The present disclosure relates to an aerosol delivery device, and more particularly to providing illumination at an outer surface of the aerosol delivery device. The aerosol delivery device may be configured to heat an aerosol precursor, which may be made or derived from tobacco or otherwise incorporate tobacco, to form an inhalable substance for human consumption.
Many smoking devices have been proposed through the years as improvements upon, or alternatives to, smoking products that require combusting tobacco for use. Many of those devices purportedly have been designed to provide the sensations associated with cigarette, cigar, or pipe smoking, but without delivering considerable quantities of incomplete combustion and pyrolysis products that result from the burning of tobacco. To this end, there have been proposed numerous smoking products, flavor generators, and medicinal inhalers that utilize electrical energy to vaporize or heat a volatile material, or attempt to provide the sensations of cigarette, cigar, or pipe smoking without burning tobacco to a significant degree. See, for example, the various alternative smoking articles, aerosol delivery devices and heat generating sources set forth in the background art described in U.S. Pat. No. 7,726,320 to Robinson et al., U.S. patent application Ser. No. 13/432,406, filed Mar. 28, 2012, U.S. patent application Ser. No. 13/536,438, filed Jun. 28, 2012, U.S. patent application Ser. No. 13/602,871, filed Sep. 4, 2012, and U.S. patent application Ser. No. 13/647,000, filed Oct. 8, 2012, which are incorporated herein by reference.
Certain tobacco products that have employed electrical energy to produce heat for smoke or aerosol formation, and in particular, certain products that have been referred to as electronic cigarette products, have been commercially available throughout the world. Representative products that resemble many of the attributes of traditional types of cigarettes, cigars or pipes have been marketed as ACCORD® by Philip Morris Incorporated; ALPHA™, JOYE 510™ and M4™ by InnoVapor LLC; CIRRUS™ and FLING™ by White Cloud Cigarettes; COHITA™, COLIBRI™, ELITE CLASSIC™, MAGNUM™, PHANTOM™ and SENSE™ by Epuffer® International Inc.; DUOPRO™, STORM™ and VAPORKING® by Electronic Cigarettes, Inc.; EGAR™ by Egar Australia; eGo-C™ and eGo-T™ by Joyetech; ELUSION™ by Elusion UK Ltd; EONSMOKE® by Eonsmoke LLC; GREEN SMOKE® by Green Smoke Inc. USA; GREENARETTE™ by Greenarette LLC; HALLIGAN™, HENDU™, JET™, MAXXQ™, PINK™ and PITBULL™ by Smoke Stik®; HEATBAR™ by Philip Morris International, Inc.; HYDRO IMPERIAL™ and LXE™ from Crown7; LOGIC™ and THE CUBAN™ by LOGIC Technology; LUCI® by Luciano Smokes Inc.; METRO® by Nicotek, LLC; NJOY® and ONEJOY™ by Sottera, Inc.; NO. 7™ by SS Choice LLC; PREMIUM ELECTRONIC CIGARETTE™ by PremiumEstore LLC; RAPP E-MYSTICK™ by Ruyan America, Inc.; RED DRAGON™ by Red Dragon Products, LLC; RUYAN® by Ruyan Group (Holdings) Ltd.; SMART SMOKER® by The Smart Smoking Electronic Cigarette Company Ltd.; SMOKE ASSIST® by Coastline Products LLC; SMOKING EVERYWHERE® by Smoking Everywhere, Inc.; V2CIGS™ by VMR Products LLC; VAPOR NINE™ by VaporNine LLC; VAPOR4LIFE® by Vapor 4 Life, Inc.; VEPPO™ by E-CigaretteDirect, LLC and VUSE® by R. J. Reynolds Vapor Company. Yet other electrically powered aerosol delivery devices, and in particular those devices that have been characterized as so-called electronic cigarettes, have been marketed under the tradenames BLU™; COOLER VISIONS™; DIRECT E-CIG™; DRAGONFLY™; EMIST™; EVERSMOKE™; GAMUCCI®; HYBRID FLAME™; KNIGHT STICKS™; ROYAL BLUES™; SMOKETIP® and SOUTH BEACH SMOKE™.
However, it may be desirable to distinguish aerosol delivery devices from that of competing products, for example, by providing aerosol delivery devices with distinguishing visual characteristics. Further, it may be desirable to configure the aerosol delivery devices to provide visual feedback or information relating to use thereof.
In one aspect an aerosol delivery device is provided. The aerosol delivery device may include one or more components configured to atomize an aerosol precursor composition. The aerosol delivery device may be an electronic smoking article configured to convert electrical energy into heat to atomize the aerosol precursor composition. The aerosol delivery device may also include an outer body at least partially enclosing the components. Further, the aerosol delivery device may include one or more illumination sources configured to output an electromagnetic radiation. The aerosol delivery device may additionally include a waveguide configured to receive the electromagnetic radiation from the one or more illumination sources and provide illumination at an outer surface of the outer body.
In some embodiments the outer body may comprise the waveguide. The waveguide may include a reflective layer configured to reflect an ambient light. In another embodiment the waveguide may be received within the outer body. In this regard, the outer body may define one or more apertures extending therethrough to the outer surface.
In some embodiments the waveguide may include a roughened portion configured to direct the electromagnetic radiation toward the outer surface. The waveguide may include an energy conversion material configured to receive the electromagnetic radiation and emit a secondary electromagnetic radiation defining a wavelength differing from a wavelength of the electromagnetic radiation. The waveguide may include a plurality of sections, each of the sections having one of the illumination sources associated therewith.
In some embodiments the outer body is the outer body of a control body and the components include an electrical power source and a control component, the control component being configured to selectively direct an atomizer to atomize an aerosol precursor. In another embodiment the outer body is the outer body of a cartridge and the components include a reservoir substrate configured to hold an aerosol precursor composition and an atomizer configured to produce heat. Further, at least one of the waveguide and the one or more illumination sources may be configured to adjust illumination of the outer surface of the outer body based on at least one of an electrical power source level, an aerosol precursor level, a temperature, an ambient light level, and a detected draw.
