Claims
- 1. An aerosol container for use with compositions containing liquefied flammable propellants, and having a shut-off valve closing off flow through an open manually-operated delivery valve whenever the container is tipped from the upright position beyond the horizontal towards the fully inverted position, the container comprising, in combination, a pressurizable container having at least one storage compartment for an aerosol composition and a liquefied propellant in which compartment propellant can assume an orientation according to orientation of the container between a horizontal and an upright position, and a horizontal and inverted position; a delivery valve movable manually between open and closed positions, and including a valve stem and a delivery port; an aerosol-conveying passage in flow connection at one end with the storage compartment and at the other end with the delivery port, manipulation of the delivery valve opening and closing the passage to flow of aerosol composition and propellant from the storage compartment to the delivery port: all flow between the storage compartment and the delivery port preceeding via the aerosol-conveying passage; and a shut-off valve responsive to orientation of the container to move under the force of gravity between positions opening and closing off flow at least of liquefied propellant to the delivery port, the shut-off valve being positioned across the aerosol-conveying passage in the line of flow from the storage compartment to the delivery port, and moving into an open position in an orientation of the container between the horizontal and an upright position, and moving into a closed position in an orientation of the container between the horizontal and an inverted position.
- 2. An aerosol container according to claim 1, in which the shut-off valve comprises a valve seat, a valve passage through the valve seat, and a free-rolling ball valve adapted to roll into engagement with the valve seat and close off the valve passage at an orientation of the container between the horizontal and an inverted position, and adapted to roll away from the valve seat and open the valve passage at an orientation of the container between the horizontal and an upright position.
- 3. An aerosol container according to claim 2 in which the delivery valve includes a valve housing receiving one end of a dip tube, and the ball valve, valve passage and valve seat are disposed within the valve housing.
- 4. An aerosol container according to claim 2 in which the delivery valve includes a foam chamber housing receiving one end of a dip tube, and the ball valve, valve passage and valve seat are disposed within the foam chamber.
- 5. An aerosol container according to claim 1 in which the shut-off valve comprises a valve seat, a valve passage through the valve seat, and a slide adapted to slide into engagement with the valve seat and close off the valve passage at an orientation of the container between the horizontal and an inverted position, and adapted to slide away from the valve seat and open the valve passage at an orientation of the container between the horizontal and an upright position.
- 6. An aerosol container according to claim 5 in which the slide valve comprises a valve body having a central disc portion with a central aperture therethrough receiving a central valve guide, and an annular peripheral rim portion embracing an outer valve guide.
- 7. An aerosol container according to claim 6 in which the delivery valve includes a valve housing receiving one end of a dip tube, the central valve guide is the dip tube, and the outer valve guide is the valve housing.
- 8. An aerosol container according to claim 7 in which the valve housing includes a vapor tap orifice, and the slide valve in the closed position closes off the vapor tap orifice.
- 9. An aerosol container according to claim 8 in which the vapor tap orifice is in a bottom wall of the valve housing, and the disc portion closes off the vapor tap orifice.
- 10. An aerosol container according to claim 8 in which the side wall of the valve housing includes a vapor tap orifice, and the slide valve in the rim portion closes off the vapor tap orifice.
- 11. An aerosol container for delivering liquid aerosol compositions highly concentrated with respect to the active ingredient at a low delivery rate, comprising, in combination, a pressurizable container having a delivery valve movable between open and closed positions, a valve stem and a delivery port; an aerosol-conveying passage in the valve stem leading to the delivery port; wall means defining a blending space and a storage space and separating the blending space from liquid aerosol composition and propellant within the container; a valve stem orifice in the valve stem in flow connection at one end with the blending space and at the other end with an aerosol-conveying valve stem passage leading to the delivery port; the valve stem orifice having a diameter within the range from about 0.33 to about 0.65 mm; bias means for holding the valve in a closed position; means for manipulating the valve against the bias means to an open position for expulsion of aerosol composition via the valve stem orifice to the delivery port; at least one liquid tap orifice through the wall means, having a cross-sectional open area within the range from about 0.2 to about 0.8 mm.sup.2 for flow of liquid aerosol composition from the storage space into the blending space; at least one vapor tap orifice through the wall means, having a cross-sectional open area within the range from about 0.2 to about 0.8 mm.sup.2 for flow of propellant from the storage space into the blending space; the ratio of liquid tap orifice to vapor tap orifice cross-sectional open area being within the range from about 0.5 to about 2.5; the open areas of the liquid tap orifice and vapor tap orifice being selected within the stated ranges to provide a volume ratio of propellant gas:liquid aerosol composition within the range from about 8:1 to about 40:1, thereby limiting the delivery rate of liquid aerosol composition from the container when the delivery valve is opened; all flow from the storage space to the delivery port proceeding via the liquid tap orifice or gas tap orifice, blending space and aerosol-conveying valve stem passage to the delivery port; and a shut-off valve positioned across the line of flow between the storage space and the delivery port and responsive to orientation of the container to move under the force of gravity between positions opening and closing off flow at least of liquefied propellant to the delivery port, the shut-off valve moving into an open position in an orientation of the container between the horizontal and an upright position, and moving into a closed position in an orientation of the container between the horizontal and an inverted position.
