This disclosure relates to aerosol drug delivery devices incorporating percussively activated heat packages. The drug delivery devices can be activated by actuation mechanisms to vaporize thin films comprising a drug. These thin films can consist of a solid or a viscous liquid. This disclosure further relates to thin films comprising a metal coordination complex of a volatile compound in which the volatile compound is selectively vaporizable when heated. More particularly, this disclosure relates to thin films of nicotine metal salt complexes for the treatment of nicotine craving and for effecting smoking cessation.
Cigarette smoking provides an initial sharp rise in nicotine blood level as nicotine is absorbed through the lungs of a smoker. In general, a blood level peak produced by cigarettes of between 30-40 ng/mL is attained within 10 minutes of smoking. The rapid rise in nicotine blood level is postulated to be responsible for the postsynaptic effects at nicotinic cholinergic receptors in the central nervous system and at autonomic ganglia which induces the symptoms experienced by cigarette smokers, and may also be responsible for the craving symptoms associated with cessation of smoking.
While many nicotine replacement therapies have been developed, none of the therapies appear to reproduce the pharmacokinetic profile of the systemic nicotine blood concentration provided by cigarettes. As a consequence, conventional nicotine replacement therapies have not proven to be particularly effective in enabling persons to quit smoking. For example, many commercially available products for nicotine replacement in smoking cessation therapy are intended to provide a stable baseline concentration of nicotine in the blood. Nicotine chewing gum and transdermal nicotine patches are two examples of smoking cessation products which, while providing blood concentrations of nicotine similar to that provided by cigarettes at times greater than about 30 minutes, these products do not reproduce the sharp initial rise in blood nicotine concentrations obtained by smoking cigarettes. Nicotine gum is an ion-exchange resin that releases nicotine slowly when a patient chews, and the nicotine present in the mouth is delivered to the systemic circulation by buccal absorption. Nicotine patches provide a low, consistent blood level of nicotine to the user. Thus, both nicotine gum and transdermal nicotine do not reproduce the pharmacokinetic profile of nicotine blood levels obtained through cigarette smoking, and thus do not satisfy the craving symptoms experienced by many smokers when attempting to quit smoking.
Inhalation products which generate nicotine vapor are also ineffective as inhaled vapors are predominately absorbed through the tongue, mouth and throat, and are not deposited into the lungs. Smokeless nicotine products such as chewing tobacco, oral snuff or tobacco sachets deliver nicotine to the buccal mucosa where, as with nicotine gum, the released nicotine is absorbed only slowly and inefficiently. Nicotine blood levels from these products require approximately 30 minutes of use to attain a maximum nicotine blood concentration of approximately 12 ng/mL, which is less than half the peak value obtained from smoking one cigarette. Low nicotine blood levels obtained using a buccal absorption route may be due to first pass liver metabolism.
Orally administered formulations and lozenges are also relatively ineffective.
Rapid vaporization of thin films of drugs at temperatures up to 600° C. in less than 200 msec in an air flow can produce drug aerosols having high yield and high purity with minimal degradation of the drug. Condensation drug aerosols can be used for effective pulmonary delivery of drugs using inhalation medical devices. Devices and methods in which thin films of drugs deposited on metal substrates are vaporized by electrically resistive heating have been demonstrated. Chemically-based heat packages which can include a fuel capable of undergoing an exothermic metal oxidation-reduction reaction within an enclosure can also be used to produce a rapid thermal impulse capable of vaporizing thin films to produce high purity aerosols, as disclosed, for example in U.S. application Ser. No. 10/850,895 entitled “Self-Contained heating Unit and Drug-Supply Unit Employing Same” filed May 20, 2004, and U.S application Ser. No. 10/851,883, entitled “Percussively Ignited or Electrically Ignited Self-Contained Heating Unit and Drug Supply Unit Employing Same,” filed May 20, 2004, the entirety of both of which are herein incorporated by reference. These devices and methods are appropriate for use with compounds that can be deposited as physically and chemically stable solids. Unless vaporized shortly after being deposited on the metal surface, liquids can evaporate or migrate from the surface. Therefore, while such devices can be used to vaporize liquids, the use of liquid drugs can impose certain undesirable complexity. Nicotine is a liquid at room temperature with a relatively high vapor pressure. Therefore, known devices and methods are not particularly suited for producing nicotine aerosols using the liquid drug.
Thus, there remains a need for a nicotine replacement therapy that provides a pharmacokinetic profile similar to that obtained by cigarette smoking, and thereby directly addresses the craving symptoms associated with the cessation of smoking.
Accordingly, a first aspect of the present disclosure provides a drug delivery device comprising a housing defining an airway, wherein the airway comprises at least one air inlet and a mouthpiece having at least one air outlet, at least one percussively activated heat package disposed within the airway, at least one drug disposed on the at least one percussively activated heat package, and a mechanism configured to impact the at least one percussively activated heat package. Drugs that can be coated as thin films (either solids or viscous liquids) are particularly suited for this aspect of the invention. Likewise, as discussed below, volatile or liquid drugs that can form a complex and then coated as a thin film are also suitable for use in this aspect of the invention. For purposed of clarity, “percussively activated heat package” herein means a heat package that has been configured so that it can be fired or activated by percussion. An “unactivated heat package” or “non-activated heat package” refers herein to a percussively activated heat package in a device, but one that is not yet positioned in the device so that it can be directly impacted and fired, although the heat package itself is configured to be activated by percussion when so positioned.
A second aspect of the present disclosure provides a percussively activated heat package comprising an enclosure comprising a region capable of being deformed by a mechanical impact, an anvil disposed within the enclosure, a percussive initiator composition disposed within the enclosure, wherein the initiator composition is configured to be ignited when the deformable region of the enclosure is deformed, and a fuel disposed within the enclosure configured to be ignited by the initiator composition.
A third aspect of the present disclosure provides metal coordination complexes comprising a volatile compound, and in particular metal coordination complexes of nicotine, wherein the compound is selectively vaporizable when heated.
A fourth aspect of the present disclosure provides a method of producing an aerosol of a compound by selectively vaporizing the compound from a thin film optionally comprising a metal coordination complex comprising the compound.
A fifth aspect of the present disclosure provides a method of delivering a drug to a patient comprising providing a drug delivery device comprising, a housing defining an airway, wherein the airway comprises at least one air inlet and a mouthpiece having at least one air outlet, at least two or more percussively activated heat package disposed within the airway, at least one drug disposed on the percussively activated heat packages, and a mechanism configured to impact the percussively activated heat packages, inhaling through the mouthpiece, and actuating the mechanism configured to impact, wherein the percussively activated heat package vaporizes the at least one drug to form an aerosol comprising the drug in the airway which is inhaled by the patient.
A sixth aspect of the present disclosure provides a method for treating nicotine craving and smoking cessation using a nicotine aerosol.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of certain embodiments, as claimed.
Reference will now be made in detail to embodiments of the present disclosure. While certain embodiments of the present disclosure will be described, it will be understood that it is not intended to limit the embodiments of the present disclosure to those described embodiments. To the contrary, reference to embodiments of the present disclosure is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the embodiments of the present disclosure as defined by the appended claims.
Unless otherwise indicated, all numbers expressing quantities and conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.”
In this application, the use of the singular includes the plural unless specifically stated otherwise. In this application, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including,” as well as other forms, such as “includes” and “included,” is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit unless specifically stated otherwise.
