Aerosol dispenser valve

Information

  • Patent Grant
  • 8511521
  • Patent Number
    8,511,521
  • Date Filed
    Monday, July 25, 2011
    13 years ago
  • Date Issued
    Tuesday, August 20, 2013
    11 years ago
Abstract
An improved valve member, aerosol dispenser valve containing the valve member, aerosol container for dispensing moisture-curable foams, and moisture-curable foam and dispenser, in which the valve member is made of a glass filled polyolefin. The polyolefin is preferably a polyethylene. The glass content is between about 2% and about 40%, more preferably between about 10% and about 30%; and most preferably between about 15% and about 25%.
Description
BACKGROUND OF THE INVENTION

This invention relates to aerosol dispenser valves for products, and in particular to dispenser valves for moisture-curable products such as foams.


Moisture-curable products, such as moisture-curable polyurethane foams, have found wide applications in homes and businesses. These foams are excellent fillers and insulators. The foams are often packaged in aerosol cans with a polypropylene dispenser valve. A problem with these valves is that moisture can migrate through the valve and into the aerosol can. Once inside, the moisture cures the foam, and impairs the function of the valve. The problem is exacerbated if the can is not stored upright, so that the contents of the can surround the valve member. The migration path is shorter, and when the foam cures around the valve member it interferes with the operation of the valve, sealing it closed.


SUMMARY OF THE INVENTION

A preferred embodiment of the present invention is a dispenser valve for a moisture-curable foam made from a glass-filled polyolefin. In the preferred embodiment the polyolefin is a high density polyethylene. The polyethylene preferably has a glass content of between about 2% and about 40%, and more preferably between about 10% and about 30%, and most preferably between about 15% and about 25%. The valve member of the preferred embodiment is more resistant to failure from moisture infiltration than the polypropylene valve members of the prior art. The valve member of the preferred embodiment is less adhesive than the propylene valve members of the prior art, so that to the extent the contents of the container does inadvertently cure inside the container, it is less likely to adhere to the valve member and interfere with the operation of the valve. Thus embodiments of valves in accordance with the principles of this invention can extend the shelf life of urethane foams and other moisture-curable or moisture affected products dispensed from aerosol cans.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a cross sectional view of a dispenser valve for an aerosol can in accordance with the principles of this invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of a dispenser valve constructed according to the principles of this invention is indicated generally as 20 in FIG. 1. The dispenser valve 20 comprises a valve member 22 in a seal 24. The valve member 22 has first and second ends 26 and 28, and a central passage 30 extending partially therethrough. A plurality of openings 32 extend through the valve member 22 and communicate with the central passage 30. The openings are covered by the seal 24, but when the valve member 22 is deflected, it opens a space between the valve member 22 and the seal 24, so that the pressurized contents can exit the container between the valve member 22 and the seal, through the openings 32, and out the passage 30.


In accordance with the principles of this invention, the valve member 22 is made from a glass-filled polyolefin. The inventors believe that glass-filled polyethylene is more resistant to adhesion than the polypropylene valve members of the prior art, or other suitable polymer materials.


The inventors have also discovered that chemically coupled glass-filled polyolefin, and specific glass-filled polyethylene is less adhesive than the valve members of the prior art, to the extent that the foam does inadvertently cure inside the container, it is less likely to adhere to the valve member and interfere with the operation of the valve.


The polyethylene is preferably a high density polyethylene. The polyethylene preferably has a glass content of between about 2% and about 40%, and more preferably between about 10% and about 30%, and most preferably between about 20% and about 30%.


Thus the valve member of the preferred embodiment is more resistant to moisture infiltration, and less adhesive to moisture curing foams, such as polyurethanes. Thus the valves constructed in accordance with the valve members of this invention are less likely to fail, even when the cans on which they are used are not properly stored, and provide a greater product shelf life.


EXAMPLE 1

Cans of moisture-curable polyurethane foam components were prepared with valve parts made of different plastics. The cans were stored upside down at an ambient temperature and 90-100% relative humidity. Each week three cans of each type were examined and rated on whether the can was fully functional, stuck but functional, or stuck. Failure was determined when all three cans of the sample failed. The results of the test are given in Table 1.













TABLE 1





20% glass-
Impact





filled
modified


Internally Lubricated


polyethylene
propylene
Polypropylene
Acetal
polypropylene







No failure
Failure
Failure after 5
Sticking
Sticking after 5


after 16
after 5
weeks.
after 7
weeks; failure after


weeks.
weeks.

weeks;
6 weeks





failure






after 9






weeks









EXAMPLE 2

Cans of moisture-curable polyurethane foam components were prepared with valve parts made from different plastics. Sixteen cans of each type were stored upside down at 120° at 80% relative humidity for 11 weeks. Cans were inspected at the end of 11 weeks to determine whether the valves were stuck or were functional. The results are given in Table 2.