- 12. An aerosol container according to claim 11, in which the liquid tap orifice is a capillary dip tube whose cross-sectional open area is within the range from about 0.2 to about 1.8 mm.sup.2, for flow of liquid aerosol composition into the blending space; the vapor tap orifice through the wall means has a cross-sectional open area within the range from about 0.2 to about 0.8 mm.sup.2 for flow of propellant gas into the blending space; and the ratio of capillary dip tube to vapor tap cross-sectional open area is within the range from about 1.0 to about 3.2.
- 13. An aerosol container according to claim 11, in which the blending space has a volume of from about 0.1 to about 1 cc.
- 14. An aerosol container according to claim 11, having a single gas tap orifice and a single liquid tap orifice.
- 15. An aerosol container according to claim 11, having a tail piece passage as the liquid tap orifice.
- 16. An aerosol container according to claim 11 in which the container is cylindrical, with the valve at one end, the wall means defining the blending space comprises a concentric inner cylinder spaced from the walls of the container surrounding and housing the valve; the gas tap orifice is through a wall of the inner cylinder; the liquid tap orifice is through a wall of the inner cylinder; and the remainder of the interior of the aerosol container outside the walls and bottom of the inner cylinder comprises an annular compartment for propellant gas and liquid aerosol composition.
- 17. An aerosol container according to claim 16, having a plurality of gas tap orifices through a wall of the inner cylinder.
- 18. An aerosol container according to claim 16, comprising a separate compartment for liquid aerosol composition and for propellant, each in direct flow connection with the blending space via the liquid tap and gas tap orifices, respectively.
- 19. An aerosol container according to claim 16, in which the liquid tap orifice is a capillary dip tube whose cross-sectional open area is within the range from about 0.2 to about 1.8 mm.sup.2, for flow of liquid aerosol composition into the blending space; the vapor tap orifice through the wall means has a cross-sectional open area within the range from about 0.2 to about 0.8 mm.sup.2 for flow of propellant gas into the blending space; and the ratio of capillary dip tube to vapor tap cross-sectional open area is within the range from about 1.0 to about 3.2.
- 20. An aerosol container according to claim 16, in which the liquid tap orifice is disposed in a tail piece passage in flow connection to a dip tube.
- 21. An aerosol container for use with compositions containing liquefied flammable propellants, and having a shut-off valve closing off flow through an open manually-operated delivery valve whenever the container is tipped from the upright position beyond the horizontal towards a fully inverted position, comprising, in combination, a pressurizable container having at least one foam compartment and at least one storage compartment for an aerosol composition and a liquefied propellant in which storage compartment propellant can assume an orientation according to orientation of the container between a horizontal and an upright position, and a horizontal and inverted position; a delivery valve movable manually between open and closed positions, and including a valve stem and a delivery port; an aerosol-conveying passage in the valve stem in flow connection at one end with the foam and storage compartments and at the other end with the delivery port, manipulation of the delivery valve opening and closing the passage to flow of aerosol composition and propellant from the storage compartment via the foam compartment to the delivery port; wall means defining the foam compartment in the container, the foam compartment being in direct flow connection with the aerosolconveying passage and with the storage compartment; all flow between the storage compartment and the delivery port proceeding via the foam compartment and aerosol-conveying passage in the valve stem; and porous bubbler means having through pores interposed between the foam and storage compartments with the through pores communicating the compartments, the pores being of sufficiently small dimensions to restrict flow of propellant gas from the storage compartment therethrough and form bubbles of such gas in liquid aerosol composition in the foam compartment across the line of flow from the bubbler to the delivery valve, thereby to foam the aerosol composition upon opening of the delivery valve to atmospheric pressure, and to expel foamed aerosol composition through the open valve; and a shut-off valve positioned across the line of flow from the storage compartment to the delivery port and responsive to orientation of the container to move under the force of gravity between positions opening and closing off flow at least of liquefied propellant to the delivery port, the shut-off valve moving into an open position in an orientation of the container between a horizontal and an upright position, and moving into a closed position in an orientation of the container between the horizontal and an inverted position.
- 22. An aerosol container according to claim 21, in which the porous bubbler has pores of an average diameter within the range from about 0.1.mu. to about 3 mm.
- 23. An aerosol container according to claim 22, in which the porous bubbler has an open area within the range from about 0.005 to about 10 mm.sup.2.
- 24. An aerosol container according to claim 21, in which the porous bubbler is a perforated sheet.
- 25. An aerosol container according to claim 21, in which the porous bubbler is a wire screen.
- 26. An aerosol container according to claim 21, in which the porous bubbler is a microporous membrane.
- 27. An aerosol container according to claim 21, in which the porous bubbler is a sheet of nonwoven fibrous material.
- 28. An aerosol container according to claim 21, in which the porous bubbler is a sheet of sintered particulate material.
- 29. An aerosol container according to claim 21, in which the porous bubbler is a filter sheet material.