Vaporization of thin films comprising a drug can be used for administering aerosols of a drug to a user. Inhalation drug delivery devices in which an aerosol is produced by vaporizing a solid thin film of a drug are described, for example, in U.S. patent application Ser. No. 10/850,895, the disclosure of which is incorporated herein by reference. In such devices, inhalation on the device by a patient activates a heating element on which is disposed a thin solid film of a drug. The fast thermal impulse vaporizes the drug which forms an aerosol in the air flow generated by the patient's inhalation. The aerosol is ingested by the patient and delivered to the patient's lung where the drug can be rapidly and efficiently absorbed into the patient's systemic circulation. Devices in which a fuel capable of undergoing an exothermic metal oxidation-reduction reaction to provide heat to vaporize a substance have also been described (see, for example, “Staccato Device Application.” The thin films of metal coordination complexes of volatile compounds disclosed herein can be used in similar devices and in a similar manner to produce high purity drug aerosols.
It is postulated that treatment of nicotine craving and smoking cessation can be addressed by treatment regimens and/or therapies that reproduce the rapid onset of high nicotine blood concentrations achieved during cigarette smoking. A cigarette smoker typically inhales about 10 times over a period of about 5 minutes. Therefore, a nicotine delivery device capable of simulating the use profile of cigarette smoking would include from 5 to 20 doses of about 200 μg each of nicotine, which could then be intermittently released upon request by the user. While such protocols can be accommodated by previously described portable multi-dose drug delivery devices, for example, as disclosed in U.S. application Ser. No. 10/861,554, entitled “Multiple Dose Condensation Aerosol Devices and Methods of Forming Condensation Aerosols, filed Jun. 3, 2004 such devices employ electrically resistive heating to vaporize a thin solid film, and therefore require a relatively expensive and bulky power source such as a battery. Portable multi-dose drug delivery devices which do not incorporate batteries, which are readily disposable, and which are amenable to high volume, low cost manufacturing can be useful, particularly for nicotine replacement therapies. A mechanically actuated, percussively ignited, chemical heat package, can provide a compact, self-contained heating system capable of vaporizing thin films of drugs, for use in portable, multi-dose and single-dose drug delivery devices.
To deliver a drug, such as nicotine to a user, a drug is vaporized from an exterior surface 30 of at least one heat package 32. A plurality of heat packages 32, for example from 5 to 30 heat packages are contained within each drug delivery device 10.
In
The devices shown in
In certain embodiments, the overall assembled length of the multi-dose drug delivery device can range from about 3 inches to 6 inches, in certain embodiments from about 4 inches to about 4.6 inches.
As shown in
Mounting section 37 includes a mounting plate 55 having a plurality of heat package mounting holes 61, a plurality of air holes 63, and an access hole 65 through which revolver shaft 38 is inserted. Heat packages 32 are inserted in heat package mounting holes 61 and can be held in place with an interference fit, press fit, an adhesive composition, or other such method. Heat packages 32 can be positioned at intervals around revolver shaft 38. Air holes 63 can be located around each of the heat packages 32 such that a sufficient airflow can pass over each heat package to form a substance or drug vaporized from the surface of the heat package.
A first end 67 of revolver shaft 38 is fixedly attached to air inlet end of base section 35. To assemble device 10, mounting section 37 is placed onto base section 35 by inserting revolver shaft 38 through access hole 65. Mouthpiece 14 can then be inserted over mounting section 37 and locked in place.
Actuation mechanisms other than the mechanical mechanism using torsion springs and a push-out switch can be used to provide a mechanical impact to activate a percussive igniter. Such actuation mechanisms include mechanical mechanisms, electrical mechanisms and inhalation mechanisms. Examples of other mechanical mechanisms include, but are not limited to, releasing a compression spring to impact the percussive igniter, releasing or propelling a mass to impact the percussive igniter, moving a lever to release a pre-stressed spring, and rotating a section of the device to stress and release a spring to impact a percussive igniter. Regardless of the mechanism employed in a particular drug delivery device, the actuation mechanism will produce sufficient impact force to deform the outer wall of the percussive igniter, and cause the initiator composition to deflagrate.
In certain embodiments, a drug delivery device can be a single dose device comprising a single heat package. In certain embodiments, wherein a section comprising the one or more percussively ignited heat package, and a section comprising the actuation mechanism are separable by the user, when the one or more heat packages have been activated, a new section comprising unused heat packages with a drug coating can be inserted, and the section comprising the actuation mechanism reused. In certain embodiments, the one or more heat packages and actuation mechanisms can be provided as a single unit that is not designed to be separated by a user. In such embodiments, after the one or more doses have been activated, the entire device can be discarded. Thus, in certain embodiments, the drug delivery device comprising a percussively activated heat package will comprise parts and materials that are low-cost and disposable.
In
A heat package, such as shown in
The self-contained heat packages can be percussively ignited by mechanically impacting the enclosure with sufficient force to cause the part of the enclosure to be directed toward the anvil, wherein the initiator composition is compressed between the tube and the anvil. The compressive force initiates deflagration of the initiator composition. Sparks produced by the deflagration are directed toward and impact the fuel composition, causing the fuel composition to ignite in a self-sustaining metal oxidation reaction generating a rapid, intense heat impulse.
Percussively activated initiator compositions are well known in the art. Initiator compositions for use in a percussive ignition system will deflagrate when impacted to produce intense sparking that can readily and reliably ignite a fuel such as a metal oxidation-reduction fuel. For use in enclosed systems, such as for example, for use in heat packages, it can be useful that the initiator compositions not ignite explosively, and not produce excessive amounts of gas. Certain initiator compositions are disclosed in U.S. patent application Ser. No. 10/851,018 entitled “Stable Initiator Compositions and Igniters,” filed May 20, 2004, the entirety of which is incorporated herein by reference. Initiator compositions comprise at least one metal reducing agent, at least one oxidizing agent, and optionally at least one inert binder.
In certain embodiments, a metal reducing agent can include, but is not limited to molybdenum, magnesium, phosphorous, calcium, strontium, barium, boron, titanium, zirconium, vanadium, niobium, tantalum, chromium, tungsten, manganese, iron, cobalt, nickel, copper, zinc, cadmium, tin, antimony, bismuth, aluminum, and silicon. In certain embodiments, a metal reducing agent can include aluminum, zirconium, and titanium. In certain embodiments, a metal reducing agent can comprise more than one metal reducing agent.
In certain embodiments, an oxidizing agent can comprise oxygen, an oxygen based gas, and/or a solid oxidizing agent. In certain embodiments, an oxidizing agent can comprise a metal-containing oxidizing agent. Examples of metal-containing oxidizing agents include, but are not limited to, perchlorates and transition metal oxides. Perchlorates can include perchlorates of alkali metals or alkaline earth metals, such as but not limited to, potassium perchlorate (KClO4), potassium chlorate (KClO3), lithium perchlorate (LiClO4), sodium perchlorate (NaClO4), and magnesium perchlorate (Mg(ClO4)2). In certain embodiments, transition metal oxides that function as metal-containing oxidizing agents include, but are not limited to, oxides of molybdenum, such as MoO3; oxides of iron, such as Fe2O3; oxides of vanadium, such as V2O5; oxides of chromium, such as CrO3 and Cr2O3; oxides of manganese, such as MnO2; oxides of cobalt such as Co3O4; oxides of silver such as Ag2O; oxides of copper, such as CuO; oxides of tungsten, such as WO3; oxides of magnesium, such as MgO; and oxides of niobium, such as Nb2O5. In certain embodiments, the metal-containing oxidizing agent can include more than one metal-containing oxidizing agent.
