Aerosol delivery apparatus and method for pressure-assisted breathing systems

Information

  • Patent Grant
  • 7267121
  • Patent Number
    7,267,121
  • Date Filed
    Thursday, September 30, 2004
    20 years ago
  • Date Issued
    Tuesday, September 11, 2007
    17 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Yu; Justine R.
    • Matter; Kristen
    Agents
    • Townsend and Townsend and Crew LLP
Abstract
A pressure-assisted breathing system is provided that comprises: a pressure-generating circuit for maintaining a positive pressure within the system; a patient interface device coupled to a patient's respiratory system; a respiratory circuit for providing gas communication between the pressure-generating circuit and the patient interface device; means for introducing aerosol particles into the gas flow in the respiratory circuit; and means for discontinuing the introduction of aerosol particles into said respiratory circuit gas flow when the patient exhales. In one embodiment, a flow sensor is disposed in an auxiliary circuit in fluid communication with the respiratory circuit and electronically coupled with a nebulizer. The flow sensor is adapted to detect changes in the volumetric flow rate of gas in the auxiliary circuit when the patient exhales and stops exhaling and sends corresponding electronic signals to the nebulizer to turn off and turn on, respectively.
Description
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK

Not Applicable


BACKGROUND OF THE INVENTION

This invention relates to apparatus and methods for delivering medication to the respiratory system of a patient, preferably an infant, through a pressure-assisted breathing system. More specifically, one aspect of the invention is directed to apparatus and methods for coupling a flow sensor with a continuous positive airway pressure (“CPAP”) system that employs a nebulizer, preferably one having a vibrating aperture-type aerosol generator, to deliver aerosolized medicament simultaneously with CPAP treatment.


The use of CPAP systems and therapies are conventional forms of ventilation treatment for respiratory disorders in both adults and children. In particular, it has been reported that respiratory support with nasal CPAP (“NCPAP”), coupled with simultaneous treatment with nebulized drugs, preferably surfactants, has several advantages in the treatment of infant respiratory distress syndrome (“iRDS”) in pre-term infants (“neonates”). For example, early application of NCPAP and early treatment with aerosolized surfactant in neonates with iRDS have been found to be effective in decreasing the need for mechanical ventilation, with its accompanying mechanical and infectious risks and pathophysiological effects. See, for example, “To the Editor: Surfactant Aerosol Treatment of Respiratory Distress Syndrome in Spontaneously Breathing Premature Infants”; Pediatric Pulmonology 24:22-224 (1997); “Early Use of Surfactant, NCPAP Improves Outcomes in Infant Respiratory Distress Syndrome”; Pediatrics 2004; 11;e560-e563 (as reported online by Medscape Medical News group, Jun. 4, 2004); and “Nebulization of Drugs in a Nasal CPAP System”; Acta Pediatric 88: 89-92 (1999).


CPAP systems utilize a constant positive pressure during inhalation to increase and maintain lung volumes and to decrease the work by a patient during spontaneous breathing. The positive pressure effectively dilates the airway and prevents its collapse. The delivery of positive airway pressure is accomplished through the use of a positive air flow source (“flow generator”) that provides oxygen or a gas containing oxygen through a flexible tube connected to a patient interface device such as nasal prongs (cannula), nasopharyngeal tubes or prongs, an endotracheal tube, mask, etc. CPAP systems typically maintain and control continuous positive airway pressure by using a restrictive air outlet device, e.g. a fixed orifice or threshold resistor, or a pressure valve, which modulates the amount of gas leaving the circuit to which the patient interface device is attached. This pressure regulating device may be placed at, before or beyond the patient interface device and defines a primary pressure-generating circuit.


During the course of conventional CPAP therapy, the patient may typically inhale only a fraction of the total flow of gas passing through the primary pressure-generating circuit. For example, it has been estimated that a CPAP gas flow of 8 L/min may typically result in a pharyngeal tube flow of about 2/L min. As a result, only 25% of aerosolized medicament introduced into the CPAP flow will enter the pharynx. In addition, from this 25% entering the pharynx, about two-thirds may be lost during expiration, assuming an inspiratory/expiratory ratio of 1:2. Thus, in conventional CPAP systems, only 10% of the nebulized drug may enter the patient interface device. This waste, particularly with extremely expensive surfactants, makes the cost of administering nebulized drugs through conventional CPAP systems unacceptably high for routine clinical use. To reduce these costs, the prior art has identified the need for improvements in the method of delivery for aerosolized drugs, e.g. it has been suggested that a method and apparatus are needed for restricting nebulization to inspiration only. See, for example, the article in Pediatric Pulmonology, supra.


It is therefore desirable to find ways to decrease the losses of aerosol particles within pressure-assisted breathing systems during the exhalation phase of the respiratory cycle. In particular, increasing the efficiency in the delivery of aerosolized medicaments through CPAP systems, and the resulting smaller amounts of medicament required for a treatment, can represent a substantial advantage, particularly when scarce and expensive medicaments are employed.


BRIEF SUMMARY OF THE INVENTION

The present invention provides a pressure-assisted breathing system, e.g. a CPAP system, comprising in one embodiment a pressure-generating circuit for maintaining a positive pressure within the system, a patient interface device coupled to a patient's respiratory system, a respiratory circuit for providing gas communication between the pressure-generating circuit and the patient interface device, means for introducing aerosol particles, e.g. an aerosolized medicament, into the gas flow in the respiratory circuit and means for discontinuing the introduction of aerosol particles into the respiratory circuit when the patient exhales.


In one embodiment of the invention, the means for discontinuing the introduction of aerosol particles comprises a flow sensor disposed in an auxiliary circuit in fluid communication with the respiratory circuit and electronically coupled with the means for introducing the aerosol particles into the respiratory circuit flow. A small portion of the gas flow in the respiratory circuit is diverted through the flow sensor by the auxiliary circuit. Preferably the flow rate in the auxiliary circuit is adjusted to be commensurate with the middle of the flow rate range detected by the flow sensor. Preferred flow sensors are adapted to detect small changes in the volumetric flow rate of gas in the auxiliary circuit and send a corresponding electronic signal to the means for introducing aerosol particles into the respiratory circuit.


In one embodiment of the invention, the means for introducing aerosol particles comprises a nebulizer, most preferably, a nebulizer having a reservoir for holding a liquid medicament to be delivered to the patient's respiratory system, a vibrating aperture-type aerosol generator for aerosolizing the liquid medicament and a connector for connecting the nebulizer to the respiratory circuit so as to entrain the aerosolized medicament from the aerosol generator into the gas flowing through the respiratory circuit. As previously mentioned, the nebulizer is preferably electronically coupled to the flow sensor through the electronic circuitry of the CPAP system.


As with conventional CPAP operation, a constant flow of gas is maintained in the respiratory circuit by the CPAP system of the present invention during inhalation by the patient (hereinafter referred to as “inspiratory flow”). In the practice of the present invention, a flow corresponding to the inspiratory flow, but at a lesser flow rate, is diverted to the auxiliary circuit. An adjustable valve, e.g. an orifice valve, is preferably provided in the auxiliary circuit to regulate the flow of gas through the flow sensor. This valve may be used to reduce the flow of gas in the respiratory circuit to a range that can be measured by the flow sensor, and preferably in the middle of this range. Particularly preferred flow sensors have a flow range of from 0 to 1 liter/minute (“L/min”).


