The present invention relates generally to aerosol containers and, more particularly, relates to an aerosol applicator system that allows a person to direct an aerosol propelled material in different directions relative to the aerosol container, including onto portions of the user's body that are generally difficult to reach.
There are numerous products that use an aerosol system to apply and/or deliver materials by spray. Aerosol systems generally use one of two methods for propelling the material being sprayed. Both methods use an inert gas under pressure to propel the material out of an aerosol container. The aerosol container can either contain a pressurized material in the aerosol container with the material to be sprayed, and which does not chemically interact with the material to be sprayed, or it can be pumped by the user, where a pump system allows the user to pump air into the aerosol container to create pressure that propels the material out of the container.
Of the materials that are sprayed and delivered out of aerosol containers, some are intended to be applied topically to humans. Examples of such materials include sunscreen, insect repellant, artificial tanner/bronzer, and so on. An issue can arise, however, when a person is alone, or otherwise without help from another person to apply the material to regions of their body that are hard to reach, when using conventional aerosol canisters that direct spray in only one fixed direction, which is away from the canister. This is particularly common with sunscreen, where a person wishes to apply sunscreen to, for example, their own back.
Aerosol sunscreen (or sometimes called “sunblock”) containers are very popular because they allow an easy means of applying sunscreen without having to get lotion all over one's hands, among other problems. However, a conventional aerosol container dispenses in a fixed direction away from the container. Furthermore, an aerosol container must be held substantially upright in order for the material inside to be propelled out, due to the internal design of the uptake tube. This makes it awkward, if not impossible, for a person to hold a conventional aerosol sunscreen container and spray sunscreen on their back. In addition to personal uses for spraying topical material such as sunscreen, there are numerous other applications where an aerosol spray to deliver or apply material is desirable, but where the fixed directional spray of conventional aerosol containers does not allow for the easy application of spray to a desired place.
This problem has been address in the past by using, for example, an applicator with a long handle that allows a person to reach their back and apply sunscreen. However this approach has not been popular because dirt and sand tend to stick to the applicator, making subsequent uses uncomfortable as the dirt/sand/debris grind into the user's skin. In addition, sunscreen will only be applied where the applicator actually touches, which is a disadvantage compared to aerosol applications because the spray reaches a wide area.
Therefore, a need exists to overcome the problems with the prior art as discussed above.
The invention provides a personal aerosol application system that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices and methods of this general type and that provides an extended tube that can be configured into virtually any shape necessary by a user to allow the user to apply aerosol propelled material onto or into hard to reach places that cannot be accomplished with typical aerosol spray systems that have a fixed direction or spray.
With the foregoing and other objects in view, there is provided, in accordance with embodiments of the invention, an aerosol applicator system for self-application of sunscreen includes a canister in which is disposed the sunscreen and an aerosol propellant under pressure. The aerosol applicator system further includes a valve disposed in a top portion of the canister which opens upon being pressed to allow the sunscreen to be propelled out of the canister by the propellant through a valve stem that extends from the valve. The aerosol applicators system further include a valve actuator mechanically coupled to the valve, and a flexible shape-holding tube having a tube wall with a bore therein. The tube has a first end configured to be coupled to the valve actuator. The tube wall includes at least one wire disposed in the wall of the tube and which retains the tube in a shape upon being configured into the shape by a user.
In accordance with another feature, some embodiments include a nozzle coupled at a second end of the flexible shape-holding tube that atomizes material being propelled out of the canister, through the tube, into a direction determined by how the tube is bent or configured.
In accordance with a further feature of the present invention, some embodiments include the nozzle having a conic bell for directing the atomized material being propelled out of the canister through the tube.
In accordance with a further feature of the present invention, in some embodiments the wire in the tube is wound around the bore of the tube inside the wall of the tube in a helical manner along the length of the tube.
In accordance with a further feature of the present invention, in some embodiments the at least one wires comprises two or more wires along the length of the tube.
In accordance with a further feature of the present invention, in some embodiments the valve actuator includes, or it part of a pump assembly that allows a user to pump air into the aerosol canister or container to propel the material in the container out through the valve and tube.