In an additional aspect, a method for illuminating an aerosol delivery device is provided. The method may include providing an aerosol delivery device. The aerosol delivery device may include one or more components configured to atomize an aerosol precursor composition, an outer body at least partially enclosing the components, one or more illumination sources, and a waveguide. The method may further include outputting an electromagnetic radiation with the one or more illumination sources. Also, the method may include directing the electromagnetic radiation through the waveguide. The method may additionally include providing illumination at an outer surface of the outer body.
In some embodiments the outer body is defined by the waveguide and the method may additionally include reflecting an ambient light with a reflective layer of the waveguide. In another embodiment the waveguide may be received within the outer body and providing illumination at the outer surface of the body may include directing the electromagnetic radiation toward one or more apertures defined in the outer body.
In some embodiments directing the electromagnetic radiation through the waveguide may include directing the electromagnetic radiation to a roughened portion of the waveguide. Further, directing the electromagnetic radiation through the waveguide may include directing the electromagnetic radiation to an energy conversion material configured to emit a secondary electromagnetic radiation defining a wavelength differing from a wavelength of the electromagnetic radiation. Additionally, outputting the electromagnetic radiation may include selectively outputting the electromagnetic radiation at a plurality of sections of the waveguide from a respective one of the illumination sources.
In some embodiments providing illumination at the outer surface of the outer body may include providing illumination at the outer surface of a control body, wherein the components comprise an electrical power source and a control component, the control component being configured to selectively direct an atomizer to atomize an aerosol precursor. In another embodiment providing illumination at the outer surface of the outer body may include providing illumination at the outer surface of a cartridge, wherein the components comprise a reservoir substrate configured to hold an aerosol precursor composition and an atomizer configured to produce heat. The method may further comprise adjusting illumination of the outer surface of the outer body based on at least one of an electrical power source level, an aerosol precursor level, a temperature, an ambient light level, and a detected draw.
Having thus described the disclosure in the foregoing general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present disclosure will now be described more fully hereinafter with reference to exemplary embodiments thereof. These exemplary embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification, and in the appended claims, the singular forms “a”, “an”, “the”, include plural variations unless the context clearly dictates otherwise.
The present disclosure provides descriptions of mechanisms, components, features, and methods configured to dynamically change a visual characteristic in response to feedback. While the mechanisms are generally described herein in terms of embodiments associated with aerosol delivery devices such as so-called “e-cigarettes,” it should be understood that the mechanisms, components, features, and methods may be embodied in many different forms and associated with a variety of articles. For example, the description provided herein may be employed in conjunction with embodiments of traditional smoking articles (e.g., cigarettes, cigars, pipes, etc.), heat-not-burn cigarettes, and related packaging for any of the products disclosed herein. Accordingly, it should be understood that the description of the mechanisms, components, features, and methods configured to provide for illumination disclosed herein are discussed in terms of embodiments relating to aerosol delivery mechanisms by way of example only, and may be embodied and used in various other products and methods.
In this regard, the present disclosure provides descriptions of aerosol delivery devices that use electrical energy to heat a material (preferably without combusting the material to any significant degree) to form an inhalable substance; such articles most preferably being sufficiently compact to be considered “hand-held” devices. An aerosol delivery device may provide some or all of the sensations (e.g., inhalation and exhalation rituals, types of tastes or flavors, organoleptic effects, physical feel, use rituals, visual cues such as those provided by visible aerosol, and the like) of smoking a cigarette, cigar, or pipe, without any substantial degree of combustion of any component of that article or device. The aerosol delivery device may not produce smoke in the sense of the aerosol resulting from by-products of combustion or pyrolysis of tobacco, but rather, that the article or device may yield vapors (including vapors within aerosols that can be considered to be visible aerosols that might be considered to be described as smoke-like) resulting from volatilization or vaporization of certain components of the article or device. In highly preferred embodiments, aerosol delivery devices may incorporate tobacco and/or components derived from tobacco.
Aerosol delivery devices of the present disclosure also can be characterized as being vapor-producing articles or medicament delivery articles. Thus, such articles or devices can be adapted so as to provide one or more substances (e.g., flavors and/or pharmaceutical active ingredients) in an inhalable form or state. For example, inhalable substances can be substantially in the form of a vapor (i.e., a substance that is in the gas phase at a temperature lower than its critical point). Alternatively, inhalable substances can be in the form of an aerosol (i.e., a suspension of fine solid particles or liquid droplets in a gas). For purposes of simplicity, the term “aerosol” as used herein is meant to include vapors, gases and aerosols of a form or type suitable for human inhalation, whether or not visible, and whether or not of a form that might be considered to be smoke-like.
In use, aerosol delivery devices of the present disclosure may be subjected to many of the physical actions employed by an individual in using a traditional type of smoking article (e.g., a cigarette, cigar or pipe that is employed by lighting and inhaling tobacco). For example, the user of an aerosol delivery device of the present disclosure can hold that article much like a traditional type of smoking article, draw on one end of that article for inhalation of aerosol produced by that article, take puffs at selected intervals of time, etc.
Aerosol delivery devices of the present disclosure generally include a number of components provided within an outer body or shell. The overall design of the outer body or shell can vary, and the format or configuration of the outer body that can define the overall size and shape of the aerosol delivery device can vary. Typically, an elongated body resembling the shape of a cigarette or cigar can be a formed from a single, unitary shell; or the elongated body can be formed of two or more separable pieces. For example, an aerosol delivery device can comprise an elongated shell or body that can be substantially tubular in shape and, as such, resemble the shape of a conventional cigarette or cigar. In one embodiment, all of the components of the aerosol delivery device are contained within one outer body or shell. Alternatively, an aerosol delivery device can comprise two or more shells that are joined and are separable. For example, an aerosol delivery device can possess at one end a control body comprising an outer body or shell containing one or more reusable components (e.g., a rechargeable battery and various electronics for controlling the operation of that article), and at the other end and removably attached thereto an outer body or shell containing a disposable portion (e.g., a disposable flavor-containing cartridge). More specific formats, configurations and arrangements of components within the single shell type of unit or within a multi-piece separable shell type of unit will be evident in light of the further disclosure provided herein. Additionally, various aerosol delivery device designs and component arrangements can be appreciated upon consideration of the commercially available electronic aerosol delivery devices, such as those representative products listed in the background art section of the present disclosure.