When the patient exhales, the flow of gas in the respiratory circuit (and correspondingly in the auxiliary circuit) increases as a result of the additional flow of gas generated by the patient's lungs (hereinafter referred to as “expiratory flow”). In a preferred embodiment, the flow sensor detects the change in the flow rate of gas in the auxiliary circuit corresponding to the expiratory flow in the respiratory circuit, and sends an electronic signal to turn off the aerosol generator of the nebulizer. When the expiratory flow ceases, the flow sensor detects the decrease in flow rate in the auxiliary circuit and discontinues the electronic signal to the nebulizer. As a result, the nebulizer turns on and resumes the introduction of aerosol particles into the respiratory circuit. In this way, the system of the present invention stops the delivery of aerosol particles during exhalation by the patient so that aerosol particles are introduced into the respiratory circuit only when the patient inhales.


A disposable filter is preferably positioned in the auxiliary circuit up-stream to the flow sensor. Since a portion of the expiratory flow is diverted into the auxiliary circuit, bacterial, viral or other contaminants emanating from the diseased patient's respiratory system may be present in the auxiliary circuit flow. The filter removes these contaminants before the air flow passes through the flow sensor and is preferably replaced with every new patient using the apparatus. This feature allows the flow sensor to be permanently connected to the electronic circuitry of the CPAP system and remain in place without contamination when the apparatus is used by different patients.


The present invention also provides a method of respiratory therapy wherein an aerosolized medicament is introduced into a pressure-assisted breathing system only when the patient inhales. In another embodiment, the invention provides a method of delivering an aerosol to a patient's respiratory system which comprises the steps of: (a) providing a pressure-assisted breathing system having a respiratory circuit wherein a constant inspiratory flow is provided to a patient during inhalation and an additional expiratory flow is generated by the patient during exhalation, (b) providing an auxiliary circuit to divert a portion of the total flow in the respiratory circuit to a flow sensor; (c) measuring the flow rate in the auxiliary circuit with the flow sensor when the total flow in the respiratory circuit comprises only the inspiratory flow, thereby producing a first electronic signal; (d) measuring the flow rate in the auxiliary circuit with the flow sensor when the total flow in the respiratory circuit comprises the sum of the inspiratory flow and the expiratory flow, thereby producing a second electronic signal; (e) providing a nebulizer electronically coupled to the flow sensor and adapted to introduce aerosol particles of medicament into the respiratory circuit when the first electronic signal is detected, and to stop the introduction of aerosol particles of medicament into the respiratory circuit when the second electronic signal is detected.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a CPAP system according to the present invention.



FIG. 2 is a cross-sectional view of the CPAP system of FIG. 1.



FIG. 3 is a schematic illustration of a CPAP system described in Example 2.





DETAILED DESCRIPTION OF THE INVENTION

As shown in FIG. 1, one preferred embodiment of the invention comprises a CPAP system 100 having a primary pressure-generating circuit P, a respiratory circuit R and an auxiliary circuit A. The tubes associated with commercially available pressure-assisted breathing systems create a “circuit” for gas flow by maintaining fluid communication between the elements of the circuit. Tubes can be made of a variety of materials, including but not limited to various plastics, metals and composites and can be rigid or flexible. Tubes can be attached to various elements of the circuit in a detachable mode or a fixed mode using a variety of connectors, adapters, junction devices, etc. Circuit P includes a flow generator 2 in fluid communication through conduit 1 with a pressure-regulating device 3. One element is in “fluid communication” with another element when it is attached through a channel, port, tube or other conduit that permits the passage of gas, vapor and the like.


Respiratory circuit R includes a patient interface device, namely nasal cannula 4, which communicates with circuit P at “T”-shaped junction unit 5 through tube 6. Tube 6 is preferably a flexible tube having a smaller diameter than conduit 1, e.g. tube 6 may have an outside diameter of 5-8 mm or less. This arrangement allows the patient to move his/her head freely without disconnecting the patient interface device from the patient. Nebulizer 7 (comprising an aerosol generator) is in fluid communication with tube 6 at junction 8. Nebulizer 7 is adapted to emit an aerosolized medicament directly into the gas flow that is inhaled by the patient, i.e. the gas flow in respiratory circuit R, and is preferably located in the direct vicinity of the patient's nose, mouth or artificial airway (e.g. an endotracheal tube). Nebulizer 7 itself may comprise a built-in connector for connecting to tube 6 (as shown), or may be connected using a separate tube or connector.


Auxiliary circuit A includes flexible tube 11, preferably having the same outside diameter as tube 6, which connects flow sensor 9 with tube 6 at “T”-shaped junction unit 10. Junction unit 10 is preferably positioned close to nasal cannula 4, but upstream to nebulizer 7 so that aerosol particles emitted by nebulizer 7 are not diverted into tube 11. Adjustable orifice valve 12 may be positioned in tube 11 between junction 10 and flow sensor 9 to adjust the flow rate of gas passing through flow sensor 9, preferably to the middle of the optimal flow range for sensor 9. Disposable filter 13 may be positioned in tube 11 between junction 10 and flow sensor 9 to remove any bacterial, viral and/or other contaminants from the patient's diseased respiratory system that may be carried by the exhaled air passing through flow sensor 9.


The operation of CPAP system 100 will be illustrated by referring to FIG. 2, which is an enlarged, cross-section view of CPAP system 100. A high volume flow of gas 20 is introduced into circuit P from flow generator 2 and passes through conduit 1 to pressure-regulating device 3 which maintains a continuous positive pressure throughout the system. Inspiratory flow 21, which may typically be about 10% of flow 20, flows from conduit 1 of pressure-generating circuit P into tube 6 of respiratory circuit R to provide a relatively constant inspiratory flow rate of air to the patient's respiratory system, thereby assisting in the patient's inspiratory efforts in accordance with conventional CPAP system principles. At junction 10, a portion 21a of inspiratory flow 21 proceeds through tube 6 to nasal cannula 4, and a portion 21b of inspiratory flow 21 is diverted through tube 11 to flow sensor 9.


Flow 21a passes through junction 8, at which point aerosolized medicament particles 22 produced by the aerosol generator of nebulizer 7 are introduced into flow 21a. Resulting flow 23 containing entrained aerosol particles 22 ultimately passes into the patient's respiratory system through nasal cannula 4, thereby delivering the aerosolized medicament to the patient's respiratory system. Flow 21b passes through tube 11 and adjustable orifice valve 12, which may be adjusted to reduce the rate of flow 21b to a reduced flow 21c, e.g. a flow rate that may be about 20% of the flow rate of flow 21b. Reduced flow 21c then proceeds through disposable filter 13 to flow sensor 9, and is ultimately released to the atmosphere. As flow 21c passes through flow sensor 9, flow sensor 9 measures the volumetric flow rate of flow 21c and generates a first electronic signal, e.g. a certain output voltage, in electronic circuitry 25 of CPAP system 100 that is characteristic of flow 21c. Since flow 21c is directly proportional to inspiratory flow 21, the first electronic signal caused by flow 21c may be used by the system to identify when the patient is inhaling and continue the delivery of aerosolized medicament.