In accordance with some embodiments the invention can be arranged as a nozzle assembly for use with aerosol containers that includes a valve actuator configured to be mechanically coupled to a valve stem of an aerosol container and having exit formed in the valve actuator to allow material to exit the aerosol container. The nozzle assembly can further include a tube having a tube wall with a bore therein, and having a first end coupled to the valve actuator at the exit. The tube wall including at least one wire disposed in the sidewall of the tube and which retains the tube in a shape upon being configured into the shape by a user. The nozzle assembly can further include a nozzle coupled to a second end of the tube, opposite the first end, having an exit that allows material to pass from the tube out of the nozzle, thereby forming the material into droplets of a selected size range.
In accordance with some embodiments of the invention, there is provided a tube assembly for an aerosol container that includes a tube having a tube wall with a bore therein, and having a first end configured to be operably coupled to a valve stem of the aerosol container. The tube assembly further includes at least one wire disposed in the wall of the tube along a length of the tube and which retains the tube in a shape upon being configured into the shape by a user. The tube assembly further includes a nozzle attached to a second end of the tube.
In some embodiments of the invention, the valve actuator can include a nozzle to which the tube is attached and retained.
Although the invention is illustrated and described herein as embodied in an aerosol applicator system having a user-configurable spray direction, it is, nevertheless, not intended to be limited to the details shown because various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Additionally, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
Other features that are considered as characteristic for the invention are set forth in the appended claims. As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one of ordinary skill in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention. While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. The figures of the drawings are not drawn to scale.
Before the present invention is disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. The terms “a” or “an,” as used herein, are defined as one or more than one. The term “plurality,” as used herein, is defined as two or more than two. The term “another,” as used herein, is defined as at least a second or more. The terms “including” and/or “having,” as used herein, are defined as comprising (i.e., open language). The term “coupled,” as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The term “providing” is defined herein in its broadest sense, e.g., bringing/coming into physical existence, making available, and/or supplying to someone or something, in whole or in multiple parts at once or over a period of time.
“In the description of the embodiments of the present invention, unless otherwise specified, azimuth or positional relationships indicated by terms such as “up”, “down”, “left”, “right”, “inside”, “outside”, “front”, “back”, “head”, “tail” and so on, are azimuth or positional relationships based on the drawings, which are only to facilitate description of the embodiments of the present invention and simplify the description, but not to indicate or imply that the devices or components must have a specific azimuth, or be constructed or operated in the specific azimuth, which thus cannot be understood as a limitation to the embodiments of the present invention. Furthermore, terms such as “first”, “second”, “third” and so on are only used for descriptive purposes, and cannot be construed as indicating or implying relative importance.
In the description of the embodiments of the present invention, it should be noted that, unless otherwise clearly defined and limited, terms such as “installed”, “coupled”, “connected” should be broadly interpreted, for example, it may be fixedly connected, or may be detachably connected, or integrally connected; it may be mechanically connected, or may be electrically connected; it may be directly connected, or may be indirectly connected via an intermediate medium. As used herein, the terms “about” or “approximately” apply to all numeric values, whether or not explicitly indicated. These terms generally refer to a range of numbers that one of skill in the art would consider equivalent to the recited values (i.e., having the same function or result). In many instances these terms may include numbers that are rounded to the nearest significant figure. In this document, the term “longitudinal” should be understood to mean in a direction corresponding to an elongated direction. Those skilled in the art can understand the specific meanings of the above-mentioned terms in the embodiments of the present invention according to the specific circumstances
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and explain various principles and advantages all in accordance with the present invention.
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward. It is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms.