Aerosol delivery devices of the present disclosure most preferably comprise some combination of a power source (i.e., an electrical power source), at least one control component (e.g., means for actuating, controlling, regulating and ceasing power for heat generation, such as by controlling electrical current flow from the power source to other components of the article), a heater or heat generation component (e.g., an electrical resistance heating element or component commonly referred to as an “atomizer”), and an aerosol precursor composition (e.g., commonly a liquid capable of yielding an aerosol upon application of sufficient heat, such as ingredients commonly referred to as “smoke juice,” “e-liquid” and “e-juice”), and a mouthend region or tip for allowing draw upon the aerosol delivery device for aerosol inhalation (e.g., a defined air flow path through the article such that aerosol generated can be withdrawn therefrom upon draw). Exemplary formulations for aerosol precursor materials that may be used according to the present disclosure are described in U.S. Pat. Pub. No. 2013/0008457 to Zheng et al., the disclosure of which is incorporated herein by reference in its entirety.
Alignment of the components within the aerosol delivery device can vary. In specific embodiments, the aerosol precursor composition can be located near an end of the article (e.g., within a cartridge, which in certain circumstances can be replaceable and disposable), which may be proximal to the mouth of a user so as to maximize aerosol delivery to the user. Other configurations, however, are not excluded. Generally, the heating element can be positioned sufficiently near the aerosol precursor composition so that heat from the heating element can volatilize the aerosol precursor (as well as one or more flavorants, medicaments, or the like that may likewise be provided for delivery to a user) and form an aerosol for delivery to the user. When the heating element heats the aerosol precursor composition, an aerosol is formed, released, or generated in a physical form suitable for inhalation by a consumer. It should be noted that the foregoing terms are meant to be interchangeable such that reference to release, releasing, releases, or released includes form or generate, forming or generating, forms or generates, and formed or generated. Specifically, an inhalable substance is released in the form of a vapor or aerosol or mixture thereof. Additionally, the selection of various aerosol delivery device components can be appreciated upon consideration of the commercially available electronic aerosol delivery devices, such as those representative products listed in the background art section of the present disclosure.
An aerosol delivery device incorporates a battery or other electrical power source to provide current flow sufficient to provide various functionalities to the article, such as resistive heating, powering of control systems, powering of indicators, and the like. The power source can take on various embodiments. Preferably, the power source is able to deliver sufficient power to rapidly heat the heating member to provide for aerosol formation and power the article through use for the desired duration of time. The power source preferably is sized to fit conveniently within the aerosol delivery device so that the aerosol delivery device can be easily handled; and additionally, a preferred power source is of a sufficiently light weight to not detract from a desirable smoking experience.
One example embodiment of an aerosol delivery device 100 is provided in
In specific embodiments, one or both of the control body 102 and the cartridge 104 may be referred to as being disposable or as being reusable. For example, the control body may have a replaceable battery or a rechargeable battery and thus may be combined with any type of recharging technology, including connection to a typical electrical outlet, connection to a car charger (i.e., cigarette lighter receptacle), and connection to a computer, such as through a universal serial bus (USB) cable. Further, in some embodiments the cartridge may comprise a single-use cartridge, as disclosed in U.S. patent application Ser. No. 13/603,612, filed Sep. 5, 2012, which is incorporated herein by reference in its entirety.
In the exemplified embodiment, the control body 102 includes a control component 106, a flow sensor 108, and a battery 110, which can be variably aligned, and can include a plurality of indicators 112 at a distal end 114 of an outer body 116. The indicators 112 can be provided in varying numbers and can take on different shapes and can even be an opening in the body (such as for release of sound when such indicators are present).
An air intake 118 may be positioned in the outer body 116 of the control body 102. A coupler 120 also is included at the proximal attachment end 122 of the control body 102 and may extend into a control body projection 124 to allow for ease of electrical connection with an atomizer or a component thereof, such as a resistive heating element (described below) when the cartridge 104 is attached to the control body. Although the air intake 118 is illustrated as being provided in the outer body 116, in another embodiment the air intake may be provided in a coupler as described, for example, in U.S. patent application Ser. No. 13/841,233; Filed Mar. 15, 2013.
The cartridge 104 includes an outer body 126 with a mouth opening 128 at a mouthend 130 thereof to allow passage of air and entrained vapor (i.e., the components of the aerosol precursor composition in an inhalable form) from the cartridge to a consumer during draw on the aerosol delivery device 100. The aerosol delivery device 100 may be substantially rod-like or substantially tubular shaped or substantially cylindrically shaped in some embodiments.
The cartridge 104 further includes an atomizer 132 comprising a resistive heating element 134 (e.g., a wire coil) configured to produce heat and a liquid transport element 136 (e.g., a wick) configured to transport a liquid. Various embodiments of materials configured to produce heat when electrical current is applied therethrough may be employed to form the resistive heating element 134. Example materials from which the wire coil may be formed include Kanthal (FeCrAl), Nichrome, Molybdenum disilicide (MoSi2), molybdenum silicide (MoSi), Molybdenum disilicide doped with Aluminum (Mo(Si,Al)2), and ceramic (e.g., a positive temperature coefficient ceramic). Further to the above, representative heating elements and materials for use therein are described in U.S. Pat. No. 5,060,671 to Counts et al.; U.S. Pat. No. 5,093,894 to Deevi et al.; U.S. Pat. No. 5,224,498 to Deevi et al.; U.S. Pat. No. 5,228,460 to Sprinkel Jr., et al.; U.S. Pat. No. 5,322,075 to Deevi et al.; U.S. Pat. No. 5,353,813 to Deevi et al.; U.S. Pat. No. 5,468,936 to Deevi et al.; U.S. Pat. No. 5,498,850 to Das; U.S. Pat. No. 5,659,656 to Das; U.S. Pat. No. 5,498,855 to Deevi et al.; U.S. Pat. No. 5,530,225 to Hajaligol; U.S. Pat. No. 5,665,262 to Hajaligol; U.S. Pat. No. 5,573,692 to Das et al.; and U.S. Pat. No. 5,591,368 to Fleischhauer et al., the disclosures of which are incorporated herein by reference in their entireties.