When the patient exhales, expiratory flow 24 passes through nasal cannula 4 to tube 6 and is diverted through tube 11 at junction unit 10. Expiratory flow 24 is combined with inspiratory flow 21b in tube 11 to produce a flow rate equal to the sum of the flow rates of flow 24 and 21b. The combination of flow 24 and flow 21b passes through adjustable orifice valve 12 and the total flow rate is reduced in the same manner as previously described for flow 21b alone (identified in FIG. 2 as a combination of flow 21c and 24a). Disposable filter 13 removes any bacterial, viral or other contaminants that may have been present in the combined air flow as a result of flow 24a and the combined air flow then passes through flow sensor 9. When the combination of flow 21c and 24a passes through flow sensor 9, the change (increase) in flow rate over that of flow 21c alone is detected by flow sensor 9. As a result, flow sensor 9 generates a second electronic signal in electronic circuitry 25 that is different than the first electronic signal produced by flow 21c alone. The second electronic signal is transmitted by electronic circuitry 25 to nebulizer 7 and causes it to turn off its aerosol generator. This inactivation of the aerosol generator stops the introduction of aerosol particles 22 into flow 21a. Since the second electronic signal is generated by the volumetric flow rate of the combination of flow 21c and 24a, it indicates the presence of expiratory flow 24. Therefore, the second electronic signal may be used by the system to identify when the patient is exhaling and stop the introduction of aerosolized medicament. In this way, no aerosol is introduced into tube 6 when the patient exhales, and therefore, no aerosolized medicament is entrained in expiratory flow 24, which is ultimately released to the atmosphere and lost.


When expiratory effort by the patient stops and inhalation commences again, expiratory flow 24 discontinues and only inspiratory flow 21 is present in the system. As a result, only flow 21c passes through tube 11. Flow sensor 9 detects this change (decrease) in flow rate and generates the first electronic signal, which is transmitted to nebulizer 7. The first electronic signal causes nebulizer 7 to turn on the aerosol generator and resume the introduction of aerosol particles 22 into flow 21a. The turning on and off of the aerosol generator of nebulizer 7 in concert with the patient's respiratory cycle allows aerosolized medicament to be introduced into the CPAP system of the present invention only when the patient is inhaling. This results in a dramatic increase in the efficiency of delivery of the medicament and a corresponding reduction in losses of medicament to the atmosphere.


Flow generator 2 may conveniently comprise any of the known sources of pressurized gas suitable for use with pressure-assisted breathing systems such as CPAP systems. Typically, the flow generator is capable of supplying a flow of high-volume gas, which includes at least some portion of oxygen, at slightly greater than atmospheric pressure. For example, the source of pressurized gas may be an air blower or a ventilator, or the pressurized gas may originate from a wall supply of air and/or oxygen, such as that found within hospitals and medical facilities, or may originate from a pressurized cylinder or cylinders. The pressurized gas may comprise various known mixtures of oxygen with air, nitrogen, or other gases and may be provided in a single stream or flow to circuit R, for example, as shown by element 20 of FIG. 2.


Pressure-regulating device 3 may comprise any of the known devices for controlling and maintaining air pressure within a CPAP system at the desired constant level. Typically, pressure-regulating device 3 may comprise a restrictive air outlet device such as a pressure valve or threshold resistor that modulates the flow of gas leaving the pressure-regulating circuit P. In other applications, the modulation of the gas flow may be provided by releasing the air flow into a standardized vessel containing a predetermined quantity of water, with the pressure in the system being expressed in terms of the height to which the water rises in the vessel. Regardless of the pressure-regulating device used, the resistance to air flow in the pressure-generating circuit may be varied so that the continuous positive airway pressure conducted by respiratory circuit R to patient interface device 4 will suit the needs of the particular patient using the apparatus.


Although junction unit 5 may typically comprise a “T” or “Y”-shaped hollow unit (sometimes referred to as the “WYE”), it may take other shapes. As shown in FIG. 1, flexible tube 6 is connected to junction unit 5 and defines a branch gas conduit that depends from and is in gas communication with pressure-generating circuit P. Tube 6 is ultimately connected to a patient interface device, e.g. nasal cannula 4, to form respiratory circuit R. Flexible tube 6 is preferably relatively thin, smaller in diameter and more flexible than conduit 1 comprising pressure-generating circuit P. For example, flexible tube 6 may be commercially available silicone tubing having an outside diameter of about 5-8 mm.


The patient interface device 4 of the present invention may include any of the known devices for providing gas communication between the CPAP device and the patient's respiratory system. By way of example, the patient interface device may include nasal cannula or prongs (as shown in the Figures), an oral/nasal mask, a nasal mask, nasopharyngeal prongs, an endotracheal tube, a tracheotomy tube, a nasopharyngeal tube, and the like.


Nebulizer 7 may be any of the known devices for nebulizing (aerosolizing) drugs that are suitable for use with a CPAP system. Particularly preferred for the practice of this invention are those nebulizers having a vibrating aperture-type aerosol generator, for example, those nebulizers described in the present application's parent application and in U.S. Pat. Nos. 6,615,824; 5,164,740; 5,586,550; 5,758,637; and 6,085,740, and in copending U.S. patent application Ser. No. 10/465,023, filed Jun. 18, 2003, and Ser. No. 10/284,068, filed Oct. 30, 2002. The entire disclosures of said patents and applications are incorporated by reference herein. Particularly preferred nebulizers for the present invention are small and light-weight, for example having a net weight (without liquid) of 5 gms or less, preferably 3 gms or less, and have a connector adapted to attach to the weaker smaller diameter tube 6. Such “miniature” nebulizers may have a small reservoir that holds one unit dose of medicament, e.g. less than 4 ml of liquid, and a light-weight aerosol generator, e.g. on the order of about 1 gm in weight. In addition, preferred nebulizers are quiet in operation, e.g. producing less than 5 decibels of sound pressure, so that they can conveniently be placed very close to the patient.


The flow sensor 9 of the present invention may be a known flow sensor device that is adapted to detect small changes in the volumetric flow rate of fluid passing through it and is capable of generating an electronic signal, e.g. an output voltage, that is characteristic of that flow rate. A particularly preferred flow sensor for the practice of the present invention is commercially available from Omron Corporation of Japan, and is identified as “MEMS Flow Sensor, Model D6F-01A1-110”. The Omron flow sensor is capable of detecting a flow rate in the range of 0 to 1 L/min (at 0° C. and 101.3 kPa pressure). The relationship of measured flow rate and resulting output voltage for the Omron flow sensor is summarized in Table 1 below:











TABLE 1









Flow rate (L/min)














0
0.2
0.4
0.6
0.8
1.0

















Output voltage (VDC ± 0.12)
1.00
2.31
3.21
3.93
4.51
5.00





[Note: measurement conditions for Table 1 are as follows: power-supply voltage of 12 VDC, ambient temperature of 25° C. and ambient humidity of 25-75% RH.]






Nebulizer apparatus 7 may be connected to flow sensor 9 through the electronic circuitry 25 of the CPAP system. For example, nebulizer 7 may be connected to a controller (not shown) that turns the aerosol generator off and on in response to signals from flow sensor 9. Preferably, the controller and other electronic components of the CPAP system are connected with wires, cables and connectors that are small and flexible. Examples of other components that may also be associated with nebulizer apparatus 7 are a timer, status indication means, liquid medicament supply nebule or syringe, etc., all as known by those skilled in the art and described in detail in the aforementioned patent and patent applications.