- 30. An aerosol container according to claim 21, in which the container is cylindrical, with the valve at one end, and the means defining the first compartment comprises a concentric inner cylinder spaced from the walls of the container surrounding and extending from the delivery valve, and the porous bubbler closes off the other end of the inner cylinder, the remainder of the interior of the aerosol container outside the walls and bottom of the inner cylinder comprising the second annular compartment.
- 31. An aerosol container according to claim 30, comprising two porous bubblers, one interposed at one end of the first compartment and one interposed in the first compartment adjacent the valve, both being across the line of flow through the first compartment to the valve.
- 32. An aerosol container for use with compositions containing liquefied flammable propellants, and having a shut-off valve closing off flow through an open manually-operated delivery valve whenever the container is tipped from the upright position beyond the horizontal towards the fully inverted position, the container comprising, in combination, a pressurizable container having at least one foam compartment and at least one storage compartment for an aerosol composition and a liquefied propellant, in which storage, compartment propellant can assume an orientation according to orientation of the container between a horizontal and an upright position, and a horizontal and inverted position; a delivery valve movable manually between open and closed positions, and including a valve stem and a delivery port; an aerosol-conveying passage in the valve stem in flow connection at one end with the foam and storage compartments and at the other end with the delivery port, manipulation of the delivery valve opening and closing the passage to flow of aerosol composition and propellant from the storage compartment via the foam compartment to the delivery port; wall means defining the foam compartment; the foam compartment having a volume of at least 0.5 cc and being in direct flow connection with the aerosol-conveying passage and with the storage compartment; all flow between the storage compartment and the delivery port proceeding via the foam compartment and aerosol-conveying passage in the valve stem; at least one first liquid tap orifice having a diameter within the range from about 0.012 to about 0.2 cm and communicating the foam and storage compartment for flow of liquid aerosol composition into the foam compartment from the storage compartment, and of sufficiently small dimensions to restrict flow of liquid aerosol composition therethrough; the ratio of foam compartment volume/first orifice diameter being from about 10/x to about 400/x, where x is 1 when the orifice length is less than 1 cm, and 2 when the orifice length is 1 cm or more; at least one second gas tap orifice having a total cross-sectional open area within the range from about 7 .times. 10.sup.-6 to about 20 .times. 10.sup.-4 in.sup.2 and communicating the foam and storage compartments for flow of propellant into the foam compartment from the storage compartment therethrough, and of sufficiently small dimensions to restrict flow of propellant gas and form bubbles of such gas in liquid aerosol composition across the line of flow thereof to the valve, thereby to foam the aerosol composition upon opening of the valve to atmospheric pressure, and to expel foamed aerosol composition through the open delivery valve; and a shut-off valve positioned across the line of flow from the storage compartment to the delivery port and responsive to orientation of the container to move under the force of gravity between positions opening and closing off flow at least of liquefied propellant to the delivery port, the shut-off valve moving into an open position in an orientation of the container between a horizontal and an upright position, and moving into a closed position in an orientation of the container between the horizontal and an inverted position.
- 33. An aerosol container according to claim 32, in which the first compartment has a volume of from 1 to about 4 cc.
- 34. An aerosol container according to claim 33, having a single second gas tap orifice having a diameter within the range from about 0.003 to about 0.5 inch.
- 35. An aerosol container according to claim 33, having a capillary dip tube as the liquid tap orifice.
- 36. An aerosol container according to claim 32, having an orifice in a wall of the foam compartment as the liquid tap orifice.
- 37. An aerosol container according to claim 32, in which the container is cylindrical, with the delivery valve at one end, and the means defining the first compartment comprises a concentric inner cylinder spaced from the walls of the container surrounding and extending from the delivery valve, the gas tap orifice is through a wall of the inner cylinder, the liquid tap orifice is through a wall of the inner cylinder, and the remainder of the interior of the aerosol container outside the walls and bottom of the inner cylinder comprises the second annular compartment.
- 38. An aerosol container according to claim 37, having a plurality of gas tap orifices through a side wall of the inner cylinder.
- 39. An aerosol container according to claim 37, comprising a third compartment for liquid aerosol composition from the second compartment and in direct flow connection with the first separate compartment via the liquid tap orifice.
- 40. An aerosol container according to claim 37, comprising a capillary dip tube as the liquid tap orifice.
- 41. An aerosol container according to claim 32, in which the container is cylindrical, with the delivery valve at one end, and the means defining the first compartment comprises a concentric inner cylinder spaced from the walls of the container surrounding and extending from the delivery valve, the gas tap orifice is through a wall of the inner cylinder, a third compartment for liquid aerosol composition in direct fluid flow connection with the first compartment via the liquid tap orifice, and disposed below and concentric with the inner cylinder, and the remainder of the interior of the aerosol container outside the walls and bottom of the inner cylinder and third compartment comprises the second annular compartment.
Parent Case Info
This application is a continuation-in-part of Ser. No. 706,857, filed July 19, 1976, now abandoned.
US Referenced Citations (6)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
706857 |
Jul 1976 |
|