Electrically conductive heater terminals 138 (e.g., positive and negative terminals) at the opposing ends of the heating element 134 are configured to direct current flow through the heating element and configured for attachment to the appropriate wiring or circuit (not illustrated) to form an electrical connection of the heating element with the battery 110 when the cartridge 104 is connected to the control body 102. Specifically, a plug 140 may be positioned at a distal attachment end 142 of the cartridge 104. When the cartridge 104 is connected to the control body 102, the plug 140 engages the coupler 120 to form an electrical connection such that current controllably flows from the battery 110, through the coupler and plug, and to the heating element 134. The outer body 126 of the cartridge 104 can continue across the distal attachment end 142 such that this end of the cartridge is substantially closed with the plug 140 protruding therefrom.
A reservoir may utilize a liquid transport element to transport an aerosol precursor composition to an aerosolization zone. One such example is shown in
It is understood that an aerosol delivery device that can be manufactured according to the present disclosure can encompass a variety of combinations of components useful in forming an electronic aerosol delivery device. Reference is made for example to the reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article disclosed in U.S. patent application Ser. No. 13/536,438, filed Jun. 28, 2012, which is incorporated herein by reference in its entirety. Further, U.S. patent application Ser. No. 13/602,871, filed Sep. 4, 2012, discloses an electronic smoking article including a microheater, and which is incorporated herein by reference in its entirety.
In another embodiment substantially the entirety of the cartridge may be formed from one or more carbon materials, which may provide advantages in terms of biodegradability and absence of wires. In this regard, the heating element may comprise a carbon foam, the reservoir may comprise carbonized fabric, and graphite may be employed to form an electrical connection with the battery and controller. Such carbon cartridge may be combined with one or more elements as described herein for providing illumination of the cartridge in some embodiments. An example embodiment of a carbon-based cartridge is provided in U.S. patent application Ser. No. 13/432,406; filed Mar. 28, 2012, which is incorporated herein by reference in its entirety.
In use, when a user draws on the article 100, the heating element 134 is activated (e.g., such as via a puff sensor), and the components for the aerosol precursor composition are vaporized in the aerosolization zone 146. Drawing upon the mouthend 130 of the article 100 causes ambient air to enter the air intake 118 and pass through the central opening in the coupler 120 and the central opening in the plug 140. In the cartridge 104, the drawn air passes through an air passage 148 in an air passage tube 150 and combines with the formed vapor in the aerosolization zone 146 to form an aerosol. The aerosol is whisked away from the aerosolization zone 146, passes through an air passage 152 in an air passage tube 154, and out the mouth opening 128 in the mouthend 130 of the article 100.
The various components of an aerosol delivery device according to the present disclosure can be chosen from components described in the art and commercially available. Examples of batteries that can be used according to the disclosure are described in U.S. Pat. App. Pub. No. 2010/0028766, the disclosure of which is incorporated herein by reference in its entirety.
An exemplary mechanism that can provide puff-actuation capability includes a Model 163PC01D36 silicon sensor, manufactured by the MicroSwitch division of Honeywell, Inc., Freeport, Ill. Further examples of demand-operated electrical switches that may be employed in a heating circuit according to the present disclosure are described in U.S. Pat. No. 4,735,217 to Gerth et al., which is incorporated herein by reference in its entirety. Further description of current regulating circuits and other control components, including microcontrollers that can be useful in the present aerosol delivery device, are provided in U.S. Pat. Nos. 4,922,901, 4,947,874, and 4,947,875, all to Brooks et al., U.S. Pat. No. 5,372,148 to McCafferty et al., U.S. Pat. No. 6,040,560 to Fleischhauer et al., and U.S. Pat. No. 7,040,314 to Nguyen et al., all of which are incorporated herein by reference in their entireties.
The aerosol precursor, which may also be referred to as an aerosol precursor composition or a vapor precursor composition, can comprise one or more different components. For example, the aerosol precursor can include a polyhydric alcohol (e.g., glycerin, propylene glycol, or a mixture thereof). Representative types of further aerosol precursor compositions are set forth in U.S. Pat. No. 4,793,365 to Sensabaugh, Jr. et al.; U.S. Pat. No. 5,101,839 to Jakob et al.; PCT WO 98/57556 to Biggs et al.; and Chemical and Biological Studies on New Cigarette Prototypes that Heat Instead of Burn Tobacco, R. J. Reynolds Tobacco Company Monograph (1988); the disclosures of which are incorporated herein by reference.