In certain embodiments, a metal reducing agent and a metal-containing oxidizing agent can be in the form of a powder. The term “powder” refers to powders, particles, prills, flakes, and any other particulate that exhibits an appropriate size and/or surface area to sustain self-propagating ignition. For example, in certain embodiments, the powder can comprise particles exhibiting an average diameter ranging from 0.01 μm to 200 μm.
In certain embodiments, the amount of oxidizing agent in the initiator composition can be related to the molar amount of the oxidizer at or near the eutectic point for the fuel compositions. In certain embodiments, the oxidizing agent can be the major component and in others the metal reducing agent can be the major component. Also, as known in the art, the particle size of the metal and the metal-containing oxidizer can be varied to determine the burn rate, with smaller particle sizes selected for a faster burn (see, for example, PCT WO 2004/01396). Thus, in some embodiments where faster burn is desired, particles having nanometer scale diameters can be used.
In certain embodiments, the amount of metal reducing agent can range from 25% by weight to 75% by weight of the total dry weight of the initiator composition. In certain embodiments, the amount of metal-containing oxidizing agent can range from 25% by weight to 75% by weight of the total dry weight of the initiator composition.
In certain embodiments, an initiator composition can comprise at least one metal, such as those described herein, and at least one metal-containing oxidizing agent, such as, for example, a chlorate or perchlorate of an alkali metal or an alkaline earth metal, or metal oxide, and others disclosed herein.
In certain embodiments, an initiator composition can comprise at least one metal reducing agent selected from aluminum, zirconium, and boron. In certain embodiments, the initiator composition can comprise at least one oxidizing agent selected from molybdenum trioxide, copper oxide, tungsten trioxide, potassium chlorate, and potassium perchlorate.
In certain embodiments, aluminum can be used as a metal reducing agent. Aluminum can be obtained in various sizes such as nanoparticles, and can form a protective oxide layer and therefore can be commercially obtained in a dry state.
In certain embodiments, the initiator composition can include more than one metal reducing agent. In such compositions, at least one of the reducing agents can be boron. Examples of initiator compositions comprising boron are disclosed in U.S. Pat. Nos. 4,484,960, and 5,672,843. Boron can enhance the speed at which ignition occurs and thereby can increase the amount of heat produced by an initiator composition.
In certain embodiments, reliable, reproducible and controlled ignition of a fuel can be facilitated by the use of an initiator composition comprising a mixture of a metal containing oxidizing agent, at least one metal reducing agent and at least one binder and/or additive material such as a gelling agent and/or binder. The initiator composition can comprise the same or similar reactants at as those comprising a metal oxidation/reduction fuel, as disclosed herein.
In certain embodiments, an initiator composition can comprise one or more additive materials to facilitate, for example, processing, enhance the mechanical integrity and/or determine the burn and spark generating characteristics. An inert additive material will not react or will react to a minimal extent during ignition and burning of the initiator composition. This can be advantageous when the initiator composition is used in an enclosed system where minimizing pressure is useful. The additive materials can be inorganic materials and can function, for example, as binders, adhesives, gelling agents, thixotropic, and/or surfactants. Examples of gelling agents include, but are not limited to, clays such as Laponite, Montmorillonite, Cloisite, metal alkoxides such as those represented by the formula R—Si(OR)n and M(OR)n where n can be 3 or 4, and M can be titanium, zirconium, aluminum, boron or other metal, and colloidal particles based on transition metal hydroxides or oxides. Examples of binding agents include, but are not limited to, soluble silicates such as sodium-silicates, potassium-silicates, aluminum silicates, metal alkoxides, inorganic polyanions, inorganic polycations, inorganic sol-gel materials such as alumina or silica-based sols. Other useful additive materials include glass beads, diatomaceous earth, nitrocellulose, polyvinylalcohol, guar gum, ethyl cellulose, cellulose acetate, polyvinylpyrrolidone, fluoro-carbon rubber (Viton) and other polymers that can function as a binder. In certain embodiments, the initiator composition can comprise more than one additive material.
In certain embodiments, additive materials can be useful in determining certain processing, ignition, and/or burn characteristics of an initiator composition. In certain embodiments, the particle size of the components of the initiator can be selected to tailor the ignition and burn rate characteristics as is known in the art, for example, as disclosed in U.S. Pat. No. 5,739,460.
In certain embodiments, it can be useful that the one or more additives be inert. When sealed within an enclosure, the exothermic oxidation-reduction reaction of the initiator composition can generate an increase in pressure depending on the components selected. In certain applications, such as in portable medical devices, it can be useful to contain the pyrothermic materials and products of the exothermic reaction and other chemical reactions resulting from the high temperatures generated within the enclosure.
In certain embodiments particularly appropriate for use in medical applications, it is desirable that the additive not be an explosive, as classified by the U.S. Department of Transportation, such as, for example, nitrocellulose. In certain embodiments, the additives can be Viton, Laponite or glass filter. These materials bind to the components of an initiator composition and can provide mechanical stability to the initiator composition.
The components of an initiator composition comprising the metal reducing agent, metal-containing oxidizing agent and/or additive materials and/or any appropriate aqueous- or organic-soluble binder, can be mixed by any appropriate physical or mechanical method to achieve a useful level of dispersion and/or homogeneity. For ease of handling, use and/or application, initiator compositions can be prepared as liquid suspensions or slurries in an organic or aqueous solvent.
The ratio of metal reducing agent to metal-containing oxidizing agent can be selected to determine the appropriate burn and spark generating characteristics. In certain embodiments, an initiator composition can be formulated to maximize the production of sparks having sufficient energy to ignite a fuel. Sparks ejected from an initiator composition can impinge upon the surface of a fuel, such as an oxidation/reduction fuel, causing the fuel to ignite in a self-sustaining exothermic oxidation-reduction reaction. In certain embodiments, the total amount of energy released by an initiator composition can range from 0.25 J to 8.5 J. In certain embodiments, a 20 μm to 100 μm thick solid film of an initiator composition can burn with a deflagration time ranging from 5 milliseconds to 30 milliseconds. In certain embodiments, a 40 μm to 100 μm thick solid film of an initiator composition can burn with a deflagration time ranging from 5 milliseconds to 20 milliseconds. In certain embodiments, a 40 μm to 80 μm thick solid film of an initiator composition can burn with a deflagration time ranging from 5 milliseconds to 10 milliseconds.
Examples of initiator compositions include compositions comprising 10% Zr, 22.5% B, 67.5% KClO3; 49% Zr, 49% MoO3, and 2% nitrocellulose; 33.9% Al, 55.4% MoO3, 8.9% B, and 1.8% nitrocellulose; 26.5% Al, 51.5% MoO3, 7.8% B, and 14.2% Viton; 47.6% Zr, 47.6% MoO3, and 4.8% Laponite, where all percents are in weight percent of the total weight of the composition.
Examples of high-sparking and low gas producing initiator compositions comprise a mixture of aluminum, molybdenum trioxide, boron, and Viton. In certain embodiments, these components can be combined in a mixture of 20-30% aluminum, 40-55% molybdenum trioxide, 6-15% boron, and 5-20% Viton, where all percents are in weight percent of the total weight of the composition. In certain embodiments, an initiator composition comprises 26-27% aluminum, 51-52% molybdenum trioxide, 7-8% boron, and 14-15% Viton, where all percents are in weight percent of the total weight of the composition. In certain embodiments, the aluminum, boron, and molybdenum trioxide are in the form of nanoscale particles. In certain embodiments, the Viton is Viton A500.