The following examples will illustrate the present invention using the Omron flow sensor described above, but is not intended to limit the invention to the particular details set forth therein:


EXAMPLE 1

A CPAP system of the present invention such as illustrated in FIGS. 1 and 2 may be used for respiratory treatment of an infant. The system may be pressurized to a pressure of 5 cm H2O and a constant flow of air may be supplied by flow generator 2 into pressure-generating circuit P at a rate of 10 L/min. About 1 L/min (10%) of the air flow in pressure-generating circuit P may flow into flexible tube 6 as flow 21. During inhalation by the infant through nasal cannula 4, about 20% of flow 21 (identified in FIG. 2 as flow 21b) may be diverted into tube 11 at junction 10 by appropriately adjusting orifice valve 12 to produce a flow rate for flow 21c of about 0.2 L/min (0.2×1 L/min). Flow 21c may also pass through a disposable filter 13, but since flow 21c contains only inhalation air containing very little, if any, contamination, nothing significant should be removed from flow 21c by the filter. Flow 21c then may pass through the Omron flow sensor described above at a flow rate of 0.2 L/min, which according to Table 1 above, results in the generation of an output voltage of about 2.31 VDC. The electronic circuitry of the CPAP system may be configured to have the aerosol generator of nebulizer 7 turned on when the flow sensor is transmitting this output voltage to nebulizer 7. Turning on the aerosol generator introduces aerosolized medicament into the respiratory circuit R of the CPAP system so it can be inhaled by the infant.


During exhalation, the infant may exhale about 0.6 L/min of air flow through nasal cannula 4 to produce expiratory flow 24, which combines in tube 11 with flow 21b. As previously described for flow 21b alone, orifice valve 12 has been adjusted to reduce the flow rate of gas in tube 6 to about 20% of the original flow rate. Accordingly, flow 21b may be reduced to flow 21c having a flow rate of about 0.20 L/min (0.2×1 L/min) and flow 24 may be reduced to flow 24a having a flow rate of about 0.12 L/min (0.2×0.6 L/min). The combined expiratory flow rate of the combination of flow 21c and 24a therefore equals about 0.32 L/min. This combined expiratory flow rate may then pass through disposable filter 13 to remove any contaminates that may be present as a result of expiratory flow 24a, and then pass through the Omron flow sensor. Again referring to Table 1 above, it can be seen that the Omron pressure sensor generates an output voltage of about 3.0 VDC at the combined exhalation flow rate of 0.32 L/min. The electronic circuitry of the CPAP system may be configured to have the aerosol generator of nebulizer 7 turned off when this output voltage is transmitted to nebulizer 7 by electronic circuitry 25. Turning off the aerosol generator ceases the introduction of aerosolized medicament particles 22 into the respiratory circuit R of the CPAP system during the presence of expiratory flow 24. As a result, a minimum amount of aerosol is entrained in expiratory flow 24 and ultimately lost to the atmosphere. In some cases, electronic circuitry 25 may include a phase shift circuit which can slightly advance or delay the inactivation of the aerosol generator, if desired.


When the flow rate through the Omron flow sensor returns to 0.2 L/min during inhalation, the output voltage of the Omron flow sensor returns to 2.31 VDC. Since this voltage is characteristic of the inhalation phase of the patient's respiratory cycle, it may be used by electronic circuitry 25 as a signal to turn on the aerosol generator again so that the introduction of aerosolized medicament into the respiratory circuit of the CPAP system is resumed during inhalation. The cycle of turning the nebulizer on and off depending on what phase of the patient's respiratory cycle is occurring may be repeated during the period that the CPAP system is used for respiratory treatment of the infant, thereby significantly reducing the amount of medicament needed for such treatment.


EXAMPLE 2

Referring to FIG. 3, CPAP system 300 was attached to a breathing simulation piston pump 30 (commercially available from Harvard Apparatus, Holliston, Mass. 01746) to simulate an infant's breathing cycle. CPAP system 300 included auxiliary circuit A comprising pressure valve 38, disposable filter 39 and flow sensor 40 connected to respiratory circuit 42 through tube 43 in accordance with the present invention. A removable filter 31 was placed at the inlet of pump 30. An adapter 32 with two orifices 33 representing infant nares (Argyle nasal prong commercially available from Sherwood Medical, St. Louis, Mo. 63013) was connected to filter 31. Nebulizer 37 (Aeroneb® Professional Nebulizer System commercially available from Aerogen, Inc., Mountain View, Calif.) was placed in respiratory circuit 42 near adapter 32 so as to deliver an aerosolized drug into the air flow passing through orifices 33. During the operation of pump 30, air containing the entrained aerosolized drug flowed back and forth through filter 31, which collected the drug from the air flow. The amount of drug collected on filter 31 after each test was measured by high-pressure liquid chromatography (HPLC) and compared to the total amount that was nebulized to provide a measure of the efficiency of aerosol delivery to the system.


Pump 30 was set to infant ventilatory parameters with a tidal volume of 10 ml and a respiratory rate of 40 breaths per minute. A constant air flow 34 of 10 L/min was provided through CPAP inlet 35 and resistance pressure regulator 36 was set to generate a pressure of 5 cm H2O. Nebulizer 37 was filled with 3 ml of a solution of albuterol sulfate (“albuterol”). In order to study the effect of synchronized nebulization (i.e., nebulization during inhalation only) versus continuous nebulization, two separate sets of 4 tests were conducted. In the first set of tests, nebulizer 37 ran continuously during both the inhalation and exhalation cycles of pump 30. In the second set of tests, the operation of nebulizer 37 was stopped during the exhalation cycle of pump 30 using the input from flow sensor 40 in accordance with the present invention. After each test, the amount of albuterol collected on filter 31 was measured by HPLC and compared with the amount of albuterol nebulized to obtain a percent efficiency. The results are summarized in Table 2 below:












TABLE 2







Test No.
Efficiency
















Continuous Nebulization:










1
26%



2
24%



3
22%



4
27%



Average Efficiency:
24.75%  







Synchronized Nebulization:










1
40%



2
44%



3
51%



4
43%



Average Efficiency:
44.5%  










The above results demonstrate that synchronized nebulization according to the present invention may deliver an order of magnitude more albuterol through nasal prongs during CPAP than continuous nebulization.


The high efficiency of delivery of aerosolized medicaments according to the present invention is particularly valuable in respiratory therapies that utilize expensive or scarce medicaments, such as the aforementioned NCPAP treatment of iRDS using aerosolized surfactants. Since most surfactants are animal-based, the current supply is limited, and although synthetic surfactants are available, their manufacture is both inexact and expensive. In addition, the surfactant medicaments are typically high in viscosity and are difficult to deliver to the patient's respiratory system. The increased efficiency of the pressure-assisted breathing system of the present invention, and the smaller amount of medicament required for a treatment according to the present invention, can be a substantial advantage when such scarce and expensive medicaments are employed.


It is understood that while the invention has been described above in connection with preferred specific embodiments, the description and drawings are intended to illustrate and not limit the scope of the invention, which is defined by the appended claims and their equivalents.