TABLE 2







Number of





stuck
% of stuck



Plastic
valves
valves








50% polyethylene and
0
   0%



50% polyethylene with





20% glass





100% polyethylene
2
12.5%



with 20% glass





90% polyethylene-
3
18.8%



10% polypropylene





with 30% glass





75% polyethylene-
3
18.8%



25% polypropylene





with 30% glass





100% polypropylene
4
  25%



50% polyethylene-
5
31.3%



50% polypropylene





50% polyethylene-
5
31.3%



50% polypropylene





with 30% glass





100% polyethylene-
6
37.5%



90% polyethylene-
6
37.5%



10% polypropylene





75% polyethylene-
10 
62.5%



25% polypropylene










This test shows that valves made of glass filled polyethylene (from 10% to 20%) had the lowest number of stuck valves.


EXAMPLE 3

Cans of moisture-curable polyurethane foam components were prepared with large valve parts made from different plastics. Twenty-two cans of each type were stored upside down at ambient with caps filled with water. Two cans of each type were tested periodically, and it was noted whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given in Table 3.












TABLE 3






20% glass-





filled





polyethylene
Polypropylene
Acetal








No failure
Stuck but broke
Stuck but broke free,



after 22
free, after 18
after 13 weeks-



weeks.
weeks.
failure after 22





weeks









EXAMPLE 4

Cans of moisture-curable polyurethane foam components were prepared with small valve parts made from different plastics. Twenty-two cans of each type were stored upside down at ambient with caps filled with water. Two cans of each type were tested periodically, to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given in Table 4.












TABLE 4





20% glass-
Impact

Ethylene


filled
Modified

Telefluorethylene


polyethylene
Polypropylene
Acetal
polymer (ETFE)







No sticking
Failed, after 8
Stuck but broke
Failures after 19


or failure
weeks.
free, after 12
weeks


after 22

weeks; failure,



weeks.

after 17 weeks.









EXAMPLE 5

Cans of moisture-curable polyurethane foam components were prepared with valve parts made from different plastics. Cans of each type were stored upside down with caps filled with water at 130° F. (to accelerate sticking of the valves). Two cans of each type were periodically tested to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given in Table 5.












TABLE 5






20% glass-





filled





polyethylene
Polypropylene
Acetal








No sticking or
Stuck but broke
Stuck but broke



failure after 51
free after 14
free after 14 days;



days.
days, failure
failure after 37




after 35 days.
days.









EXAMPLE 6

Cans of moisture-curable polyurethane foam components were prepared with valve parts made from different plastics. Cans of each type were stored upside down with caps filled with water at 130° F. (to accelerate sticking of the valves). 20% glass filled polyethylene was compared with impact modified propylene for two different neoprene seal materials. Two cans of each type were periodically tested to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. Failure was determined when both valves tested stuck or failed. The results are given in Table 6.










TABLE 6







Seal 1
Seal 2










20% glass-
Impact
20% glass-
Impact


filled
Modified
filled
Modified


polyethylene
polypropylene
polyethylene
polypropylene





No sticking
Failure after
Failure, after
Failure after


or failure
11 days.
21 days.
11 days.


after 23





days.










This testing indicates that glass-filled polyethylene provides improved performance with different seal materials.


EXAMPLE 7

Cans of moisture-curable polyurethane foam components were prepared with valve parts made from different plastics. Cans of each type were stored upside down with caps filled with water at 130° F. (to accelerate sticking of the valves). 20% glass filled polyethylene was compared with propylene and with a conventional valve using a stick resistant coating on the seal. Two cans of each type were periodically tested to determine whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. The results are given in Table 7.












TABLE 7








Polypropylene



20% glass-

with stick



filled

resistant seal



polyethylene
Polypropylene
coating








Stuck but
Stuck but
Stuck but



broke free
broke free
broke free



after 30
after 22 days;
after 22 days;



days; no
failure after
failure after



failure at 36
28 days
30 days



days









This testing indicates that glass-filled polyethylene continued to function after conventional valves and conventional valves with lubricated seals, failed.


EXAMPLE 8

Cans of moisture-curable polyurethane foam components were prepared with gun valve (vertically opened) parts made from different plastics. Sixteen cans of each type were stored upside down at 130° with caps full of water. Two cans of each type were tested periodically, and it was noted whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. Failure was determined by sticking or failure of both cans. The results are given in Table 8.