In certain embodiments, the percussively activated initiator compositions can include compositions comprising a powdered metal-containing oxidizing agent and a powdered reducing agent comprising a central metal core, a metal oxide layer surrounding the core and a flurooalkysilane surface layer as disclosed, for example, in U.S. Pat. No. 6,666,936.
Typically, an initiator composition is prepared as a liquid suspension in an organic or aqueous solvent for coating the anvil and soluble binders are generally included to provide adhesion of the coating to the anvil.
A coating of an initiator composition can be applied to an anvil in various known ways. For example, an anvil can be dipped into a slurry of the initiator composition followed by drying in air or heat to remove the liquid and produce a solid adhered coating having the desired characteristic previously described. In certain embodiments, the slurry can be sprayed or spin coated on the anvil and thereafter processed to provide a solid coating. The thickness of the coating of the initiator composition on the anvil should be such, that when the anvil is placed in the enclosure, the initiator composition is a slight distance of around a few thousandths of an inch, for example, 0.004 inches, from the inside wall of the enclosure.
The fuel can comprise a metal reducing agent an oxidizing agent, such as, for example, a metal-containing oxidizing agent. In certain embodiments, the fuel can comprise a mixture of Zr and MoO3, Zr and Fe2O3, Al and MoO3, or Al and Fe2O3. In certain embodiments, the amount of metal reduction agent can range form 60% by with to 90% by weight, and the amount of metal containing oxidizing agent can range from 40% by weight to 10% by weight.
Examples of useful metal reducing agents for forming a fuel include, but are not limited to, molybdenum, magnesium, calcium, strontium, barium, boron, titanium, zirconium, vanadium, niobium, tantalum, chromium, tungsten, manganese, iron, cobalt, nickel, copper, zinc, cadmium, tin, antimony, bismuth, aluminum, and silicon. In certain embodiments, a metal reducing agent can be selected from aluminum, zirconium, and titanium. In certain embodiments, a metal reducing agent can comprise more than one metal reducing agent.
In certain embodiments, an oxidizing agent for forming a fuel can comprise oxygen, an oxygen based gas, and/or a solid oxidizing agent. In certain embodiments, an oxidizing agent can comprise a metal-containing oxidizing agent. In certain embodiments, a metal-containing oxidizing agent includes, but is not limited to, perchlorates and transition metal oxides. Perchlorates can include perchlorates of alkali metals or alkaline earth metals, such as but not limited to, potassium perchlorate (KClO4), potassium chlorate (KClO3), lithium perchlorate (LiClO4), sodium perchlorate (NaClO4), and magnesium perchlorate (Mg(ClO4)2). In certain embodiments, transition metal oxides that function as oxidizing agents include, but are not limited to, oxides of molybdenum, such as MoO3; iron, such as Fe2O3; vanadium, such as V2O5; chromium, such as CrO3 and Cr2O3; manganese, such as MnO2; cobalt such as Co3O4; silver such as Ag2O; copper, such as CuO; tungsten, such as WO3; magnesium, such as MgO; and niobium, such as Nb2O5. In certain embodiments, the metal-containing oxidizing agent can include more than one metal-containing oxidizing agent.
In certain embodiments, the metal reducing agent forming the solid fuel can be selected from zirconium and aluminum, and the metal-containing oxidizing agent can be selected from MoO3 and Fe2O3.
The ratio of metal reducing agent to metal-containing oxidizing agent can be selected to determine the ignition temperature and the burn characteristics of the solid fuel. An exemplary chemical fuel can comprise 75% zirconium and 25% MoO3, percentage by weight. In certain embodiments, the amount of metal reducing agent can range from 60% by weight to 90% by weight of the total dry weight of the solid fuel. In certain embodiments, the amount of metal-containing oxidizing agent can range from 10% by weight to 40% by weight of the total dry weight of the solid fuel.
In certain embodiments, a fuel can comprise one or more additive materials to facilitate, for example, processing and/or to determine the thermal and temporal characteristics of a heating unit during and following ignition of the fuel. An additive material can be inorganic materials and can function as binders, adhesives, gelling agents, thixotropic, and/or surfactants. Examples of gelling agents include, but are not limited to, clays such as Laponite, Montmorillonite, Cloisite, metal alkoxides such as those represented by the formula R—Si(OR)n and M(OR)n where n can be 3 or 4, and M can be titanium, zirconium, aluminum, boron or other metal, and colloidal particles based on transition metal hydroxides or oxides. Examples of binding agents include, but are not limited to, soluble silicates such as sodium-silicates, potassium-silicates, aluminum silicates, metal alkoxides, inorganic polyanions, inorganic polycations, inorganic sol-gel materials such as alumina or silica-based sols. Other useful additive materials include glass beads, diatomaceous earth, nitrocellulose, polyvinylalcohol, guar gum, ethyl cellulose, cellulose acetate, polyvinylpyrrolidone, fluoro-carbon rubber (VITON) and other polymers that can function as a binder.
Other useful additive materials include glass beads, diatomaceous earth, nitrocellulose, polyvinylalcohol, and other polymers that may function as binders. In certain embodiments, the fuel can comprise more than one additive material. The components of the fuel comprising the metal, oxidizing agent and/or additive material and/or any appropriate aqueous- or organic-soluble binder, can be mixed by any appropriate physical or mechanical method to achieve a useful level of dispersion and/or homogeneity. In certain embodiments, the fuel can be degassed.
The fuel in the heating unit can be any appropriate shape and have any appropriate dimensions. The fuel can be prepared as a solid form, such as a cylinder, pellet or a tube, which can be inserted into the heat package. The fuel can be deposited into the heat package as a slurry or suspension which is subsequently dried to remove the solvent. The fuel slurry or suspension can be spun while being dried to deposit the fuel on the inner surface of the heat package. In certain embodiments, the fuel can be coated on a support, such as the anvil by an appropriate method, including, for example, those disclosed herein for coating an initiator composition on an anvil.
In certain embodiments the anvil can be formed from a combustible metal alloy or metal/metal oxide composition, such as are known in the art, for example, PYROFUZE. Examples of fuel compositions suitable for forming the anvil are disclosed in U.S. Pat. Nos. 3,503,814; 3,377,955; and PCT Application No. WO 93/14044, the pertinent parts of each of which are incorporated herein by reference.
In certain embodiments, the fuel can be supported by a malleable fibrous matrix which can be packed into the heat package. The fuel comprising a metal reducing agent and a metal-containing oxidizing agent can be mixed with a fibrous material to form a malleable fibrous fuel matrix. A fibrous fuel matrix is a convenient fuel form that can facilitate manufacturing and provides faster burn rates. A fibrous fuel matrix is a paper-like composition comprising a metal oxidizer and a metal-containing reducing agent in powder form supported by an inorganic fiber matrix. The inorganic fiber matrix can be formed from inorganic fibers, such as ceramic fibers and/or glass fibers. To form a fibrous fuel, the metal reducing agent, metal-containing oxidizing agent, and inorganic fibrous material are mixed together in a solvent, and formed into a shape or sheet using, for example, paper-making equipment, and dried. The fibrous fuel can be formed into mats or other shapes as can facilitate manufacturing and/or burning.