Claims
  • 1. A CPAP apparatus for the delivery of an aerosolized medicament to a patient's respiratory system comprising: a pressure-generating circuit that maintains continuous positive pressure throughout the apparatus during the breathing cycle of the patient;a patient interface device adapted to be coupled to a patient's respiratory system;a respiratory circuit that provides gas communication between the pressure-generating circuit and the patient interface device, whereby the patient breathes gas under continuous positive pressure;a nebulizer that introduces aerosolized medicament into the gas flow in the respiratory circuit;an auxiliary circuit in gas communication with the respiratory circuit whereby a portion of the gas flow in the respiratory circuit is diverted to the external atmosphere to provide a secondary gas flow;a flow sensor disposed in the auxiliary circuit for measuring the flow rate of the secondary gas flow; andelectronic circuitry connecting the flow sensor to the nebulizer, whereby the flow sensor sends a first electronic signal that causes the nebulizer to turn off when the flow sensor detects an increase in the flow rate of the secondary gas flow as the result of the patient commencing exhalation.
  • 2. Apparatus according to claim 1 wherein the flow sensor sends a second signal that causes the nebulizer to turn on when the flow sensor detects a decrease in the flow rate of the secondary gas flow as the result of the patient ceasing exhalation.
  • 3. Apparatus according to claim 2 wherein each signal is a certain output voltage generated by the flow sensor.
  • 4. Apparatus according to claim 1 wherein the flow sensor is adapted to measure a range of flow rates less than the flow rate of the secondary gas flow; and further comprising a valve disposed in the auxiliary circuit for reducing the flow rate of the secondary gas flow to the measurement range of the flow sensor.
  • 5. Apparatus according to claim 4 wherein the flow sensor has a flow range of 0 to 1 L/min and the valve regulates the flow of gas to about the middle of said range.
  • 6. Apparatus according to claim 1 further comprising a disposable filter for trapping contaminants prior to passing through the flow sensor.
  • 7. Apparatus according to claim 1 wherein the nebulizer comprises a reservoir for holding a liquid medicament to be delivered to the patient's respiratory system, a vibrating aperture-type aerosol generator for aerosolizing the liquid medicament and a connector for connecting the nebulizer to the respiratory circuit so as to entrain the aerosolized medicament from the aerosol generator into the gas flowing through the respiratory circuit.
  • 8. Apparatus according to claim 7 wherein said liquid medicament is a surfactant.
  • 9. A method of delivering an aerosol to a patient's respiratory system which comprises the steps of: providing a CPAP system having a pressure-generating circuit that provides continuous positive pressure throughout the apparatus during the breathing cycle of the patient, a respiratory circuit coupled to a patient interface device whereby the patient breathes gas under continuous positive pressure and an auxiliary circuit in gas communication with the respiratory circuit that diverts a portion of the gas flow in the respiratory circuit to the external atmosphere to provide a secondary gas flow, the auxiliary circuit having disposed therein a flow sensor electronic ally connected to a nebulizer coupled to the respiratory circuit;introducing a liquid into the nebulizer;regulating the flow rate of the secondary gas flow to a range that can be measured by the flow sensor; andturning on the nebulizer to introduce an aerosol of the liquid into the respiratory circuit, or turning off the nebulizer to cease introduction of aerosol into the respiratory circuit, in response to at least one change in the flow rate of secondary gas flow that the flow sensor detects in the auxiliary circuit.
  • 10. A pressure-assisted breathing system comprising: a pressure-generating circuit for maintaining a positive pressure throughout the apparatus during the breathing cycle of a patient;a patient interface device adapted to be coupled to the patient's respiratory system;a respiratory circuit for providing gas communication between the pressure-generating circuit and the patient interface device, whereby the patient breathes gas under continuous positive pressure;an auxiliary circuit in fluid communication with the respiratory circuit that diverts a portion of the reduced gas flow in the respiratory circuit to the external atmosphere to provide a secondary gas flow;means for introducing aerosol particles into the gas flow in the respiratory circuit;a flow sensor disposed in the auxiliary circuit that is adapted to measure gas flow rates less than the flow rate of the secondary gas flow, wherein the flow sensor is electronically coupled with the means for introducing the aerosol particles into the respiratory circuit gas flow; anda valve disposed in the auxiliary circuit for reducing the secondary gas flow to a flow rate that can be measured by the flow sensor;wherein said flow sensor is adapted to detect a change in the flow rate of the secondary gas flow when the patient exhales and inhales, and thereby send a corresponding electronic signal tat causes the means for introducing aerosol particles to turn off during exhalation and turn on during inhalation.
  • 11. A system according to claim 10 wherein the auxiliary circuit further comprises a disposable filter for trapping contaminants in the flow of gas before it passes through the flow sensor.
  • 12. A system according to claim 10 wherein the means for introducing aerosol particles comprises a nebulizer.
  • 13. A system according to claim 12 wherein the nebulizer comprises a reservoir for holding a liquid medicament to be delivered to the patient's respiratory system, a vibrating aperture-type aerosol generator for aerosolizing the liquid medicament and a connector for connecting the nebulizer to the respiratory circuit so as to entrain the aerosolized medicament from the aerosol generator into the gas flowing through the respiratory circuit.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 10/828,765, filed Apr. 20, 2004, and is related to U.S. application Ser. No. 10/883,115, filed Jun. 30, 2004, both of which are incorporated by reference herein in their entirety.