Still further components can be utilized in the aerosol delivery device of the present disclosure. For example, U.S. Pat. No. 5,154,192 to Sprinkel et al. discloses indicators for smoking articles; U.S. Pat. No. 5,261,424 to Sprinkel, Jr. discloses piezoelectric sensors that can be associated with the mouth-end of a device to detect user lip activity associated with taking a draw and then trigger heating; U.S. Pat. No. 5,372,148 to McCafferty et al. discloses a puff sensor for controlling energy flow into a heating load array in response to pressure drop through a mouthpiece; U.S. Pat. No. 5,967,148 to Harris et al. discloses receptacles in a smoking device that include an identifier that detects a non-uniformity in infrared transmissivity of an inserted component and a controller that executes a detection routine as the component is inserted into the receptacle; U.S. Pat. No. 6,040,560 to Fleischhauer et al. describes a defined executable power cycle with multiple differential phases; U.S. Pat. No. 5,934,289 to Watkins et al. discloses photonic-optronic components; U.S. Pat. No. 5,954,979 to Counts et al. discloses means for altering draw resistance through a smoking device; U.S. Pat. No. 6,803,545 to Blake et al. discloses specific battery configurations for use in smoking devices; U.S. Pat. No. 7,293,565 to Griffen et al. discloses various charging systems for use with smoking devices; U.S. Pat. No. 8,402,976 to Fernando et al. discloses computer interfacing means for smoking devices to facilitate charging and allow computer control of the device; U.S. Pat. App. Pub. No. 2010/0163063 by Fernando et al. discloses identification systems for smoking devices; and WO 2010/003480 by Flick discloses a fluid flow sensing system indicative of a puff in an aerosol generating system; all of the foregoing disclosures being incorporated herein by reference in their entireties. Further examples of components related to electronic aerosol delivery articles and disclosing materials or components that may be used in the present article include U.S. Pat. No. 4,735,217 to Gerth et al.; U.S. Pat. No. 5,249,586 to Morgan et al.; U.S. Pat. No. 5,666,977 to Higgins et al.; U.S. Pat. No. 6,053,176 to Adams et al.; U.S. Pat. No. 6,164,287 to White; U.S. Pat. No. 6,196,218 to Voges; U.S. Pat. No. 6,810,883 to Felter et al.; U.S. Pat. No. 6,854,461 to Nichols; U.S. Pat. No. 7,832,410 to Hon; U.S. Pat. No. 7,513,253 to Kobayashi; U.S. Pat. No. 7,896,006 to Hamano; U.S. Pat. No. 6,772,756 to Shayan; U.S. Pat. Nos. 8,156,944 and 8,375,957 to Hon; U.S. Pat. App. Pub. Nos. 2006/0196518 and 2009/0188490 to Hon; U.S. Pat. App. Pub. No. 2009/0272379 to Thorens et al.; U.S. Pat. App. Pub. Nos. 2009/0260641 and 2009/0260642 to Monsees et al.; U.S. Pat. App. Pub. Nos. 2008/0149118 and 2010/0024834 to Oglesby et al.; U.S. Pat. App. Pub. No. 2010/0307518 to Wang; WO 2010/091593 to Hon; WO 2013/089551 to Foo; and U.S. patent application Ser. No. 13/841,233, filed Mar. 15, 2013, each of which is incorporated herein by reference in its entirety. A variety of the materials disclosed by the foregoing documents may be incorporated into the present devices in various embodiments, and all of the foregoing disclosures are incorporated herein by reference in their entireties.
The cartridge 400 is illustrated in an exploded configuration in
Additionally, in some embodiments, the heating element 440 may comprise a wire defining a plurality of coils wound about the liquid transport element 438. In some embodiments the heating element 440 may be formed by winding the wire about the liquid transport element 438 as described in U.S. patent application Ser. No. 13/708,381, filed Dec. 7, 2012, which is incorporated herein by reference in its entirety. Further, in some embodiments the wire may define a variable coil spacing, as described in U.S. patent application Ser. No. 13/827,994, filed Mar. 14, 2013, which is incorporated herein by reference in its entirety. However, various other embodiments of methods may be employed to form the heating element 440, and various other embodiments of heating elements may be employed in the atomizer 412. For example, a stamped heater element may be employed in the atomizer, as described in U.S. patent application Ser. No. 13/842,125, filed Mar. 15, 2013, which is incorporated herein by reference in its entirety. Further, the reservoir substrate 414 may be configured to hold an aerosol precursor composition. The aerosol precursor composition may comprise a variety of components including, by way of example, glycerin, nicotine, tobacco, tobacco extract, and/or flavorants. Various components that may be included in the aerosol precursor composition are described in U.S. Pat. No. 7,726,320 to Robinson et al., which is incorporated herein by reference. Various other details with respect to embodiments of cartridges including anti-rotation connectors are provided in U.S. patent application Ser. No. 13/840,264, filed Mar. 15, 2013, which is incorporated herein by reference in its entirety. Further, various examples of electronic control components and functions performed thereby are described in U.S. patent application Ser. No. 13/647,000, filed Oct. 8, 2012, which is incorporated herein by reference in its entirety.
Various other details with respect to the components that may be included in the cartridge 400, are provided, for example, in U.S. patent application Ser. No. 13/840,264, filed Mar. 15, 2013, which is incorporated herein by reference in its entirety. In this regard,
Note that the various embodiments of components described above in the cited references and/or included in commercially available aerosol delivery devices may be employed in embodiments of the cartridges described herein. Note further that some of the portions of the cartridge 400 illustrated in
The coupler 202 may be configured to couple to the cartridge 400. The coupler 202 may include control body terminals 218 extending therefrom which may extend through the sealing member 204 and engage one or both of the control component 208 and the electrical power source 212. The control component 208 may be a printed circuit board including a microcontroller. The flow sensor 220 may be coupled to the control component 208 or may be a separate element. The LED component 222 can be in communication with the control component 208 through the connector circuit 224 and illuminate, for example, during a user drawing on a cartridge coupled to the coupler 202, as detected by the flow sensor 220. The end cap 216 may be adapted to make visible the LED illumination thereunder provided by the LED component 222.
As noted above, in some embodiments the control body 200 may include an LED component 222 configured to illuminate an end of the control body. For example, the LED component may illuminate during use of the aerosol delivery device to simulate the lit end of a smoking article. However, it may be desirable to illuminate other or additional portions of an aerosol delivery device.
In this regard,
In one example embodiment, the illumination source 1002 may comprise an LED. However, various other illumination sources may be employed such as a laser or a conventional light bulb. A plurality of leads 1006 or other connections may be configured to connect the illumination source 1002 to a controller 1008. The controller 1008 may be configured to direct the illumination source 1002 to output electromagnetic radiation in certain specified situations and in response to certain stimuli, as discussed below.
The waveguide 1004 may be provided as a single section, as illustrated in
In general, the waveguides disclosed herein may be configured to receive electromagnetic radiation from the one or more illumination sources and provide illumination at an outer surface of an outer body of the aerosol delivery device associated therewith. The outer body of the aerosol delivery device may be configured to at least partially enclose one or more components of the aerosol delivery device. For example, the outer body may be configured to at least partially enclose components configured to atomize an aerosol precursor composition.