In certain embodiments, a substance can be disposed on the outer surface of the percussively activated heat package. When activated, the heat generated by burning of the fuel can provide a rapid, intense thermal impulse capable of vaporizing a thin film of substance disposed on an exterior surface of the heat package with minimal degradation. A thin film of a substance can be applied to the exterior of a heat package by any appropriate method and can depend in part on the physical properties of the substance and the final thickness of the layer to be applied. In certain embodiments, methods of applying a substance to a heat package include, but are not limited to, brushing, dip coating, spray coating, screen printing, roller coating, inkjet printing, vapor-phase deposition, spin coating, and the like. In certain embodiments, the substance can be prepared as a solution comprising at least one solvent and applied to an exterior surface of a heat package. In certain embodiments, a solvent can comprise a volatile solvent such as acetone, or isopropanol. In certain embodiments, the substance can be applied to a heat package as a melt. In certain embodiments, a substance can be applied to a film having a release coating and transferred to a heat package. For substances that are liquid at room temperature, thickening agents can be admixed with the substance to produce a viscous composition comprising the substance that can be applied to a support by any appropriate method, including those described herein. In certain embodiments, a layer of substance can be formed during a single application or can be formed during repeated applications to increase the final thickness of the layer.
In certain embodiments, a substance disposed on a heat package can comprise a therapeutically effective amount of at least one physiologically active compound or drug. A therapeutically effective amount refers to an amount sufficient to effect treatment when administered to a patient or user in need of treatment. Treating or treatment of any disease, condition, or disorder refers to arresting or ameliorating a disease, condition or disorder, reducing the risk of acquiring a disease, condition or disorder, reducing the development of a disease, condition or disorder or at least one of the clinical symptoms of the disease, condition or disorder, or reducing the risk of developing a disease, condition or disorder or at least one of the clinical symptoms of a disease or disorder. Treating or treatment also refers to inhibiting the disease, condition or disorder, either physically, e.g. stabilization of a discernible symptom, physiologically, e.g., stabilization of a physical parameter, or both, and inhibiting at least one physical parameter that may not be discernible to the patient. Further, treating or treatment refers to delaying the onset of the disease, condition or disorder or at least symptoms thereof in a patient which may be exposed to or predisposed to a disease, condition or disorder even though that patient does not yet experience or display symptoms of the disease, condition or disorder.
In certain embodiments, the amount of substance disposed on a support can be less than 100 micrograms, in certain embodiments, less than 250 micrograms, and in certain embodiments, less than 1,000 micrograms, and in other embodiments, less than 3,000 micrograms. In certain embodiments, the thickness of a thin film applied to a heat package can range from 0.01 μm to 20 μm, and in certain embodiments can range from 0.5 μm to 10 μm.
In certain embodiments, a substance can comprise a pharmaceutical compound. In certain embodiments, the substance can comprise a therapeutic compound or a non-therapeutic compound. A non-therapeutic compound refers to a compound that can be used for recreational, experimental, or pre-clinical purposes. Classes of drugs that can be used include, but are not limited to, anesthetics, anticonvulsants, antidepressants, antidiabetic agents, antidotes, antiemetics, antihistamines, anti-infective agents, antineoplastics, antiparkinsonian drugs, antirheumatic agents, antipsychotics, anxiolytics, appetite stimulants and suppressants, blood modifiers, cardiovascular agents, central nervous system stimulants, drugs for Alzheimer's disease management, drugs for cystic fibrosis management, diagnostics, dietary supplements, drugs for erectile dysfunction, gastrointestinal agents, hormones, drugs for the treatment of alcoholism, drugs for the treatment of addiction, immunosuppressives, mast cell stabilizers, migraine preparations, motion sickness products, drugs for multiple sclerosis management, muscle relaxants, nonsteroidal anti-inflammatories, opioids, other analgesics and stimulants, ophthalmic preparations, osteoporosis preparations, prostaglandins, respiratory agents, sedatives and hypnotics, skin and mucous membrane agents, smoking cessation aids, Tourette's syndrome agents, urinary tract agents, and vertigo agents.
While it will be recognized that extent and dynamics of thermal degradation can at least in part depend on a particular compound, in certain embodiments, thermal degradation can be minimized by rapidly heating the substance to a temperature sufficient to vaporize and/or sublime the active substance. In certain embodiments, the substrate can be heated to a temperature of at least 250° C. in less than 500 msec, in certain embodiments, to a temperature of at least 250° C. in less than 250 msec, and in certain embodiments, to a temperature of at least 250° C. in less than 100 msec.
In certain embodiments, rapid vaporization of a layer of substance can occur with minimal thermal decomposition of the substance, to produce a condensation aerosol exhibiting high purity of the substance. For example, in certain embodiments, less than 10% of the substance is decomposed during thermal vaporization, and in certain embodiments, less than 5% of the substance is decomposed during thermal vaporization.
Examples of drugs that can be vaporized from a heated surface to form a high purity aerosol include albuterol, alprazolam, apomorphine HCl, aripiprazole, atropine, azatadine, benztropine, bromazepam, brompheniramine, budesonide, bumetanide, buprenorphine, butorphanol, carbinoxamine, chlordiazepoxide, chlorpheniramine, ciclesonide, clemastine, clonidine, colchicine, cyproheptadine, diazepam, donepezil, eletriptan, estazolam, estradiol, fentanyl, flumazenil, flunisolide, flunitrazepam, fluphenazine, fluticasone propionate, frovatriptan, galanthamine, granisetron, hydromorphone, hyoscyamine, ibutilide, ketotifen, loperamide, melatonin, metaproterenol, methadone, midazolam, naratriptan, nicotine, oxybutynin, oxycodone, oxymorphone, pergolide, perphenazine, pindolol, pramipexole, prochlorperazine, rizatriptan, ropinirole, scopolamine, selegiline, tadalafil, terbutaline, testosterone, tetrahydrocannabinol, tolterodine, triamcinolone acetonide, triazolam, trifluoperazine, tropisetron, zaleplon, zolmitriptan, and zolpidem. These drugs can be vaporized from a thin film having a thickness ranging from 0.1 μm to 20 μm, and corresponding to a coated mass ranging from 0.2 mg to 40 mg, upon heating the thin film of drug to a temperature ranging from 250° C. to 550° C. within less than 100 msec, to produce aerosols having a drug purity greater than 90% and in many cases, greater than 99%.
Nicotine is a heterocyclic compound that exists in both a free base and a salt form having the following structure:
At 25° C., nicotine is a colorless to pale yellow volatile liquid. Nicotine has a melting point of −79° C., a boiling point at 247° C., and a vapor pressure of 0.0425 mmHg. The liquid nature prevents formation of stable films and the high vapor pressure can result in evaporation during shelf-life storage. While various approaches for preventing nicotine evaporation and degradation during shelf-life storage have been considered, for example, delivery from a reservoir via ink jet devices, chemical encapsulation of nicotine as a cyclodextrin complex, and nicotine containment in blister packs, such implementations have not been demonstrated to be amendable to low-cost manufacturing.
Volatile compounds, and in particular, nicotine, can be stabilized by forming a metal coordination complex, of the compound.
Appropriate metals and metal-containing compounds for forming thin films of volatile organic compounds are (i) capable of forming a stable composition at standard temperatures, pressures, and environmental conditions; (ii) capable of selectively releasing the volatile organic compound at a temperature that does not degrade, appreciably volatize, or react the metal-containing compound; (iii) capable of forming a complex with the volatile organic compound which is soluble in at least one organic solvent; and (iv) capable of releasing the volatile organic compound without appreciable degradation of the organic compound. In certain embodiments, the metal coordination complex comprises at least one metal salt. In certain embodiments, the at least one metal salt is selected from a salt of Zn, Cu, Fe, Co, Ni, Al, and mixtures thereof. In certain embodiment, the metal salt comprises zinc bromide (ZnBr2).