US Referenced Citations (466)
Number Name Date Kind
550315 Allen Nov 1895 A
809159 Willis et al. Jan 1906 A
1680616 Horst Aug 1928 A
2022520 Philbrick Nov 1935 A
2101304 Wright Dec 1937 A
2158615 Wright May 1939 A
2187528 Wing Jan 1940 A
2223541 Baker Dec 1940 A
2266706 Fox et al. Dec 1941 A
2283333 Martin May 1942 A
2292381 Klagges Aug 1942 A
2360297 Wing Oct 1944 A
2375770 Dahlberg May 1945 A
2383098 Wheaton Aug 1945 A
2404063 Healy Jul 1946 A
2430023 Longmaid Nov 1947 A
2474996 Wallis Jul 1949 A
2512004 Wing Jun 1950 A
2521657 Severy Sep 1950 A
2681041 Zodtner et al. Jun 1954 A
2705007 Gerber Mar 1955 A
2735427 Sullivan Feb 1956 A
2764946 Henderson Oct 1956 A
2764979 Henderson Oct 1956 A
2779623 Eisenkraft Jan 1957 A
2935970 Morse et al. May 1960 A
3103310 Lang Sep 1963 A
3325031 Singler Jun 1967 A
3411854 Rosler et al. Nov 1968 A
3515348 Coffman, Jr. Jun 1970 A
3550864 East Dec 1970 A
3558052 Dunn Jan 1971 A
3561444 Boucher Feb 1971 A
3563415 Ogle Feb 1971 A
3680954 Frank Aug 1972 A
3719328 Hindman Mar 1973 A
3738574 Guntersdorfer et al. Jun 1973 A
3771982 Dobo Nov 1973 A
3790079 Berglund et al. Feb 1974 A
3804329 Martner Apr 1974 A
3812854 Michaels et al. May 1974 A
3838686 Szekely Oct 1974 A
3842833 Ogle Oct 1974 A
3865106 Palush Feb 1975 A
3903884 Huston et al. Sep 1975 A
3906950 Cocozza Sep 1975 A
3908654 Lhoest et al. Sep 1975 A
3950760 Rauch et al. Apr 1976 A
3951313 Coniglione Apr 1976 A
3958249 DeMaine et al. May 1976 A
3970250 Drews Jul 1976 A
3983740 Danel Oct 1976 A
3993223 Welker, III et al. Nov 1976 A
4005435 Lundquist et al. Jan 1977 A
4020834 Bird May 1977 A
4030492 Simburner Jun 1977 A
4052986 Scaife Oct 1977 A
4059384 Holland et al. Nov 1977 A
D246574 Meierhoefer Dec 1977 S
4076021 Thompson Feb 1978 A
4083368 Freezer Apr 1978 A
4094317 Wasnich Jun 1978 A
4101041 Mauro, Jr. et al. Jul 1978 A
4106503 Rosenthal et al. Aug 1978 A
4109174 Hodgson Aug 1978 A
4113809 Abair et al. Sep 1978 A
D249958 Meierhoefer Oct 1978 S
4119096 Drews Oct 1978 A
4121583 Chen Oct 1978 A
4159803 Cameto et al. Jul 1979 A
4207990 Weiler et al. Jun 1980 A
4210155 Grimes Jul 1980 A
4226236 Genese Oct 1980 A
4240081 Devitt Dec 1980 A
4240417 Holever Dec 1980 A
4248227 Thomas Feb 1981 A
4261512 Zierenberg Apr 1981 A
D259213 Pagels May 1981 S
4268460 Boiarski et al. May 1981 A
4294407 Reichl et al. Oct 1981 A
4298045 Weiler et al. Nov 1981 A
4299784 Hense Nov 1981 A
4300546 Kruber Nov 1981 A
4301093 Eck Nov 1981 A
4301810 Belman Nov 1981 A
4319155 Makai et al. Mar 1982 A
4334531 Reichl et al. Jun 1982 A
4336544 Donald et al. Jun 1982 A
4338576 Takahashi et al. Jul 1982 A
4340044 Levy et al. Jul 1982 A
4368476 Uehara et al. Jan 1983 A
4368850 Szekely Jan 1983 A
4374707 Pollack Feb 1983 A
4389071 Johnson, Jr. et al. Jun 1983 A
4408719 Last Oct 1983 A
4428802 Kanai et al. Jan 1984 A
4431136 Janner et al. Feb 1984 A
4454877 Miller et al. Jun 1984 A
4465234 Maehara et al. Aug 1984 A
4474251 Johnson, Jr. Oct 1984 A
4474326 Takahashi Oct 1984 A
4475113 Lee et al. Oct 1984 A
4479609 Maeda et al. Oct 1984 A
4484577 Sackner et al. Nov 1984 A
4502481 Christian Mar 1985 A
4512341 Lester Apr 1985 A
4530464 Yamamoto et al. Jul 1985 A
4533082 Maehara et al. Aug 1985 A
4539575 Nilsson Sep 1985 A
4544933 Heinzl Oct 1985 A
4546361 Brescia et al. Oct 1985 A
4550325 Viola Oct 1985 A
4566452 Farr Jan 1986 A
4591883 Isayama May 1986 A
4593291 Howkins Jun 1986 A
4605167 Maehara Aug 1986 A
4613326 Szwarc Sep 1986 A
4620201 Heinzl et al. Oct 1986 A
4628890 Freeman Dec 1986 A
4632311 Nakane et al. Dec 1986 A
4658269 Rezanka Apr 1987 A
4659014 Soth et al. Apr 1987 A
4677975 Edgar et al. Jul 1987 A
4678680 Abowitz Jul 1987 A
4679551 Anthony Jul 1987 A
4681264 Johnson, Jr. Jul 1987 A
4693853 Falb et al. Sep 1987 A
4702418 Carter et al. Oct 1987 A
4722906 Guire Feb 1988 A
4753579 Murphy Jun 1988 A
4790479 Matsumoto et al. Dec 1988 A
4793339 Matsumoto et al. Dec 1988 A
4796807 Bendig et al. Jan 1989 A
4799622 Ishikawa et al. Jan 1989 A
4805609 Roberts et al. Feb 1989 A
4819629 Jonson Apr 1989 A
4819834 Thiel Apr 1989 A
4826080 Ganser May 1989 A
4826759 Guire et al. May 1989 A
4828886 Hieber May 1989 A
4843445 Stemme Jun 1989 A
4849303 Graham et al. Jul 1989 A
4850534 Takahashi et al. Jul 1989 A
4852563 Gross Aug 1989 A
4865006 Nogi et al. Sep 1989 A
4871489 Ketcham Oct 1989 A
4872553 Suzuki et al. Oct 1989 A
4877989 Drews et al. Oct 1989 A
4888516 Daeges et al. Dec 1989 A
4922901 Brooks et al. May 1990 A
4926915 Deussen et al. May 1990 A
4934358 Nilsson et al. Jun 1990 A
4951661 Sladek Aug 1990 A
4954225 Bakewell Sep 1990 A
4957239 Tempelman Sep 1990 A
4964521 Wieland et al. Oct 1990 A
D312209 Morrow et al. Nov 1990 S
4968299 Ahlstrand et al. Nov 1990 A
4971665 Sexton Nov 1990 A
4973493 Guire Nov 1990 A
4976259 Higson et al. Dec 1990 A
4979959 Guire Dec 1990 A
4994043 Ysebaert Feb 1991 A
5002048 Makiej, Jr. Mar 1991 A
5002582 Guire et al. Mar 1991 A
5007419 Weinstein et al. Apr 1991 A
5016024 Lam et al. May 1991 A
5021701 Takahashi et al. Jun 1991 A
5022587 Hochstein Jun 1991 A
5024733 Abys et al. Jun 1991 A
5046627 Hansen Sep 1991 A
5062419 Rider Nov 1991 A
5063396 Shiokawa et al. Nov 1991 A
5063922 Hakkinen Nov 1991 A
5073484 Swanson et al. Dec 1991 A
5076266 Babaev Dec 1991 A
5080093 Raabe et al. Jan 1992 A