In one embodiment the waveguide may comprise the outer body of an aerosol delivery device. In other words, the waveguide may itself serve as the outer body of all or a portion of an aerosol delivery device, rather than a component separate therefrom. For example,
The waveguide 1104 may also at least partially enclose components configured to atomize an aerosol precursor. In this regard, the waveguide 1104 may define a cavity 1114 configured to at least partially enclose the flow sensor 220, the control component 208, and the electrical power source 212. Note that the LED component 222 and the connector circuit 224 are not included in the embodiment of the control body 200′ illustrated in
In an additional embodiment, the waveguide may comprise the outer body of a cartridge of an aerosol delivery device, in addition to or instead of the waveguide comprising the outer body of the control body. In this regard,
An end view of an embodiment of a waveguide 1304 configured to define an outer body of all or a portion of an aerosol device is illustrated in
More particularly, the illumination source 1302 may direct electromagnetic radiation into a longitudinal end 1316 of a core 1318 of the waveguide 1304. Accordingly, the electromagnetic radiation may be directed through the core 1318 of the waveguide 1304 along a longitudinal length thereof. The waveguide 1304 may be configured to restrict the spatial region in which electromagnetic radiation can propagate.
In this regard, the core 1318 of the waveguide 1304 may comprise a material defining a refractive index greater than that of air, and preferably equal to at least about 1.3. In this regard, by way of example, the core 1318 of the waveguide 1304 may comprise glass, plastic, crystal, or various other substantially transparent materials. By way of further example, the core 1318 of the waveguide 1304 may comprise an acrylic material or a polycarbonate polymer material in some embodiments. In another embodiment the core 1318 may comprise a substantially transparent metal material. For example, the core 1318 may comprise a transparent aluminum material, as available from Tera-Barrier Films of Singapore.
As a result of the core 1318 of the waveguide 1304 defining a refractive index greater than air (and the materials surrounding the core), the electromagnetic radiation may internally reflect such that the electromagnetic radiation is substantially constrained within the core of the waveguide. In this regard, internal reflection occurs when a ray of electromagnetic radiation passing through the core 1318 of the waveguide 1304 reaches a boundary (e.g., at an inner surface 1320 thereof) at which a medium of lower refractive index is encountered. However, when the propagation vector of the electromagnetic radiation is substantially normal to a surface of the core 1318 of the waveguide 1304, the electromagnetic radiation will exit the waveguide at such region. Thus, the waveguide 1304 may include one or more features configured to direct the electromagnetic radiation out of the core 1318 and toward the outer surface 1312 thereof by altering the propagation vector of the electromagnetic radiation to become substantially normal to the outer surface of the core of the waveguide.
Thus, the waveguide 1304 may be configured to retain the electromagnetic radiation within the core 1318 and propagate the electromagnetic radiation along the longitudinal length thereof except at specified locations where the electromagnetic radiation exits therefrom. In this regard, the features configured to direct the electromagnetic radiation out toward the outer surface 1312 may be selectively positioned to direct the electromagnetic radiation out of the core 1318 at desired locations. For example, a surface of the core 1318 of the waveguide 1304 may be roughened such that electromagnetic radiation incident thereon is directed to the outer surface 1312.
In the embodiment illustrated in
As illustrated in
The energy conversion material 1324 may be configured to receive the electromagnetic radiation directed out of the core 1318 by the roughened portion 1322 and emit a secondary electromagnetic radiation differing in one or more respects from the original, primary electromagnetic radiation. In this regard, in one embodiment the energy conversion material 1324 may be configured to receive the electromagnetic radiation and emit a secondary electromagnetic radiation defining a wavelength differing from the wavelength of the primary electromagnetic radiation. The difference in wavelengths of the absorbed and emitted electromagnetic radiation may be referred to as a Stokes shift. In one embodiment the illumination source 1302 may comprise an LED configured to output visible light defining a relatively low wavelength (e.g., violet or blue light). Thereby, the energy conversion material 1324 may receive the light and emit light defining a higher wavelength and corresponding to a desired color. In this regard, by starting with light defining a relatively low wavelength, any color of light defining a higher wavelength may be created.
Multiple stacked layers of energy conversion materials may be configured to produce greater changes in wavelengths than the change caused by any one of the individual layers of energy conversion material. In this regard, each shift in wavelength between stacked layers of energy conversion layers may be additive and combine to define a greater wavelength shift. In an alternate embodiment, instead of employing absorption and emission between stacked layers of energy conversion materials, a Förster transfer mechanism may be employed whereby transfer of electronic energy occurs by dipolar coupling between first and second layers of energy conversion materials without requiring the emission of a photon by the first layer.
Although the energy conversion materials are generally described herein as altering a wavelength of the electromagnetic radiation emitted by the illumination source by absorption and emission, in other embodiments the energy conversion materials may alter a characteristic of the electromagnetic radiation emitted by the illumination source in a variety of other manners. For example, the energy conversion material may additionally or alternatively be configured to modulate electromagnetic energy by one or more of reflection and/or interference.
In some embodiments the energy conversion material may be configured to dynamically change the color of the illumination of the outer surface in response to stimuli such as stress, gas, heat, and/or wetness. In another embodiment the color of the illumination of the outer surface may be changed dynamically by employing multiple illumination sources. In this embodiment the illumination sources may be respectively configured to emit electromagnetic radiation defining differing wavelengths than at least one other illumination source. Additionally, or alternatively, the illumination sources may be configured to direct the electromagnetic radiation through an energy conversion material configured to alter the electromagnetic illumination in a differing manner. For example, a first illumination source may direct electromagnetic radiation through a first energy conversion material, and a second illumination source may direct electromagnetic radiation through a second energy conversion material configured to emit secondary electromagnetic radiation having a greater or lesser wavelength to result in differing illumination colors.
The waveguide 1304 may further comprise a reflective layer 1326. The reflective layer 1326 may be positioned inside or outside of the layer of the energy conversion material 1324. The reflective layer 1326 may be configured to reflect ambient light and prevent ambient light from entering the waveguide 1304. In one embodiment the reflective layer 1326 may comprise a metallic material. The reflective layer 1326 may hide the other portions of the waveguide 1304, such as the translucent or transparent core 1318. Accordingly, although the waveguide 1304 may be formed from materials such as a substantially clear plastic core 1318, the waveguide may appear to define a sold metal structure, which may be desirable to consumers. Although the reflective layer 1326 may substantially prevent ambient light from entering the waveguide 1304, the reflective layer may allow electromagnetic radiation emitted from the energy conversion material 1324 to provide illumination at the outer surface 1312.