Organic compounds particularly suited to forming metal coordination complexes include compounds comprising heterocyclic ring systems having one or more nitrogen and/or sulfur atoms, compounds having nitrogen groups, compounds having acid groups such as carboxyl and/or hydroxyl groups, and compounds having sulfur groups such as sulfonyl groups.
In certain embodiments, a stabilized, volatile organic compound such as a drug can be selectively volatilized from a metal coordination complex when heated to a temperature ranging from 100° C. to 600° C., and in certain embodiments can be selectively volatilized when heated to temperature ranging from 100° C. to 500° C., in other embodiments it can be selectively volatilized when heated to temperature ranging from 100° C. to 400° C. As used herein, “selectively vaporize” refers to the ability of the organic compound to be volatilized from the complex, while the metal and/or metal-containing compound is not volatilized, does not degrade to form volatile products, and/or does not react with the organic compound to form volatile reaction products comprising components derived from the metal-containing compound. Use of the term “selectively vaporize” includes the possibility than some metal-containing compound, degradation product, and/or reaction product may be volatilized at a temperature which “selectively vaporizes” the organic complex. However, the amount of metal-containing compound, degradation product, and/or reaction product will not be appreciable such that a high purity of organic compound aerosol is produced, and the amount of any metal-containing compound and/or derivative thereof is within FDA guidelines.
Formation of high yield, high purity aerosols comprising a compound such as a drug can be facilitated by rapidly vaporizing thin films. It is therefore desirable that the metal coordination complexes be capable of being applied or deposited on a substrate as thin films. Thin films can be applied or deposited from a solvent phase, a gas phase, or a combination thereof. In certain embodiments, thin films of a metal coordination complex can be applied from a suspension of solution of a solvent. The solvent can be a volatile solvent that can be removed from the deposited thin film, for example, under vacuum and temperature. A metal coordination complex suspended or dissolved in a solvent can be applied by any appropriate method such as spray coating, roller coating, dip coating, spin coating, and the like. A metal coordination complex can also be deposited on a substrate from the vapor phase.
Metal coordination complexes of zinc bromide (ZnBr2) and nicotine were prepared and evaluated. ZnBr2 is an off-white solid having a melting point of 394° C., a boiling point of 650° C., and a decomposition temperature of 697° C. ZnBr2 is stable under normal temperatures and pressures. The (nicotine)2-ZnBr2 metal salt complex was prepared as disclosed herein. The (nicotine)2-ZnBr2 metal salt complex is a solid with a melting point of 155° C.
The nicotine aerosol yield was determined by measuring the amount of nicotine in the aerosol produced by vaporizing thin films of the (nicotine)2-ZnBr2 complex. Thin film coatings of (nicotine)2-ZnBr2 having a thickness of 2 μm or 6 μm were prepared as disclosed herein. The amount of nicotine comprising a 2 μm, and 6 μm thin film of (nicotine)2-ZnBr2 was about 1.17 mg and about 3.5 mg, respectively. The metal foil substrate on which a thin film of (nicotine)2-ZnBr2 was disposed, was positioned within an airflow of about 20 L/min. Films were heated to a maximum temperature of 300 C., 350° C., 400° C. or 500° C. within less than about 200 msec, by applying a current to the metal foil substrate. The aerosol produced during selective vaporization of the (nicotine)2-ZnBr2 film was collected on an oxalic acid coated filter, and the amount of collected nicotine determined by high pressure liquid chromatography. The percent nicotine yield in the aerosol was the amount of nicotine collected on the filter as determined by HPLC divided by the amount of nicotine in the thin film deposited on the metal foil substrate.
As shown in
The purity of nicotine in an aerosol produced by vaporizing thin films of (nicotine)2-ZnBr2 was also determined. The percent purity of nicotine in the aerosol was determined by comparing the area under the curve representing nicotine with the area under the curve for all other components separated by HPLC. As shown in
While aerosols having a mean mass aerodynamic diameter ranging from 1 to 5 are predominately deposited in the lungs, aerosols of volatile compounds can vaporize during inhalation. The re-vaporized compounds can then be deposited in the mouth or throat resulting in irritation and/or unpleasant taste. The use of rapid vaporization to form a dense bolus of aerosol helps to minimize or prevent re-vaporization of an aerosol formed from a volatile compound. Additionally, re-vaporization can be minimized by the use of appropriate additives included in the metal coordination complex. For example, compounds such as propylene glycol, polyethylene glycol, and the like, can be used. To mask unpleasant flavors, compounds such as menthol, and the like, can be included in the complexes.
Metal coordination complexes can be used to stabilize volatile compounds such as nicotine for use in drug delivery devices as disclosed herein. A metal coordination complex comprising a drug can be applied as a thin film to the exterior surface of a percussively activated heat package. For example, a metal coordination complex comprising a drug can be applied to element 30 of
In certain embodiments, thin films of a metal coordination complex of a drug can be used to provide multiple doses of a drug provided on a spool or reel of tape. For example, a tape can comprise a plurality of drug supply units with each drug supply unit comprising a heat package on which a thin film comprising a metal coordination complex comprising a drug is disposed. Each heat package can include an initiator composition that can be ignited, for example, by resistive heating or percussively, and a fuel capable of providing a rapid, high temperature heat impulse sufficient to selectively vaporize the drug from the metal coordination complex. Each heat package can be spaced at intervals along the length of the tape. During use, one or more heat packages can be positioned within an airway and, while air is flowing through the airway, the heat package can be activated to selectively vaporize the drug from the metal coordination complex. The vaporized drug can condense in the air flow to form an aerosol comprising the drug which can then be inhaled by a user. The tape can comprise a plurality of thin films that define the regions where the initiator composition, fuel, and thin film comprising a drug are disposed. Certain of the multiple layers can further provide unfilled volume for released gases to accumulate to minimize pressure buildup. The plurality of layers can be formed from any material which can provide mechanical support and that will not appreciably chemically degrade at the temperatures reached by the heat package. In certain embodiments, a layer can comprise a metal or a polymer such as polyimide, fluoropolymer, polyetherimide, polyether ketone, polyether sulfone, polycarbonate, or other high temperature resistance polymers. In certain embodiments, the tape can further comprise an upper and lower layer configured to physically and/or environmentally protect the drug or metal coordination complex comprising a drug. The upper and/or lower protective layers can comprise, for example, a metal foil, a polymer, or can comprise a multilayer comprising metal foil and polymers. In certain embodiments, protective layers can exhibit low permeability to oxygen, moisture, and/or corrosive gases. All or portions of a protective layer can be removed prior to use to expose a drug and fuel. The initiator composition and fuel composition can comprise, for example, any of those disclosed herein. Thin film heat packages and drug supply units in the form of a tape, disk, or other substantially planar structure, can provide a compact and manufacturable method for providing a large number of doses of a substance. Providing a large number of doses at low cost can be particularly useful in certain therapies, such as for example, in administering nicotine for the treatment of nicotine craving and/or effecting cessation of smoking.