5080649 Vetter Jan 1992 A
5086765 Levine Feb 1992 A
5086785 Gentile et al. Feb 1992 A
5115803 Sioutas May 1992 A
5115971 Greenspan et al. May 1992 A
D327008 Friedman Jun 1992 S
5122116 Kriesel et al. Jun 1992 A
5129579 Conte Jul 1992 A
5134993 Van Der Linden et al. Aug 1992 A
5139016 Waser Aug 1992 A
5140740 Weigelt Aug 1992 A
5147073 Cater Sep 1992 A
5152456 Ross et al. Oct 1992 A
5157372 Langford Oct 1992 A
5164740 Ivri Nov 1992 A
5169029 Behar et al. Dec 1992 A
5170782 Kocinski Dec 1992 A
5180482 Abys et al. Jan 1993 A
5186164 Raghuprasad Feb 1993 A
5186166 Riggs et al. Feb 1993 A
5198157 Bechet Mar 1993 A
5201322 Henry et al. Apr 1993 A
5207623 Tkatchouk et al. May 1993 A
5213860 Laing May 1993 A
5217148 Cater Jun 1993 A
5217492 Guire et al. Jun 1993 A
5227168 Chvapil Jul 1993 A
5230496 Shillington et al. Jul 1993 A
5245995 Sullivan et al. Sep 1993 A
5248087 Dressler Sep 1993 A
5258041 Guire et al. Nov 1993 A
5261601 Ross et al. Nov 1993 A
5263992 Guire Nov 1993 A
5279568 Cater Jan 1994 A
5297734 Toda Mar 1994 A
5299739 Takahashi et al. Apr 1994 A
5303854 Cater Apr 1994 A
5309135 Langford May 1994 A
5312281 Takahashi et al. May 1994 A
5313955 Rodder May 1994 A
5319971 Osswald et al. Jun 1994 A
5320603 Vetter et al. Jun 1994 A
5322057 Raabe et al. Jun 1994 A
5342011 Short Aug 1994 A
5342504 Hirano et al. Aug 1994 A
5347998 Hodson et al. Sep 1994 A
5348189 Cater Sep 1994 A
5350116 Cater Sep 1994 A
5355872 Riggs et al. Oct 1994 A
5357946 Kee et al. Oct 1994 A
5372126 Blau Dec 1994 A
5383906 Burchett et al. Jan 1995 A
5388571 Roberts et al. Feb 1995 A
5392768 Johansson et al. Feb 1995 A
5396883 Knupp et al. Mar 1995 A
5414075 Swan et al. May 1995 A
5415161 Ryder May 1995 A
5419315 Rubsamen May 1995 A
5426458 Wenzel et al. Jun 1995 A
5431155 Marelli Jul 1995 A
5435282 Haber et al. Jul 1995 A
5435297 Klein Jul 1995 A
5437267 Weinstein et al. Aug 1995 A
5445141 Kee et al. Aug 1995 A
D362390 Weiler Sep 1995 S
5449502 Igusa et al. Sep 1995 A
5452711 Gault Sep 1995 A
5458135 Patton et al. Oct 1995 A
5458289 Cater Oct 1995 A
5474059 Cooper Dec 1995 A
5477992 Jinks et al. Dec 1995 A
5479920 Piper et al. Jan 1996 A
5485850 Dietz Jan 1996 A
5487378 Robertson et al. Jan 1996 A
5489266 Grimard Feb 1996 A
5497944 Weston et al. Mar 1996 A
D369212 Snell Apr 1996 S
5511726 Greenspan et al. Apr 1996 A
5512329 Guire et al. Apr 1996 A
5512474 Clapper et al. Apr 1996 A
5515841 Robertson et al. May 1996 A
5515842 Ramseyer et al. May 1996 A
5516043 Manna et al. May 1996 A
5518179 Humberstone et al. May 1996 A
5529055 Gueret Jun 1996 A
5533497 Ryder Jul 1996 A
5537997 Mechlenburg et al. Jul 1996 A
5542410 Goodman et al. Aug 1996 A
5549102 Lintl et al. Aug 1996 A
5560837 Trueba Oct 1996 A
5563056 Swan et al. Oct 1996 A
D375352 Bologna Nov 1996 S
5570682 Johnson Nov 1996 A
5579757 McMahon et al. Dec 1996 A
5582330 Iba Dec 1996 A
5584285 Salter et al. Dec 1996 A
5586550 Ivri et al. Dec 1996 A
5588166 Burnett Dec 1996 A
5601077 Imbert Feb 1997 A
5609798 Liu et al. Mar 1997 A
5632878 Kitano May 1997 A
5635096 Singer et al. Jun 1997 A
5637460 Swan et al. Jun 1997 A
5647349 Ohki et al. Jul 1997 A
5653227 Barnes et al. Aug 1997 A
5654007 Johnson et al. Aug 1997 A
5654162 Guire et al. Aug 1997 A
5654460 Rong Aug 1997 A
5657926 Toda Aug 1997 A
5660166 Lloyd Aug 1997 A
5664557 Makiej, Jr. Sep 1997 A
5664706 Cater Sep 1997 A
5665068 Takamura Sep 1997 A
5666946 Langenback Sep 1997 A
5670999 Takeuchi et al. Sep 1997 A
5685491 Marks et al. Nov 1997 A
5692644 Gueret Dec 1997 A
5694923 Hete et al. Dec 1997 A
5707818 Chudzik et al. Jan 1998 A
5709202 Lloyd et al. Jan 1998 A
5714360 Swan et al. Feb 1998 A
5714551 Bezwada et al. Feb 1998 A
5718222 Lloyd et al. Feb 1998 A
D392184 Weiler Mar 1998 S
5724957 Rubsamen et al. Mar 1998 A
5744515 Clapper Apr 1998 A
5752502 King May 1998 A
5755218 Johansson et al. May 1998 A
5758637 Ivri et al. Jun 1998 A
5775506 Grabenkort Jul 1998 A
5788665 Sekins Aug 1998 A
5788819 Onishi et al. Aug 1998 A
5790151 Mills Aug 1998 A
5810004 Ohki et al. Sep 1998 A
5819730 Stone et al. Oct 1998 A
5823179 Grychowski et al. Oct 1998 A
5823428 Humberstone et al. Oct 1998 A
5829723 Brunner et al. Nov 1998 A
5836515 Fonzes Nov 1998 A
5839617 Cater et al. Nov 1998 A
5842468 Denyer et al. Dec 1998 A
5862802 Bird Jan 1999 A
5865171 Cinquin Feb 1999 A
5878900 Hansen Mar 1999 A
5893515 Hahn et al. Apr 1999 A
5894841 Voges Apr 1999 A
5897008 Hansen Apr 1999 A
5910698 Yagi Jun 1999 A
5915377 Coffee Jun 1999 A
5918637 Fleischman Jul 1999 A
5925019 Ljungquist Jul 1999 A
5938117 Ivri Aug 1999 A
5950619 Van Der Linden et al. Sep 1999 A
5954268 Joshi et al. Sep 1999 A
5960792 Lloyd et al. Oct 1999 A
5964417 Amann et al. Oct 1999 A
5970974 Van Der Linden et al. Oct 1999 A
5976344 Abys et al. Nov 1999 A
5993805 Sutton et al. Nov 1999 A
6000396 Melker et al. Dec 1999 A
6007518 Kriesel et al. Dec 1999 A
6012450 Rubsamen Jan 2000 A
6014970 Ivri et al. Jan 2000 A
6026809 Abrams et al. Feb 2000 A
6029666 Aloy et al. Feb 2000 A
6032665 Psaros Mar 2000 A
6037587 Dowell et al. Mar 2000 A
6039696 Bell Mar 2000 A
6045215 Coulman Apr 2000 A
6045874 Himes Apr 2000 A
6047818 Warby et al. Apr 2000 A
6055869 Stemme et al. May 2000 A
6060128 Kim et al. May 2000 A
6062212 Davison et al. May 2000 A
6068148 Weiler May 2000 A