In some embodiments the waveguide may further comprise one or more additional layers. In this regard,
The waveguide 1304′ may further comprise an inner reflective layer 1350′ configured to redirect any backscatter from the energy conversion material 1324′ to the outer surface 1312′ of the waveguide. The waveguide 1304′ may further comprise a diffusion layer 1352′ configured to scatter the electromagnetic radiation directed therethrough to provide a more diffuse illumination at the outer surface 1312′ of the waveguide. Further, the waveguide 1304′ may include a stability enhancement layer 1354′ configured to prevent degradation of the energy conversion material 1324′, which may otherwise occur when irradiated in the presence of air. The waveguide 1304′ may additionally include a protective layer 1356′ positioned outwardly from, and configured to protect, the remaining layers. In one example embodiment, the layers of the waveguide 1304′ may be arranged in the order illustrated in
Various example of waveguides, energy conversion materials, reflective layers, diffusion layers, stability enhancement layers, and protective layers are described in U.S. Patent Application Publication Nos. 2012/0080613 and 2013/0088853 and U.S. Pat. Nos. 8,178,852 and 8,232,533, each to Kingsley et al., which are incorporated herein by reference in their entireties. Such waveguides, energy conversion materials, reflective layers, diffusion layers, stability enhancement layers and protective layers may also be commercially available from PERFORMANCE INDICATOR, LLC of Lowell, Mass.
The illumination source(s) and/or energy conversion material(s) may be configured to provide illumination at the outer surface of an aerosol delivery device in a variety of manners. Providing illumination at the outer surface, as used herein, refers to directing light to or through the outer surface of the aerosol delivery device. Thus, the light may be directed through the material defining the outer surface, or through apertures or other openings in the outer surface. As such, the illumination may be defined as being at, on, or through the outer surface. In this regard, illumination provided at the outer surface may define any color, in any pattern or arrangement, at any location thereon, with varying intensity using the principals and materials described above. For example, the outer surface may be illuminated to define a camouflage or modeled pattern, simulate a burning coal, simulate the aurora borealis, glow in the dark, and/or display a logo. Further, the one or more illumination source(s) and/or the waveguide may be configured to adjust illumination of the outer surface of the outer body based on a number of factors such as an electrical power source level, an aerosol precursor level, a temperature (e.g., an internal temperature of the heating element, a temperature of the waveguide, or an external temperature of the ambient air), an ambient light level, and a detected draw.
In some embodiments, the illumination may be adjusted passively. For example, the energy conversion material may glow in a different color in response to decreased ambient lighting or the energy conversion material may heat during use of the aerosol delivery device, causing the energy conversion material to alter the wavelength of the electromagnetic radiation to a differing extent. In other embodiments the illumination may be adjusted actively, for example by a controller. For example, the controller may direct one or both of the energy conversion layer and the illumination source(s) to adjust the illumination on the outer surface to define a ring (e.g., colored red) around the circumference of the aerosol delivery device that moves from the mouthend toward the distal end, and/or a color of the illumination may change. The controller may adapt the illumination in these and other manners as a function of one or more of the number of puffs on the aerosol delivery device, electrical power source level, aerosol precursor level, or one or more of various other factors. For example, one or more of the above-described flow sensor 220, a temperature sensor, a light sensor, a voltage or amperage sensor, and/or various other embodiments of sensors may be included in the aerosol delivery devices to provide the controller with the information regarding the status of the aerosol delivery device and/or the ambient environment.
Additionally or alternatively, the aerosol delivery device may provide for adjustment of the illumination in response to input from a user interface. In this regard, in some embodiments the user may actuate a button, capacitive sensor, switch, or other input mechanism on the aerosol delivery device to adjust the illumination. In another embodiment the illumination may be adjusted via an external controller. For example, a wired (e.g., USB) or wireless (e.g., Bluetooth) connection to a computing device such as a phone, tablet, or personal computer may be employed to direct a command from the computing device to define one or more parameters for the illumination.
Although the electromagnetic radiation described above is generally referenced as falling within the visible spectrum, in other embodiments one or both of the primary and secondary electromagnetic radiation may fall outside of the visible spectrum. For example, an illumination source may emit electromagnetic radiation outside of the visible spectrum, which may be converted to electromagnetic radiation within the visible spectrum by the energy conversion material in some embodiments. In another embodiment the energy conversion material may be configured to convert electromagnetic radiation within the visible spectrum, as emitted by an illumination source, to electromagnetic radiation falling outside the visible spectrum.
Returning to
Further, the color of the outer surface 1012 of the waveguide 1004 may also vary within an individual illuminated section in some embodiments. Thus, multiple colors may be displayed within an individual illuminated section. For example, the first illuminated section 1025A may define green and blue, or a combination of two or more other colors. Accordingly, in some embodiments a single illumination source 1002 may be employed with multiple energy conversion materials defining differing properties, stacked layers of absorbing and emitting energy conversion materials, or layers of energy transfer materials defining a Förster transfer mechanism to provide illumination at the outer surface 1012 with multiple colors of light. Use of a single illumination source 1002 may increase energy efficiency of the aerosol delivery device as compared to embodiments of apparatuses employing multiple illumination sources to respectively produce differing colors.
The illumination source 1002 may also be configured to provide illumination at a distal end 1028 of the waveguide 1004. In this regard, since the distal end 1028 of the waveguide 1004 may be substantially opposite to the location at which the illumination source 1002 is positioned, use of a roughened portion may not be required to direct the electromagnetic radiation therethough. More particularly, the illumination source 1002 may itself direct the electromagnetic radiation substantially perpendicularly to the distal end of the waveguide 1004. However, some or all of the various other layers and materials described above may be positioned at the distal end 1028 of the waveguide 1004 in order to control a wavelength of the electromagnetic radiation emitted therefrom and perform the other functions described above.
As described above and illustrated in
The outer body 1530 may at least partially enclose the waveguide 1504 and components configured to atomize an aerosol precursor. In this regard, the outer body 1530 may define a cavity 1534 configured to at least partially enclose the waveguide 1504. Further, the waveguide 1504 may define a cavity 1514 configured to at least partially enclose one or more of the flow sensor 220, the control component 208, and the electrical power source 212. Note that although the control body 200″ is illustrated as including the LED component 222 and the connector circuit 224, in other embodiments these components may not be included. In this regard, the waveguide 1504 may be configured to provide illumination at the end cap 216 or other portion(s) of the control body 200″ proximate the end cap in the manner described above. For example, the control body 200″ may be configured such that an end of the waveguide 1504 distal from the illumination source 1502 is exposed such that light directed thereto is externally visible.
