position adjacent to the aerosol connector 10 to a position adjacent to the gas connector 12 so as to actuate the flow of both the foam from the aerosol connector 10 and the compressed gas from the gas connector 12.
In some embodiments, a compressed gas source may not be connected to the gas connector 12. That is, in some embodiments, the compressed gas may not be necessary as the design of the applicator 100 allows for a forceful ejection of foam chemical suitable to fill wall cavities and the like.
The foam stream from the foam dispensing aerosol container and the compressed gas from the compressed gas source exit the aerosol applicator 100 through the nozzle 14. The nozzle 14 comprises at least one foam outlet 16 where the foam stream exits the aerosol applicator 100. The foam outlet 16 may be positioned in the center of the nozzle as shown in
In some embodiments, the nozzle 14 is configured to accept an extender tube, for example, a straw attachment (not shown), when compressed gas is not utilized with the aerosol applicator 100. The straw attachment allows the user to have greater control in directing the foam toward surfaces. For instance, the straw attachment allows a user to more precisely apply the foam in small holes, recesses, and crevices. The straw attachment may have any desired length and should have a diameter effective to limit expansion of the foam until it is discharged from the end of the tube.
The straw attachment may be attached to the nozzle 14 using any suitable means that prevents the foam from escaping out of the end of the straw attachment where it attaches to the nozzle 14. In the illustrated embodiment, as shown in
The gas connector 12 is positioned behind the nozzle 14 such that the gas connector 12 and the nozzle 14 form an angle that is greater than 90 degrees with respect to the longitudinal axis of the body 8. The angle should allow for the air line or hose of the compressed gas source to hang at a downward angle when spraying vertical walls or overhead ceilings. For example, the gas connector 12 and the nozzle 14 may form an angle of about 100 degrees to about 240 degrees. In another embodiment, the gas connector 12 and the nozzle 14 may form an angle of about 100 degrees to about 215 degrees. In still another embodiment, the gas connector 12 and the nozzle 14 may form an angle of about 110 degrees to about 200 degrees. In yet another embodiment, the gas connector 12 and the nozzle 14 may form an angle of about 115 degrees to about 180 degrees.
As shown in
In the illustrated embodiment, the foam channel 30 and the gas channels 32 and 34 are substantially separated within the body 8. That is, the foam channel 30 does not intersect with the gas channels 32, 34. This prevents the foam from exiting or escaping from the gas connector 12 when the applicator 100 is utilized without compressed gas.
In another embodiment, the foam channel 30 and the gas channels 32 and 34 may intersect such that the foam stream and the compressed gas are mixed internally within the body 8. For example, the foam channel 30 and the gas channels 32 and 34 may be designed to intersect as they enter the nozzle 14 which increases the pressure and velocity of the released foam chemical. However, when the foam channel 30 and the gas channels 32 and 34 intersect internally and compressed gas is not being used during the operation of the aerosol applicator 100, a stopping or plugging mechanism should be employed in the gas connector 12 to restrict the foam stream from exiting the gas connector 12.
In still another embodiment, the foam channel 30 and the gas channels 32 and 34 may be designed as channels of differing diameter where a smaller channel, for example, the foam channel, is held substantially within the center of the larger channel, for example, the gas channel. The smaller (inner) channel may be operatively connected to the foam dispensing aerosol container at the aerosol connector 10, while the larger (outer) channel may be operatively connected to the compressed gas source at the gas connector 12. The foam stream can be transferred through the smaller (inner) channel and the compressed gas can be transferred through the larger (outer) channel. In this configuration, because the compressed air fully encircles the foam chemical as it exits the inner channel, the foam can be sprayed evenly and demonstrates good adhesion.
While the foam channel 30 and the gas channels 32 and 34 are depicted as circular, any geometric shape for the channels is an option, including rectangular and square. The foam channel 30 and the gas channels 32 and 34 may be composed of any type of material that allows for the transfer of a foam stream and compressed gas. In one embodiment, the foam channel 30 and the gas channels 32 and 34 may be composed of injection molded plastic. In another embodiment, the foam channel 30 and the gas channels 32 and 34 may be composed of tubing. For instance, the foam channel 30 and gas channels 32 and 34 may be any type of plastic tubing, such as tubing formed from ethyl vinyl acetate (EVA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP), polyurethane (PU), and poly-vinyl chloride (PVC).
The device described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the disclosure. Any equivalent embodiments are intended to be within the scope of this disclosure. Indeed, various modifications of the device in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. All patents and patent applications cited in the foregoing text are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2612403 | Burch | Sep 1952 | A |
2887272 | Rosenthal | May 1959 | A |
4630774 | Rehman | Dec 1986 | A |
5078323 | Frank | Jan 1992 | A |
5292038 | Seney | Mar 1994 | A |
5450983 | Stern | Sep 1995 | A |
5549246 | Kukesh | Aug 1996 | A |
5615804 | Brown | Apr 1997 | A |
5881955 | Styne | Mar 1999 | A |
5887756 | Brown | Mar 1999 | A |
6347752 | Davidson | Feb 2002 | B1 |
8864051 | Lin | Oct 2014 | B2 |
9808816 | Enriquez | Nov 2017 | B1 |
10329078 | Alonso | Jun 2019 | B1 |
10351335 | Alonso | Jul 2019 | B1 |
10464736 | Pindor | Nov 2019 | B1 |
10654055 | Alonso | May 2020 | B1 |
20020179737 | Ryser | Dec 2002 | A1 |
20030146298 | Jou | Aug 2003 | A1 |
20040056124 | Haruch | Mar 2004 | A1 |
20050284957 | Haruch | Dec 2005 | A1 |
20090014552 | Hines | Jan 2009 | A1 |
20110253806 | Brem | Oct 2011 | A1 |
20130264400 | Crandley | Oct 2013 | A1 |
20140196918 | Effenberger et al. | Jul 2014 | A1 |
20160223097 | Demey | Aug 2016 | A1 |
20160279652 | States, III | Sep 2016 | A1 |
20160347533 | Giordano | Dec 2016 | A1 |
20170072769 | Quest | Mar 2017 | A1 |
20180236471 | Sulzer | Aug 2018 | A1 |
20190177074 | Waugh | Jun 2019 | A1 |
Entry |
---|
“Introducing the New Great Stuff™ Smart Dispenser™”, 2019, Retrieved from the Internet: <www.greatstuff.dupont.com>. |
“How to Use Great Stuff™ to Air Seal You Home”, 2019, Retrieved from the Internet: <www.greatstuff.dupont.com/air-sealing-how-to-videos.html>. |
International Search Report dated Feb. 27, 2019 of corresponding International Patent Application No. PCT/US18/64895. |
Number | Date | Country | |
---|---|---|---|
20190177074 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62597188 | Dec 2017 | US |