TABLE 8







First
First



Plastic
Sticking
Failure








100% polyethylene





with 20% glass-filled





polyethylene (ribbed





for extra strength)





Impact Modified
10 days




Polypropylene co-





polymer (ribbed for





extra strength)





Polypropylene
13 days
55 days



Acetal
10 days
33 days



Impact Modified
13 days
33 days



Polypropylene





Polyethylene

 26 days*



75% polyethylene-
10 days




25% polypropylene





50% polyethylene-
10 days




50% polypropylene





100% polyethylene





with 20% glass-filled





polyethylene





Impact Modified
10 days




Polypropylene





*stem failure due to weakness of material






This testing shows the superiority of glass filled polyethylene in both ribbed and unribbed configurations.


EXAMPLE 9

Cans of moisture-curable polyurethane foam components were prepared with gun valve (vertically opened) parts made from different plastics. Twelve to fourteen cans of each type were stored upside down at 130° with caps full of water. Cans of each type were tested periodically, and it was noted whether the valve worked, whether the valve was stuck but broke free, or whether the valve failed. Failure was determined by sticking or failure of both cans. The results are given in Table 9 below, which shows that some standard valves first stuck after only six days and the standard valves were stuck after 11 days, as compared to the valves with 20% glass-filled polyethylene valve components which were not stuck after 20 days of testing. All of the 20% glass-filled polyethylene valve components performed longer than the standard components. The plastic used is a 703 CC chemically coupled 20% glass filled polyethylene available from RTP company, having an impact strength (notched) of about 2.5 ft. lbs./inch and a water absorption of about 0.04 percent.












TABLE 9








Valves



Plastic
First Stuck
stuck








100% Polyethylene with
none of 14
no samples



20% glass-filled stems
samples
stuck after




stuck
20 days



Impact Modified
samples
12 samples



Polypropylene co-
first stuck
stuck w/in



polymer (ribbed for
w/in 6 days
11 days



extra strength)









In the testing conducted, a glass filled polyethylene was always the best performer, and only one other material—Acetal—approached the performance of the glass-filled polyethylene in certain circumstances. Glass-filled polyethylene valve stems show surprisingly superior resistance to sticking (i.e. longer times to initial sticking, and longer times to valve failure) over valve stems of other materials in a variety of environments, different valve sizes, and different sealing materials. Glass-filled polyethylene even showed superior resistance to sticking than conventional valves with available stick resistance coatings.


While the description of the preferred embodiment and the examples and tests focused primarily on moisture-curable foams, and more specifically moisture-curable polyurethane foams, the invention is not so limited that the valves and containers with valves of the present invention can be used with other moisture-curable products that are dispensed from aerosol cans, and even with products that are not moisture-curable, but adversely affected by moisture infiltration.