6085740 Ivri et al. Jul 2000 A
6096011 Trombley, III et al. Aug 2000 A
6105877 Coffee Aug 2000 A
6106504 Urrutia Aug 2000 A
6116234 Genova et al. Sep 2000 A
6123413 Agarwal et al. Sep 2000 A
6139674 Markham et al. Oct 2000 A
6142146 Abrams et al. Nov 2000 A
6145963 Pidwerbecki et al. Nov 2000 A
6146915 Pidwerbecki et al. Nov 2000 A
6152130 Abrams et al. Nov 2000 A
6155676 Etheridge et al. Dec 2000 A
6158431 Poole Dec 2000 A
6161536 Redmon et al. Dec 2000 A
6163588 Matsumoto et al. Dec 2000 A
6182662 McGhee Feb 2001 B1
6186141 Pike et al. Feb 2001 B1
6196218 Voges Mar 2001 B1
6196219 Hess et al. Mar 2001 B1
6205999 Ivri et al. Mar 2001 B1
6216916 Maddox et al. Apr 2001 B1
6223746 Jewett et al. May 2001 B1
6235177 Borland et al. May 2001 B1
6254219 Agarwal et al. Jul 2001 B1
6269810 Brooker et al. Aug 2001 B1
6270473 Schwebel Aug 2001 B1
6273342 Terada et al. Aug 2001 B1
6318640 Coffee Nov 2001 B1
6328030 Kidwell et al. Dec 2001 B1
6328033 Avrahami Dec 2001 B1
6341732 Martin et al. Jan 2002 B1
6358058 Strupat et al. Mar 2002 B1
6394363 Arnott et al. May 2002 B1
6402046 Loser Jun 2002 B1
6405934 Hess et al. Jun 2002 B1
6427682 Klimowicz et al. Aug 2002 B1
6443146 Voges Sep 2002 B1
6443366 Hirota et al. Sep 2002 B1
6467476 Ivri et al. Oct 2002 B1
6467477 Frank et al. Oct 2002 B1
6530370 Heinonen Mar 2003 B1
6540153 Ivri Apr 2003 B1
6540154 Ivri et al. Apr 2003 B1
6543443 Klimowicz et al. Apr 2003 B1
6546927 Litherland et al. Apr 2003 B2
6550472 Litherland et al. Apr 2003 B2
6554201 Klimowicz et al. Apr 2003 B2
6581595 Murdock et al. Jun 2003 B1
6615824 Power Sep 2003 B2
6629646 Ivri Oct 2003 B1
6640804 Ivri Nov 2003 B2
6651650 Yamamoto et al. Nov 2003 B1
6688304 Gonda et al. Feb 2004 B2
6705315 Sullivan et al. Mar 2004 B2
6705316 Blythe et al. Mar 2004 B2
6725858 Loescher Apr 2004 B2
6732944 Litherland et al. May 2004 B2
6745768 Colla et al. Jun 2004 B2
6745770 McAuliffe et al. Jun 2004 B2
6755189 Ivri et al. Jun 2004 B2
6769626 Haveri Aug 2004 B1
6782886 Narayan et al. Aug 2004 B2
6805118 Brooker et al. Oct 2004 B2
6810876 Berthon-Jones Nov 2004 B2
6814071 Klimowicz et al. Nov 2004 B2
6817361 Berthon-Jones et al. Nov 2004 B2
6840240 Berthon-Jones et al. Jan 2005 B1
6845770 Klimowicz et al. Jan 2005 B2
6851626 Patel et al. Feb 2005 B2
6860268 Bohn et al. Mar 2005 B2
6904906 Salter et al. Jun 2005 B2
7152597 Bathe Dec 2006 B2
20010013554 Borland et al. Aug 2001 A1
20010015737 Truninger et al. Aug 2001 A1
20020011247 Ivri et al. Jan 2002 A1
20020023650 Gunaratnam et al. Feb 2002 A1
20020033178 Farrell et al. Mar 2002 A1
20020036601 Puckeridge et al. Mar 2002 A1
20020078958 Stenzler Jun 2002 A1
20020104530 Ivri et al. Aug 2002 A1
20020121274 Borland et al. Sep 2002 A1
20020134372 Loeffler et al. Sep 2002 A1
20020134374 Loeffler et al. Sep 2002 A1
20020134375 Loeffler et al. Sep 2002 A1
20020134377 Loeffler et al. Sep 2002 A1
20020162551 Litherland Nov 2002 A1
20020195107 Smaldone Dec 2002 A1
20030140921 Smith et al. Jul 2003 A1
20030145859 Bohn et al. Aug 2003 A1
20030150445 Power et al. Aug 2003 A1
20030150446 Patel et al. Aug 2003 A1
20030226906 Ivri Dec 2003 A1
20040000598 Ivri Jan 2004 A1
20040004133 Ivri et al. Jan 2004 A1
20040011358 Smaldone et al. Jan 2004 A1
20040035413 Smaldone et al. Feb 2004 A1
20040035490 Power Feb 2004 A1
20040050947 Power et al. Mar 2004 A1
20040139963 Ivri et al. Jul 2004 A1
20040139968 Loeffler et al. Jul 2004 A1
20040188534 Litherland et al. Sep 2004 A1
20040194783 McAuliffe et al. Oct 2004 A1
20040226561 Colla et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20040256488 Loeffler et al. Dec 2004 A1
20050011514 Power et al. Jan 2005 A1
20050039746 Grychowski et al. Feb 2005 A1
20050139211 Alston et al. Jun 2005 A1
20050150496 Smaldone Jul 2005 A1
20050211245 Smaldone et al. Sep 2005 A1
20050211253 Smaldone et al. Sep 2005 A1
20050220763 Condos et al. Oct 2005 A1
20050235987 Smaldone et al. Oct 2005 A1
20050284469 Tobia et al. Dec 2005 A1
Foreign Referenced Citations (48)
Number Date Country
477 885 Sep 1969 CH
555 681 Nov 1974 CH
11 03 522 Mar 1961 DE
3513628 Oct 1986 DE
0 049 636 Apr 1982 EP
0 103 161 Mar 1984 EP
0 134 847 Mar 1985 EP
0 178 925 Apr 1986 EP
0 387 222 Sep 1990 EP
0 432 992 Jun 1991 EP
0 476 991 Mar 1992 EP
0 480 615 Apr 1992 EP
0 510 648 Oct 1992 EP
0 516 565 Dec 1992 EP
0 542 723 May 1993 EP
0 933 138 Apr 1999 EP
0 923 957 Jun 1999 EP
1 142 600 Oct 2001 EP
2865801 Aug 2005 EP
973 458 Oct 1964 GB
1 454 597 Nov 1976 GB
2 073 616 Oct 1981 GB
2 101 500 Jan 1983 GB
2 177 623 Jan 1987 GB
2 240 494 Jul 1991 GB
2 272 389 May 1994 GB
57-023852 Feb 1982 JP
57-105608 Jul 1982 JP
58-061857 Apr 1983 JP
58-139757 Aug 1983 JP
59-142163 Aug 1984 JP
60-004714 Jan 1985 JP
61-008357 Jan 1986 JP
61-215059 Sep 1986 JP
02-135169 May 1990 JP
02-189161 Jul 1990 JP
60-07721 Jan 1994 JP
490474 Mar 1976 SU
WO8203548 Oct 1982 WO
WO9207600 May 1992 WO
WO9211050 Sep 1992 WO
WO9217231 Oct 1992 WO
WO9301404 Jan 1993 WO
WO9310910 Jun 1993 WO
WO9409912 May 1994 WO
WO9609229 Mar 1996 WO
WO9917888 Apr 1999 WO
WO 0037132 Jun 2000 WO
Related Publications (1)
Number Date Country
20050229929 A1 Oct 2005 US
Continuation in Parts (2)
Number Date Country
Parent 10883115 Jun 2004 US
Child 10957321 US
Parent 10828765 Apr 2004 US
Child 10883115 US