Drug aerosols formed by selective vaporization of a drug from a metal coordination complex can be used for the pulmonary administration of drugs and for the treatment of diseases and conditions. Accordingly, nicotine aerosols can be used to treat nicotine craving experienced by persons attempting to withdraw from nicotine use, and for effecting smoking cessation. Nicotine aerosols provided to the lungs of a user are expected to simulate the pharmacokinetic profile and blood nicotine concentrations obtained from smoking cigarettes. Therefore, it is anticipated that effective therapies directed to reducing nicotine craving and smoking cessation can be developed using nicotine aerosols generated by the devices and methods disclosed herein.
Embodiments of the present disclosure can be further defined by reference to the following examples, which describe in detail preparation of the compounds of the present disclosure. It will be apparent to those skilled in the art that many modifications, both to the materials and methods, may be practiced without departing from the scope of the present disclosure.
A solution of 2% oxalic acid was prepared by dissolving 20 g of oxalic acid in 1 L of acetone. Glass fiber filters (Whatman) were coated with oxalic acid by dipping the filters in the 2% oxalic acid solution for about 10 seconds. The oxalic acid coated filters were air dried.
A (nicotine)2-ZnBr2(s) complex was prepared by first dissolving solid ZnBr2 in ethanol to form a 1 M solution. A 2 M nicotine solution was prepared by suspending nicotine in ethanol. The ZnBr2 and nicotine solutions were combined and mixed. The resulting solid complex was repeatedly washed with methanol using vacuum filtration, and subsequently dried. The molar ration of nicotine to ZnBr2 in the nicotine-ZnBr2 complex was 2:1.
To coat metal foils, the (nicotine)2-ZnBr2 complex was dissolved in chloroform. The (nicotine)2-ZnBr2 complex was hand coated onto 0.005 inch thick stainless foils. The coatings were dried under vacuum for about 1 hour at 25° C. The coatings of (nicotine)2-ZnBr2 complex were stored in a vacuum and protected from light prior to use.
The coatings of (nicotine)2-ZnBr2 complex were vaporized by applying a current to the metal foil sufficient to heat the coatings to temperatures of 300° C., 350° C., and 400° C. The aerosol formed by vaporizing the coating in an air flow of 20 L/min was analyzed by collecting the aerosol on oxalic acid coated filters. The collected aerosol was extracted from the filters with 5 mL of an aqueous solution containing 0.1% TFA. The purities of the extracts were determined using high pressure liquid chromatography and are shown in
A solution of 2% oxalic acid was prepared by dissolving 20 g of oxalic acid (Aldrich) in 1 L of acetone (J T Baker). GF 50, Ø81 mm glass fiber filters (Schleicher & Schuell) were coated with oxalic acid by dipping the filters in the 2% oxalic acid solution for about 10 seconds. The oxalic acid coated filters were air dried overnight.
A (nicotine)2-ZnBr2(s) complex was prepared by first dissolving solid ZnBr2 in ethanol to form a 1 M solution. A 2 M nicotine solution was prepared by suspending nicotine in ethanol. The ZnBr2 and nicotine solutions were combined and mixed. The resulting solid complex was repeatedly washed with methanol using vacuum filtration, and subsequently dried. The molar ration of nicotine to ZnBr2 in the nicotine-ZnBr2 complex was 2:1.
To coat metal foils, the (nicotine)2-ZnBr2 complex was dissolved in chloroform. Two separate coating thickness of the (nicotine)2-ZnBr2 complex on stainless steel were prepared. A 169.4 mg/mL solution of (nicotine)2-ZnBr2 complex in chloroform and a 338.8 mg/mL solution of (nicotine)2-ZnBr2 complex in chloroform were made. Exposure to light was minimized at all times during and after formation of these solutions. The (nicotine)2-ZnBr2 complex for each solution was hand coated onto 0.005 inch thick stainless foils using a 10 uL Hamilton syringe. 5.9 uL of the 169.4 mg/mL (nicotine)2-ZnBr2 complex solution was coated onto both sides of an area of 1.27 cm×2.3 cm of stainless steel. This corresponds to a 2 μm film thickness coating which contained about 1 mg of nicotine. Similarly, 8.8 μL of the 338.8 mg/mL (nicotine)2-ZnBr2 complex solution was coated onto both sides of an area of 1.27 cm×2.3 cm of stainless steel. This corresponds to a 6 μm film thickness coating which contained about 3.5 mg of nicotine The coatings were dried under vacuum for about 1 hour at 25° C. The coatings of (nicotine)2-ZnBr2 complex were stored in a vacuum for at least 30 minutes and protected from light prior to use.
The coatings of (nicotine)2-ZnBr2 complex were vaporized by applying a current of 13.0V to the metal foil sufficient to heat the coatings to temperature of 350° C. The aerosol formed by vaporizing the coating in an air flow of 28.3 L/min was analyzed by collected the aerosol on oxalic acid coated filters using an 8 stage Anderson impactor. The MMAD of the nicotine aerosol from the 2 μm thick (nicotine)2-ZnBr2 complex was determined to be 2.00. Likewise, the MMAD of the nicotine aerosol from the 6 μm thick (nicotine)2-ZnBr2 complex was determined to be 1.79. After vaporization the filters were extracted with 5 mL of 0.1% trifluoroacetic acid/DI H2O and analyzed by HPLC. The purity of the nicotine aerosol from the 2 μm thick (nicotine)2-ZnBr2 complex was determined to be greater than 97%. Whereas the purity of the the nicotine aerosol from the 6 μm thick (nicotine)2-ZnBr2 complex was determined to be greater than 97%.
An initiator composition was formed by combining 620 parts by weight of titanium having a particle size less than 20 μm, 100 parts by weight of potassium chlorate, 180 parts by weight red phosphorous, 100 parts by weight sodium chlorate, and 620 parts by weight water, and 2% polyvinyl alcohol binder.
The ignition assembly comprising a ¼ inch section of a thin stainless steel wire anvil was dip coated with the initiator composition and dried at about 40-50 C. for about 1 hour. The dried, coated wire anvil was inserted into a 0.003 inch thick or 0.005 inch thick, soft walled aluminum tube that was about 1.65 inches long with an outer diameter of 0.058 inches. The tube was crimped to hold the wire anvil in place and sealed with epoxy.
In the other end of the aluminum tube was placed the fuel. In order to form a mat of heating powder fuel using glass fiber as the binder, 1.3 grams of glass fiber filter paper was taken and added to about 50 mL of water with rapid stirring. After the glass fiber had separated and become suspended in the water, 6 g of MoO3 was added. This was followed with the addition of 3.8 g of Zr (3 μm). After stirring for 30 min, at room temperature the mixture was filtered on standard filter paper and the resulting mat dried at high vacuum at 60° C. A 0.070 inch thick mat was formed which rapidly burns. After manually packing the fuel in the end of the heat package that did not contain the anvil, the fuel end of the soft walled aluminum tube was sealed.
In other embodiments, the fuel was packed into a 0.39 inch length of aluminum sleeve having a 0.094 in outer diameter and inserted over a soft walled aluminum tube (0.003 inch thick or 0.0005 inch thick) that was about 1.18 inches long with an outer diameter of 0.058 that was sealed at one end and had a dried coated wire anvil inserted. The fuel coated aluminum sleeve was sealed until the soft walled aluminum tube by crimping.
The heat packages were coated with drug and percussively ignited using mechanical activation of a spring or breath actuation of a spring.
In some embodiments a fuel mixture comprising Laponite was used. The following procedure was used to prepare solid fuel coatings comprising 76.16% Zr: 19.04% MoO3: 4.8% Laponite® RDS.