The present invention provides a novel and efficient aerosol applicator system. Embodiments described and taught herein provide a user-configurable directional aerosol applicator system that allow a user to direct spray from an aerosol container in any selected direction relative to the aerosol container. In addition, embodiments shown and described herein provide a flexible tube that has a shape-holding ability so that it stays in whatever shape is it configured by a user, allow the user to select a desirable direction of spray without having to, for example, invert the aerosol container, or otherwise awkwardly hold the aerosol container in order to apply the spray onto a desired location. In particular, some embodiments can include an aerosol applicator system for self-application of sunscreen that includes a canister in which is disposed the sunscreen and an aerosol propellant under pressure, a valve disposed in a top portion of the canister which opens upon being pressed to allow the sunscreen to be propelled out of the canister by the propellant through a valve stem that extends from the valve, a valve actuator mechanically coupled to the valve stem and having a top and a side with an exit formed in the side, and an insert trough formed around the exit. The aerosol applicator system can further include a tube having a tube wall with a bore therein, and having a first end configured to be inserted and retained in the insert trough, with the tube wall including at least one wire disposed in the wall of the tube which retains the tube in a shape upon being configured into the shape by a user.
Referring now to
The tube 110 is flexible, but constructed to hold its shape when bent/curved, which allows a user to bend or form the tube in a desired shape, wherein the tube will stay substantially in that shape until formed into a different shape. The tube 110 has a bore to allow the misted material exiting the nozzle to pass through the tube 110 and out a second end 111 of the tube 110. Accordingly, the inner diameter (the bore) of the tube 110 must be sized to allow the material from the canister to pass through it without either losing velocity due to expansion in the tube 110, or aggregating/collecting in the tube 110 which can result in oversized droplets or drops being ejected from the tube in an undesirable manner, which defeats the advantage of an aerosol delivery in providing even coverage in a spray. In some embodiments the tube 110 can have a diameter of two millimeters or less.
In some embodiments, where the valve actuator 104 does not include a nozzle, a nozzle 112 can be retained at the end 111 of the tube 110. The nozzle 112 includes an atomizing passage that causes propellant and material to atomize as it exits the nozzle 112. Furthermore, the nozzle 112 can, in some embodiments, include substantially conic-shaped member to allow some expansion of gas as it exits the nozzle 112, but also to direct the spray coming out of the nozzle 112. In some embodiments the nozzle 112 can have an internal passage construction that ensures a desired misting and droplet size is achieved as the material exits the nozzle 112.
Accordingly, a user can bend the tube 110 in, for example, a generally “U” or “J” shape, among numerous other shapes, so that the nozzle 112 points down, or down and slightly back towards the canister 102, or otherwise in a direction that allows the user to, for example, hold the canister 102 up near their shoulder, with the tube 110 passing over their shoulder so that upon pressing down on the valve actuator 104 the contents of the canister 102 are sprayed onto the user's back. This configuration and usage is illustrated in
To hold the tube in shape after being bent by a user, one or more wires are disposed in the wall of the tube. In
By providing the wire or wires in the tube wall, a person can bend the tube 110 into different shapes. Specifically, the tube can be bent as shown in
It will be appreciated by those skilled in the art that various arrangements of wire or wires within a tube wall of a tubes used to dispense an aerosol propelled material in accordance with, and without departing from, embodiments disclosed herein. For example, the wire can be a mesh or screen of wires disposed in the tube wall. Where more than one wire is used the wires can vary in cross sectional diameter, and/or metal composition. In some embodiments, the channel in which the wire or wires are disposed in the wall of the tube can produce corresponding ridges in the tube wall, either inside the tube bore, on the outside surface of the tube, or both. Ridges on the outside of the tube can provide grip to the user when bending the tube. Ridges formed on the interior of the tube, in the bore, that twist around the bore in the axial direction of the bore, can impart a corresponding twist or swirl to the material being propelled through the tube. Furthermore, it will be appreciated that, as used here, the term “bent,” referring to shaping of the tube 110 by a user, where the exit end of the tube is not in axial alignment with the entrance end of the tube nearest the canister from the perspective of material flowing out of the canister. Generally, the tube will be bent along a sufficient radius to avoid kinks or other undesirable constrictions in the tube.
The nozzle 602 fits onto a valve stem 604 of an aerosol canister 606. The valve stem 604 is connected to a valve 608 inside the aerosol canister 606, and is surrounded by a collar 612 can guide the nozzle 604 as it is depressed to release material from the canister. The valve 608 opens upon the valve stem being pushed downward, relative to the valve 608/canister 606. Material inside the canister 606 is pushed through a down tube 610 by pressure created by a propellant. The propellant is inert with respect to the material being propelled out of the canister. The canister 606 can use a propellant that is under pressure and contained within the canister, or it can be air that is pumped into the canister by the user.