Claims
  • 1. A valve member for use in a valve which dispenses a moisture-curable foam, the valve member being constructed to resist adherence of cured moisture-curable foam to the valve member, the valve member comprising a central passage extending partially therethrough, and a plurality of openings extending through the valve member and in communication with the central passage, the valve member being adapted for movement upon actuation between a first position in which the valve member is moved about an axis off of a seal to allow the moisture-curable foam to flow into the central passage, and a second position in which the valve member seats on the seal to prevent flow of the moisture-curable foam into the central passage, wherein the valve member is made of a glass-filled polyolefin having a glass content in an amount of between about 2% and about 40%.
  • 2. The valve member according to claim 1 wherein the polyolefin is a polyethylene.
  • 3. The valve member according to claim 1 wherein the glass content is between about 8% and about 40%.
  • 4. The valve member according to claim 1 wherein the glass content is between about 10% and about 40%.
  • 5. The valve member according to claim 1 wherein the glass content is between about 3% and about 30%.
  • 6. The valve member according to claim 1 wherein the glass content is between about 8% and about 30%.
  • 7. The valve member according to claim 1 wherein the glass content is between about 10% and about 30%.
  • 8. The valve member according to claim 1 wherein the glass content is between about 3% and about 25%.
  • 9. The valve member according to claim 1 wherein the glass content is between about 8% and about 25%.
  • 10. The valve member according to claim 1 wherein the glass content is between about 10% and about 25%.
  • 11. The valve member according to claim 1 wherein the moisture-curable foam comprises at least two liquid components.
  • 12. The valve member according to claim 1 wherein the moisture-curable foam is under pressure in a container.
  • 13. The valve member according to claim 1 wherein the moisture-curable foam is polyurethane foam.
  • 14. The valve member according to claim 1 wherein the glass filled polyolefin is a chemically-coupled glass filled polyolefin.
  • 15. The valve member according to claim 2 wherein the glass filled polyethylene is a chemically-coupled glass filled polyethylene.
  • 16. A valve for dispensing moisture-curable foam wherein the valve comprises: a seal; andthe valve member of claim 1.
  • 17. The valve according to claim 16 wherein the polyolefin is a polyethylene.
  • 18. The valve according to claim 16 wherein the glass content is between about 8% and about 40%.
  • 19. The valve according to claim 16 wherein the glass content is between about 10% and about 40%.
  • 20. The valve according to claim 16 wherein the glass content is between about 3% and about 30%.
  • 21. The valve according to claim 16 wherein the glass content is between about 8% and about 30%.
  • 22. The valve according to claim 16 wherein the glass content is between about 10% and about 30%.
  • 23. The valve according to claim 16 wherein the glass content is between about 3% and about 25%.
  • 24. The valve according to claim 16 wherein the glass content is between about 8% and about 25%.
  • 25. The valve according to claim 16 wherein the glass content is between about 10% and about 25%.
  • 26. The valve according to claim 16 wherein the moisture-curable foam comprises at least two liquid components.
  • 27. The valve according to claim 16 wherein the moisture-curable foam is under pressure in a container.
  • 28. The valve according to claim 16 wherein the moisture-curable foam substance is polyurethane foam.
  • 29. The valve according to claim 16 wherein the glass filled polyolefin is a chemically-coupled glass filled polyolefin.
  • 30. The valve according to claim 17 wherein the glass filled polyethylene is a chemically-coupled glass filled polyethylene.
  • 31. The valve according to claim 16 wherein the seal is made of neoprene.
  • 32. An aerosol can for dispensing a moisture-curable foam comprising: an aerosol can;a moisture-curable foam disposed within the aerosol can; anda valve comprising: a seal; andthe valve member of claim 1.
  • 33. The aerosol can according to claim 32 wherein the polyolefin is a polyethylene.
  • 34. The aerosol can according to claim 32 wherein the glass content is between about 8% and about 40%.
  • 35. The aerosol can according to claim 32 wherein the glass content is between about 10% and about 40%.
  • 36. The aerosol can according to claim 32 wherein the glass content is between about 3% and about 30%.
  • 37. The aerosol can according to claim 32 wherein the glass content is between about 8% and about 30%.
  • 38. The aerosol can according to claim 32 wherein the glass content is between about 10% and about 30%.
  • 39. The aerosol can according to claim 32 wherein the glass content is between about 3% and about 25%.
  • 40. The aerosol can according to claim 32 wherein the glass content is between about 8% and about 25%.
  • 41. The aerosol can according to claim 32 wherein the glass content is between about 10% and about 25%.
  • 42. The aerosol can according to claim 32 wherein the moisture-curable foam comprises at least two liquid components.
  • 43. The aerosol can according to claim 32 wherein the moisture-curable foam is under pressure in a container.
  • 44. The aerosol can according to claim 32 wherein the moisture-curable foam substance is polyurethane foam.
  • 45. The aerosol can according to claim 32 wherein the glass filled polyolefin is a chemically-coupled glass filled polyolefin.
  • 46. The aerosol can according to claim 33 wherein the glass filled polyethylene is a chemically-coupled glass filled polyethylene.
  • 47. The aerosol can according to claim 32 wherein the seal is made of neoprene.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/228,000 filed Sep. 15, 2005, now U.S. Pat. No. 7,984,834 issued Jul. 26, 2011, and claims the benefit of U.S. Provisional Application No. 60/627,850, filed Nov. 15, 2004, and claims the benefit of U.S. Provisional Application No. 60/610,282, filed Sep. 16, 2004, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (26)
Number Name Date Kind
3954208 Brill May 1976 A
4216884 Giuffredi Aug 1980 A
4429814 Scotti et al. Feb 1984 A
4437592 Bon Mar 1984 A
4667855 Holleran May 1987 A
4852807 Stoody Aug 1989 A
4865351 Smithson et al. Sep 1989 A
5456386 Jesswein Oct 1995 A
5553755 Bonewald et al. Sep 1996 A
5836299 Kwon Nov 1998 A
5894958 De Laforcade Apr 1999 A
5921447 Barger et al. Jul 1999 A
5975356 Yquel et al. Nov 1999 A
5988699 Quandt Nov 1999 A
6113070 Holzboog Sep 2000 A
6202899 Lasserre et al. Mar 2001 B1
6245415 Keller et al. Jun 2001 B1
6291580 Kukkala et al. Sep 2001 B1
6750265 Pauls et al. Jun 2004 B2
7226553 Jackson et al. Jun 2007 B2
7227108 Clothier et al. Jun 2007 B2
7282170 Dutmer et al. Oct 2007 B2
7456242 Smith et al. Nov 2008 B2
7984834 McBroom et al. Jul 2011 B2
20040025852 Kanckawa et al. Feb 2004 A1
20060065678 McBroom et al. Mar 2006 A1
Continuations (1)
Number Date Country
Parent 11228000 Sep 2005 US
Child 13189656 US