In an additional embodiment, the waveguide may be received within the outer body of a cartridge of an aerosol delivery device, in addition to or instead of a waveguide being received within the outer body of the control body. In this regard,
An end view of an embodiment of an outer body 1730 and a waveguide 1704 received in a cavity 1734 defined by the outer body are illustrated in
In this regard, the waveguide 1704 may function in substantially the same manner as described above. Briefly, however, electromagnetic radiation emitted from the illumination source 1702 at a longitudinal end 1716 of a core 1718 of the waveguide 1704 may be constrained therein and directed along the longitudinal length thereof. However, a roughened portion 1722 at an inner surface 1720 of the waveguide 1704 surrounding a cavity 1714 may direct the electromagnetic radiation radially outwardly toward the outer body 1730. The roughened portion 1722 may be provided at all or a portion of the inner surface 1720 along a continuous length or segmented portions of the waveguide 1704. The electromagnetic radiation may thus be directed toward a layer of an energy conversion material 1724. As described above, the energy conversion material 1724 may absorb the electromagnetic radiation and emit a secondary electromagnetic radiation defining a wavelength or other characteristic differing from that of the original, primary electromagnetic radiation. In some embodiments the energy conversion material 1724 may be provided along a continuous length or one or more portions along the length of the waveguide 1704.
However, the waveguide 1704 may differ in that it may be at least partially received in the outer body 1730. Since the waveguide 1704 is at least partially concealed by the outer body 1730, the waveguide may not employ a reflective layer configured to reflect ambient light. However, as a result of the outer body 1730 at least partially surrounding the waveguide 1704, the outer body may include features configured to allow for illumination of the outer body using the electromagnetic radiation exiting the waveguide. In this regard, as illustrated in
In some embodiments the waveguide may further comprise one or more additional layers. In this regard,
The waveguide 1704′ may further comprise an inner reflective layer 1750′ configured to redirect any backscatter from the energy conversion material 1724′ toward the outer body 1730′ of the waveguide. The waveguide 1704′ may further comprise a diffusion layer 1752′ configured to scatter the electromagnetic radiation directed therethrough to provide a more diffuse illumination at an outer surface 1732′ of the outer body 1730′. Further, the waveguide 1704′ may include a stability enhancement layer 1754′ configured to prevent degradation of the energy conversion material 1724′, which may otherwise occur when irradiated in the presence of air. In one example embodiment, the layers of the waveguide 1704′ may be arranged in the order illustrated in
Various example of waveguides, energy conversion materials, reflective layers, diffusion layers, stability enhancement layers, and protective layers are described in U.S. Patent Application Publication Nos. 2012/0080613 and 2013/0088853 and U.S. Pat. Nos. 8,178,852 and 8,232,533, each to Kingsley et al., which are incorporated herein by reference in their entireties. Such waveguides, energy conversion materials, reflective layers, diffusion layers, stability enhancement layers and protective layers may also be commercially available from PERFORMANCE INDICATOR, LLC of Lowell, Mass. Note that a separate controller configured to direct the illumination source to output electromagnetic radiation is not illustrated in
As briefly noted above, in some embodiments the control bodies described herein may be rechargeable. For example, an adaptor including a USB connector at one end and a control body connector at an opposing end is disclosed in U.S. patent application Ser. No. 13/840,264, filed Mar. 15, 2013, which is incorporated herein by reference in its entirety. The control body connector may be configured to match the shape of a base of a cartridge to which a control body is configured to engage. Thus, when the USB connector of the adaptor is plugged into an appropriate receptacle and the control body connector is plugged into a control body, the electrical power source (e.g., a battery) of the control body may be charged.
Further, in some embodiments the adaptor may be configured to transfer data to, or receive data from, the controller(s) of the aerosol delivery device. For example, the adaptor may be configured to transfer data from an aerosol delivery device to a computing device relating to usage of the aerosol delivery device. Further, data may be transferred from a computing device through the adaptor to the aerosol delivery device. For example, the controller controlling the illumination source(s) may be provided with data instructing the controller to implement a new display scheme providing illumination at the outer surface of the aerosol delivery device. Thereby, for example, a user may customize illumination of the outer surface of the aerosol delivery device.
A method for illuminating an aerosol delivery device is also provided. As illustrated in
In some embodiment the outer body comprises the waveguide. In this regard, the method may further comprise reflecting an ambient light with a reflective layer of the waveguide at operation 1908. In another embodiment the waveguide may be received within the outer body. In this regard, providing illumination at the outer surface of the body at operation 1906 may comprise directing the electromagnetic radiation toward one or more apertures defined in the outer body.
Further, in some embodiments directing the electromagnetic radiation through the waveguide at operation 1904 may comprise directing the electromagnetic radiation to a roughened portion of the waveguide. Additionally, directing the electromagnetic radiation through the waveguide at operation 1904 may comprise directing the electromagnetic radiation to an energy conversion material configured to emit a secondary electromagnetic radiation defining a wavelength differing from a wavelength of the electromagnetic radiation. Outputting the electromagnetic radiation at operation 1902 may comprise selectively outputting the electromagnetic radiation at a plurality of sections of the waveguide from a respective one of the illumination sources. Also, providing illumination at the outer surface of the outer body at operation 1902 may comprise providing illumination at the outer surface of a control body, wherein the components comprise an electrical power source and a control component, the control component being configured to selectively direct an atomizer to atomize an aerosol precursor. In an additional embodiment providing illumination at the outer surface of the outer body at operation 1902 may comprise providing illumination at the outer surface of a cartridge, wherein the components comprise a reservoir substrate configured to hold an aerosol precursor composition and an atomizer configured to produce heat. The method may further comprise adjusting illumination of the outer surface of the outer body based on at least one of an electrical power source level, an aerosol precursor level, a temperature, an ambient light level, and a detected draw at operation 1910.
Many modifications and other embodiments of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed herein and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.