A conventional nozzle configuration includes an internal swirl chamber. Accordingly, the valve stem 604 can fit into a channel in the nozzle 602, and is stopped by a shoulder 614 that interferes with the top of the valve stem to prevent further insertion of the valve stem into the nozzle 602. When so positioned, a swirl chamber 616 is formed directly above the top of the valve stem 604 where the material and propellant exit the valve stem 604. The swirl chamber 616 allows the material to be formed into suitable droplet sizes for the application of the material, and is connected to an exit channel 620. Because the droplet formation occurs under relatively high pressure, it is advantageous to perform droplet formation in the nozzle 604. However, it is contemplated that droplet formation can also occur at the exit (not shown) of the tube 622, as the material and propellant exit the tube 622. The exit channel 620 can be have its outer terminus surrounded by a trough 618 in the side of the nozzle 602 that is sized to accept and retain an end 624 of the tube 622. That is, the tube end 624 can be pushed or pressed into the trough 618 where it will be retained by a mechanical. The trough is one example of a tube retention feature that mechanically secures the tube 622 to the nozzle with a sufficient seal to prevent leakage. Another tube retention feature can be formed by extending a portion of the nozzle through which the channel 620 passes that has a diameter slightly larger than a diameter of the bore of the tube 622 so that the end 624 of the tube 622 can be slid over, and retained by friction, on the extension equivalently. The tube 622 can be constructed in accordance with any of the examples shown or described in conjunction with
An aerosol or spray applicator system has been disclosed that includes a flexible shape-holding tube that both extends the reach of the system, and allows a user to direct the spray in different directions as desired by the user. The disclosed system and the various embodiments can be used advantageously by the user to self-apply topical material to their own person on areas of their body that are otherwise difficult or impossible to reach using conventional spray applicators. Likewise, the flexible shape-holding tube can be bent into shapes that allow a user to spray material into hard to reach places, such as, for example, behind objects that are difficult or impossible to move, in blind spots, or other similarly difficult places to reach with conventional spray applicators.
Number | Name | Date | Kind |
---|---|---|---|
865355 | Callman et al. | Sep 1907 | A |
1296045 | Campbell | Mar 1919 | A |
2704556 | Blish | Mar 1955 | A |
2998028 | Rohde | Aug 1961 | A |
4327775 | Tally | May 1982 | A |
4966202 | Bryan | Oct 1990 | A |
4966741 | Rush | Oct 1990 | A |
5240339 | DeForest et al. | Aug 1993 | A |
5263646 | McCauley | Nov 1993 | A |
5335855 | Borod | Aug 1994 | A |
5387200 | Kronstadt | Feb 1995 | A |
5529226 | Alberth, Jr. | Jun 1996 | A |
5788702 | Draenert | Aug 1998 | A |
5851077 | Trejo | Dec 1998 | A |
6105620 | Haberl | Aug 2000 | A |
6269821 | Berke et al. | Aug 2001 | B1 |
6412997 | Berke | Jul 2002 | B2 |
6632195 | Smith | Oct 2003 | B1 |
6783037 | Bonham | Aug 2004 | B1 |
7044338 | Roden | May 2006 | B2 |
7100238 | McCauley | Sep 2006 | B2 |
7387222 | Thompson | Jun 2008 | B2 |
8561850 | Dawson | Oct 2013 | B1 |
8672931 | Goldboss | Mar 2014 | B2 |
8690024 | Sogaro | Apr 2014 | B2 |
8882379 | Jackson | Nov 2014 | B2 |
20040245208 | Dennison | Dec 2004 | A1 |
20050017088 | Denton | Jan 2005 | A1 |
20080135649 | Smyth | Jun 2008 | A1 |
20110240771 | Legeza | Oct 2011 | A1 |
20130193240 | Mason | Aug 2013 | A1 |
20160143821 | Chang | May 2016 | A1 |
20160194140 | Sell | Jul 2016 | A1 |
20160221744 | Coppus | Aug 2016 | A1 |
20170028201 | Howard | Feb 2017 | A1 |