To prepare wet Zirconium (Zr), the as-obtained suspension of Zr in DI water (Chemetall, Germany) was agitated on a roto-mixer for 30 minutes. Ten to 40 mL of the wet Zr was dispensed into a 50 mL centrifuge tube and centrifuged (Sorvall 6200RT) for 30 minutes at 3,200 rpm. The DI water was removed to leave a wet Zr pellet.
To prepare a 15% Laponite® RDS solution, 85 grams of DI water was added to a beaker. While stirring, 15 grams of Laponite® RDS (Southern Clay Products, Gonzalez, Tex.) was added, and the suspension stirred for 30 minutes.
The reactant slurry was prepared by first removing the wet Zr pellet as previously prepared from the centrifuge tube and placed in a beaker. Upon weighing the wet Zr pellet, the weight of dry Zr was determined from the following equation: Dry Zr (g)=0.8234 (Wet Zr (g))−0.1059.
The amount of molybdenum trioxide to provide a 80:20 ratio of Zr to MoO3 was then determined, e.g, MoO3=Dry Zr (g)/4, and the appropriate amount of MoO3 powder (Accumet, N.Y.) was added to the beaker containing the wet Zr to produce a wet Zr: MoO3 slurry. The amount of Laponite®RDS to obtain a final weight percent ratio of dry components of 76.16% Zr: 19.04% MoO3: 4.80% Laponite® RDS was determined. Excess water to obtain a reactant slurry comprising 40% DI water was added to the wet Zr and MoO3 slurry. The reactant slurry was mixed for 5 minutes using an IKA Ultra-Turrax mixing motor with a S25N-8G dispersing head (setting 4). The amount of 15% Laponite® RDS previously determined was then added to the reactant slurry, and mixed for an additional 5 minutes using the IKA Ultra-Turrax mixer. The reactant slurry was transferred to a syringe and stored for at least 30 minutes prior to coating.
The Zr:MoO3: Laponite® RDS reactant slurry was then deposited into the heat packages and allowed to dry.
On an assembled heat package was coated manually a solution of alprazolam in dichloromethane using a syringe to apply the coating solution to the end of the heat package containing the fuel (full length of heat package was 1.18 in., drug coated length of the heat package was about 0.39 in). Two to three microliters of solution containing the alprazolam were applied to coat 0.125 mg of alprazolam at a film thickness of 1.58 μm. The coated heat package was dried for at least 30 minutes inside a fume hood. The last traces of solvent were removed in vacuo for 30 minutes prior to vaporization experiments.
After mechanical actuation of the heat package, the aerosol formed by vaporizing the coating in an air flow of 20 L/min at a temperature of greater than 800° C. were collected by passing the air stream containing the aerosol through a PTFE membrane filter (25 mm diameter, 1 μm pore size, Pall Life Sciences) mounted in a Delrin filter (25 mm) holder (Pall Life Sciences). The filter was extracted with l ml of acetonitrile (HPLC grade). The filter extract was analyzed by high performance liquid chromatography (HPLC) using a C-18 reverse phase column (4.6 mm ID×150 mm length, 5 μm packing, “Capcell Pak UG120,” Shiseido Fine Chemicals, Tokyo, Japan). For alprazolam, a binary mobile phase of eluant A (0.1% trifluoroacetic acid in water) and eluant B (0.1% trifluoroacetic acid in acetonitrile) was used with a 5-95% B linear gradient (24 min) at a flow rate of 1 mL/min. Detection was at 200-400 nm using a photodiode array detector. Purity was calculated by measuring peak areas from the chromatogram. The purity of the resultant aerosol was determined to be 96.8% with a recovered yield of 100%. To increase the purity of the aerosol, one can use lower temperatures for vaporization.
On an assembled heat package was coated manually a solution of pramipexole in methanol using a syringe to apply the coating solution to the end of the heat package containing the fuel (full length of heat package was 1.18 in., drug coated length of the heat package was about 0.39 in). Two to three microliters of solution containing the pramipexole were applied to coat 0.500 mg of pramipexole at a film thickness of 6.33 μm. The coated heat package was dried for at least 30 minutes inside a fume hood. The last traces of solvent were removed in vacuo for 30 minutes prior to vaporization experiments.
After mechanical actuation of the heat package, the aerosol formed by vaporizing the coating in an air flow of 20 L/min at a temperature of greater than 800° C. were collected by passing the air stream containing the aerosol through a PTFE membrane filter (25 mm diameter, 1 μm pore size, Pall Life Sciences) mounted in a Delrin filter (25 mm) holder (Pall Life Sciences). The filter was extracted with 1 ml of acetonitrile (HPLC grade). The filter extract was analyzed by high performance liquid chromatography (HPLC) using a C-18 reverse phase column (4.6 mm ID×150 mm length, 5 μm packing, “Capcell Pak UG120,” Shiseido Fine Chemicals, Tokyo, Japan). For pramipexole; a binary mobile phase of eluant A (10 mM NH4HCO3 in water) and eluant B (10 mM NH4HCO3 in methanol) was used with a 5-95% linear gradient of B(29 min) at a flow rate of 0.9 mL/min. Detection was at 200-400 nm using a photodiode array detector. Purity was calculated by measuring peak areas from the chromatogram. The purity of the resultant aerosol was determined to be 98.8% with a recovered yield of 95.6%. To increase the purity of the aerosol, one can use lower temperatures for vaporization.
On an assembled heat package was coated manually a solution of ciclesonide in chloroform using a syringe to apply the coating solution to the end of the heat package containing the fuel (full length of heat package was 1.18 in., drug coated length of the heat package was about 0.39 in). Two to three microliters of solution containing the ciclesonide were applied to coat 0.200 mg of ciclesonide at a film thickness of 2.53 μm. The coated heat package was dried for at least 30 minutes inside a fume hood. The last traces of solvent were removed in vacuo for 30 minutes prior to vaporization experiments.
After mechanical actuation of the heat package, the aerosol formed by vaporizing the coating in an air flow of 20 L/min at a temperature of greater than 800° C. were collected by passing the air stream containing the aerosol through a PTFE membrane filter (25 mm diameter, 1 μm pore size, Pall Life Sciences) mounted in a Delrin filter (25 mm) holder (Pall Life Sciences). The filter was extracted with 1 ml of acetonitrile (HPLC grade). The filter extract was analyzed by high performance liquid chromatography (HPLC) using a C-18 reverse phase column (4.6 mm ID×150 mm length, 5 μm packing, “Capcell Pak UG120,” Shiseido Fine Chemicals, Tokyo, Japan). For ciclesonide, a binary mobile phase of eluant A (0.1% trifluoroacetic acid in water) and eluant B (0.1% trifluoroacetic acid in acetonitrile) was used with a 5-95% B linear gradient (24 min) at a flow rate of 1 mL/min. Detection was at 200-400 nm using a photodiode array detector. Purity was calculated by measuring peak areas from the chromatogram. The purity of the resultant aerosol was determined to be 85.6%. To increase the purity of the aerosol, one can use lower temperatures for vaporization
Rather than packing the heat packages with a fuel, the feasibility of using a wire as the fuel was determined.
Various thicknesses of Pyrofuze wire were obtained from Sigmund Cohn. The 0.005 inch thick wire shaped into a U-shape at one end and the gap was filled with a percussive igniter. Upon striking the wire ignited.
Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims.