This application is a National Stage of International Application No. PCT/KR2018/004179 filed Apr. 10, 2018, claiming priority based on Korean Patent Application No. 10-2017-0046938 filed Apr. 11, 2017, Korean Patent Application No. 10-2017-0077586 filed Jun. 19, 2017, Korean Patent Application No. 10-2017-0100888 filed Aug. 9, 2017, and Korean Patent Application No. 10-2017-0119664 filed Sep. 18, 2017.
Embodiments relate to an aerosol generating device, and more particularly, to an aerosol generating device in which a protrusion of a path accommodating a cigarette stably supports the cigarette to enhance usability, and which has improved durability and stability.
Recently, as the demand for a method of generating aerosol by heating an aerosol-generating material in a cigarette has increased, heating-type cigarettes or heating-type aerosol generating devices have been actively studied.
When using an aerosol generating device including a heater for heating a cigarette by using electricity, the cigarette which is heated by the heater to generate a gas for smoking is separated from the aerosol generating device and discharged, and then a new cigarette may be inserted into the aerosol generating device.
KR 10-1667124 discloses an aerosol generating device generating a gas for smoking by heating a cigarette and describes a structure of a holder that assists an operation of inserting a cigarette into the aerosol generating device or an operation of separating the cigarette from the aerosol generating device.
When a user uses an aerosol generating device having a structure as described above for smoking, the user has to perform an operation of inserting a cigarette into a holder extracted out of the aerosol generating device and pushing the holder and the cigarette into the aerosol generating device, and after smoking, the user has to perform an operation of pulling the holder out of the aerosol generating device and removing the cigarette from the holder. Thus, the user who uses the aerosol generating device may be inconvenienced.
Also, according to the related art, a casing accommodating a cigarette is in direct contact with an outer surface of the cigarette, and thus, heat generated in the cigarette is directly transferred to the casing, thereby overheating the casing. Moreover, since there is insufficient space between the cigarette and the casing, while the cigarette is being inserted into the casing, an outer wall of the cigarette expands when a heater is inserted into the cigarette, and this increases friction between the cigarette and the casing, thus making it difficult to insert the cigarette into the casing. In addition, as the cigarette and the casing are in direct contact with each other, the flow of air needed for generation of aerosol is not smooth inside the casing.
Provided are an aerosol generating device and method that are easy to use.
Also provided is an aerosol generating device having improved durability and stability, the inside of which can be kept clean.
Also provided is a computer-readable recording medium having recorded thereon a program for executing the method on a computer. Technical problems to be solved are not limited to the above-described technical problems, and there may also be other technical problems.
According to an aspect of the present disclosure, an aerosol generating device includes: a hollow casing comprising a path for accommodating a cigarette, an opening that is open to the outside at one end of the path such that the cigarette is inserted into the opening from the outside, a through hole connected to the other end of the path, and a protrusion protruding from the path to contact a portion of an outer surface of the cigarette; and a heater having one side end portion passing through the through hole and arranged inside the path to be inserted into the cigarette accommodated in the path, the heater being configured to heat the cigarette when electricity is applied.
A plurality of the protrusions may be arranged to be spaced apart from each other in a circumferential direction with respect to the center of the cigarette to face the outer surface of the cigarette and form a flow passage through which air passes between adjacent protrusions.
A plurality of the protrusions may be arranged to be spaced apart from each other in a length direction of the cigarette to face the outer surface of the cigarette and form a flow passage through which air passes between adjacent protrusions.
The protrusion may extend in a circumferential direction with respect to the center of the cigarette to contact a portion of the outer surface of the cigarette along the circumferential direction with respect to the center of the cigarette to form a flow passage through which the air passes.
The protrusion may extend in a length direction of the path.
The protrusion may protrude inwardly from the other end of the through hole such that the protrusion contacts a portion of an outer surface of an end portion of the cigarette located at the other end of the path when the cigarette is accommodated in the path.
The protrusion may include an inclined surface inclined toward the center of the path in a direction from the one end of the path to the other end of the path to guide movement of the end portion of the cigarette when the cigarette is inserted into the path.
The casing may further include a bottom wall covering the other end of the path, and the bottom wall may contact a bottom surface of the end portion of the cigarette accommodated in the path, and the through hole may be formed to pass through the bottom wall.
The bottom wall may include a connection path connected to the space between the outer surface of the cigarette and the path.
The bottom wall may include a bottom protrusion protruding to support the bottom surface of the end portion of the cigarette.
The protrusion may extend in a length direction of the path from the one end of the path to the other end of the path, and a plurality of the protrusions may be arranged to be spaced apart from each other in a circumferential direction with respect to the center of the cigarette to face the outer surface of the cigarette and form a flow passage through which the air passes between adjacent protrusions.
The protrusions may include a bottom protruding portion protruding toward the center of the path to contact a bottom surface of the end portion of the cigarette accommodated in the path.
A plurality of the protrusions may be arranged to be spaced apart from each other on an inner wall surface of the path, and the aerosol generating device may further include an end protrusion protruding from the path to contact a portion of an outer surface of an end portion of the cigarette located at the other end of the path when the cigarette is accommodated in the path.
The casing may further include a bottom wall covering the other end of the path, and the bottom wall may contact a bottom surface of the end portion of the cigarette accommodated in the path, and the through hole may be formed to pass through the bottom wall, and the bottom wall may include a bottom protrusion protruding to support the bottom surface of the end portion of the cigarette.
The end protrusion and the bottom protrusion may be connected to each other.
According to another aspect of the present disclosure, an aerosol generating system includes: a holder configured to generate aerosol by heating a cigarette; and a cradle having an internal space into which the holder is inserted, wherein the holder is inserted into the internal space of the cradle and then is tilted to generate the aerosol.
According to another aspect of the present disclosure, a cigarette inserted into a holder includes: a tobacco rod including a plurality of tobacco strands; a first filter segment that is hollow; a cooling structure configured to cool the generated aerosol; and a second filter segment.
According to an aerosol generating device of the embodiments as described above, a user may mount a cigarette to the aerosol generating device by pushing the cigarette along a path of a casing and separate the cigarette from the aerosol generating device by pulling the cigarette, and thus, the aerosol generating device is easy to use.
In addition, by reducing a contact area between the cigarette and a surface of the casing, a heat conduction area whereby heat is transferred from the cigarette to the casing may be reduced.
In addition, as the cigarette and the inner space of the casing are apart from each other, even when the cigarette expands during insertion of a heater into the cigarette, the cigarette is easily inserted into the casing. When there is no sufficient space between the cigarette and the casing, while the cigarette is being inserted into the casing, an outer wall of the cigarette expands when a heater is inserted into the cigarette and this increases friction between the cigarette and the casing, thus making it difficult to insert the cigarette into the casing.
An air stream of the external air may be introduced into a gap between an outer surface of the cigarette and the casing, and thus, the surface of the casing may be cooled.
According to the structure of the casing having a path and a protrusion, the air introduced into the cigarette may be preheated.
In addition, use of a holder accommodating a cigarette by moving relative to the aerosol generating device is excluded, and thus, the number of components is reduced, simplifying the overall structure of the aerosol generating device and preventing malfunction which frequently occurs in relation to the holder.
Also, the aerosol generating device may be kept clean and maintenance may be easy through exclusion of the use of a holder.
In addition, a cigarette inserted into the aerosol generating device is stably supported by the protrusion in the path, thus increasing stability of the aerosol generating device.
Also, as the protrusion of the path contacts a portion of the outer surface of the cigarette, a flow passage through which the air may pass is formed, and thus, external air for assisting generation of aerosol may be supplied smoothly and sufficiently into the interior of the aerosol generating device.
With respect to the terms in the various embodiments of the present disclosure, the general terms which are currently and widely used are selected in consideration of functions of structural elements in the various embodiments of the present disclosure. However, meanings of the terms may be changed according to intention, a judicial precedent, appearance of a new technology, and the like. In addition, in certain cases, a term which is not commonly used may be selected. In such a case, the meaning of the term will be described in detail at the corresponding part in the description of the present disclosure. Therefore, the terms used in the various embodiments of the present disclosure should be defined based on the meanings of the terms and the descriptions provided herein.
In addition, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements. In addition, the terms “-er”, “-or”, and “module” described in the specification mean units for processing at least one function and operation and can be implemented by hardware components or software components and combinations thereof.
Hereinafter, embodiments will be described in detail with reference to the drawings. The disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
The aerosol generating device according to the embodiment shown in
The casing 10 constitutes the outer appearance of the aerosol generating device and functions to accommodate and protect various components in a space formed therein. The casing 10 has an overall hollow cylindrical shape, and a front end portion thereof is opened to the outside such that the cigarette 7 may be inserted thereinto.
The casing 10 may be manufactured using a plastic that does not conduct electricity and heat or a metallic material having a surface coated with a plastic material. While the casing 10 in the illustrated embodiment has a cylindrical shape having a circular cross-section, the embodiments are not limited to the above structure of the casing 10. For example, the casing 10 may have a container having a polygonal cross-section such as a quadrangular cross-section.
Referring to
The inner container 11 includes a path 20 for accommodating the cigarette 7, an opening 21 opened to the outside at one end 20f of the path 20 such that the cigarette 7 is inserted into the opening 21 from the outside, and a through hole 22 connected to the other end 20r of the path 20. The inner container 11 includes a protrusion 25 protruding from an inner wall surface of the path 20 toward a center of the path 20 and contacting a portion of an outer surface 7s of the cigarette 7.
The inner container 11 is arranged in an innermost portion of the casing 10 to provide a movement path for the cigarette 7 such that the cigarette 7 inserted from the outside is moved along the path 20 and to accommodate the cigarette 7. After the inner container 11, the middle container 12, and the outer container 13 are coupled, during use of the aerosol generating device, the inner container 11 is not moved relative to the middle container 12 and the outer container 13 but is maintained in a fixed position.
The path 20 formed in the inner container 11 has a cylindrical shape corresponding to a shape of the cigarette 7. Embodiments are not limited by the shape of the path 20. For example, the path 20 may also have a container shape having a polygonal cross-section such as a quadrangle.
A diameter of the path 20 is greater than an outer diameter of the cigarette 7, and thus, when the cigarette 7 is accommodated in the path 20, space is formed between the path 20 and the cigarette 7. Accordingly, a flow passage 25p which is connected to the outside via the opening 21 of the path 20 and through which the air may pass is formed between the path 20 and the cigarette 7.
The casing 10 includes a bottom wall 29 covering the other end 20r of the path 20. In the embodiment illustrated in
When a user of the aerosol generating device inserts the cigarette 7 into the path 20 by moving the cigarette 7 along the path 20 and the end portion 7e of the cigarette 7 reaches the bottom wall 29, a sense of touch due to contact between the bottom wall 29 and the end portion 7e of the cigarette 7 is delivered to the hand of the user holding the cigarette 7. Therefore, the user may easily mount the cigarette 7 to the aerosol generating device through a simple action of holding the cigarette 7 in his/her hand and pushing the cigarette 7 into the opening 21 of the path 20.
The heater 30 for heating the cigarette 7 is coupled to the casing 10. One side end portion 31 of the heater 30 is arranged inside the path 20 through the through hole 22 of the bottom wall 29, and when the cigarette 7 is accommodated in the casing 10, the one side end portion 31 of the heater 30 is inserted into the bottom surface 7d of the end portion 7e of the cigarette 7.
A size of the through hole 22 formed in the bottom wall 29 may correspond to a thickness of the one side end portion 31 of the heater 30. For example, when the one side end portion 31 of the heater 30 has a circular cross-section, the through hole 22 also has a circular cross-section, and an inner diameter of the through hole 22 is set to correspond to an outer diameter of the one side end portion 31 of the heater 30.
The embodiments are not limited by the size of the inner diameter of the through hole 22, and for example, the inner diameter of the through hole 22 may be greater than the outer diameter of the one side end portion 31 of the heater 30 and an inner surface of the through hole 22 may be spaced apart from an outer surface of the one side end portion 31 of the heater.
The other side end portion 32 of the heater 30 is electrically connected, via an electrical wire 71, to an electricity supplying device 72 arranged at the rear of the casing 10. A base 19 surrounding the electricity supplying device 72 is connected to the rear of the casing 10. When electricity of the electricity supplying device 72 is supplied to the heater 30 while the cigarette 7 is being inserted into the one side end portion 31 of the heater 30, the heater 30 is heated, and thus the cigarette 7 is heated.
Referring to
In the embodiment illustrated in
End portion surfaces of the protrusion 25 contacting the outer surface 7s of the cigarette 7 may be formed as a curved cylindrical surface to correspond to the shape of the outer surface 7s of the cigarette 7.
Referring to
The outer surface 7r of the end portion 7e of the cigarette 7 is not contacted by any component, and thus, the outer surface 7r of the end portion 7e of the cigarette 7 is surrounded by the air. When aerosol particles are generated from the cigarette 7 as the heater 30 heats the cigarette 7 and a user inhales the air through his/her mouth by holding the cigarette 7 between his/her lips, the air around the outer surface 7r of the end portion 7e of the cigarette 7 passes through cigarette 7, and thus an air flow including the aerosol particles may be delivered to the user.
According to the aerosol generating device of the embodiment shown in
In addition, while the cigarette 7 is being inserted into the path 20 of the casing 10 of the aerosol generating device, the protrusions 25 of the path 20 contact the outer surface 7s of the cigarette 7, thereby stably supporting the cigarette 7. Therefore, while the aerosol generating device is being used, the cigarette 7 is not separated from the aerosol generating device and the state in which the cigarette 7 is accommodated in the path 20 of the aerosol generating device is stably maintained, and thus a user may safely enjoy the aerosol generating device.
In addition, as the protrusions 25 of the path 20 of the casing 10 contact portions of the outer surface 7s of the cigarette 7, the flow passage 25p through which the air may pass is formed between the path 20 and the cigarette 7, and thus, the external air for assisting generation of aerosol may be sufficiently and smoothly supplied into the interior of the aerosol generating device.
In the aerosol generating device of the embodiment shown in
The protrusion 125 protrudes inwardly from the other end 20r of the path 20 toward a center of the path 20. Referring to
Referring to
Referring to
The inclined surface 125t of the protrusion 125 has a function of guiding movement of the cigarette 7 such that when the cigarette 7 is inserted into the path 20 to move along the path 20 and the end portion 7e of the cigarette 7 reaches the other end 20r of the path 20, the end portion 7e of the cigarette 7 is inserted into the protrusion 125.
According to the aerosol generating device of the embodiment shown in
Also, a user may easily mount the cigarette 7 to the aerosol generating device through a simple action of inserting the cigarette 7 into the path 20 of the casing 10 up to a position of the protrusions 125 along the path 20. After using the cigarette 7, the user may easily separate the cigarette 7 from the aerosol generating device through a simple action of holding the upper end of the cigarette 7 by hand and pulling the cigarette 7 out of the path 20.
In addition, as the protrusions 125 of the path 20 of the casing 10 contact portions of the outer surface 7r of the end portion 7e of the cigarette 7, a flow passage through which the air may pass is formed between the path 20 and the cigarette 7, and thus, external air for assisting generation of aerosol may be sufficiently and smoothly supplied into the interior of the aerosol generating device.
The aerosol generating device of the embodiment shown in
In the aerosol generating device of the embodiment shown in
The casing 210 has a hollow cylindrical shape, and includes the path 20 to accommodate the cigarette 7, an opening 21 opened from the one end 20f of the path 20 to the outside such that the cigarette 7 is inserted from the outside into the opening 21, a through hole 22 connected to the other end 20r of the path 20, and a protrusion 225 protruding from an inner wall surface of the path 20 toward a center of the path 20 to contact a portion of the outer surface 7s of the cigarette 7.
A diameter of the path 20 is smaller than an outer diameter of the cigarette 7, and thus, when the cigarette 7 is accommodated in the path 20, space is formed between the path 20 and the cigarette 7. Accordingly, a flow passage 25p which is connected to the outside via the opening 21 of the path 20 and thus through which the air may pass is formed between the path 20 and the cigarette 7.
The casing 210 includes a bottom wall 29 covering the other end 20r of the path 20. The bottom wall 29 contacts a bottom surface 7d of an end portion 7e of the cigarette 7 accommodated in the path 20. Also, the through hole 22 is formed to pass through the bottom wall 29 to be connected to the path 20.
The bottom wall 29 includes a connection path 29p connected to the space (flow path 25p) formed between the outer surface 7s of the cigarette 7 and the inner wall surface of the path 20. The connection path 29p has a function of supplying the air introduced from the outside into the path 20 through the opening 21 of the path, to the bottom surface 7d of the end portion 7e of the cigarette 7. The connection path 29p may be formed of a concave groove formed in the bottom wall 29 and extending in a circumferential direction with respect to the through hole 22 or a plurality of concave grooves formed in an outer portion of the through hole 22.
The heater 30 for heating the cigarette 7 is coupled to the casing 210. One side end portion 31 of the heater 30 is arranged inside the path 20 through the through hole 22 of the bottom wall 29, and when the cigarette 7 is accommodated in the casing 210, the one side end portion 31 of the heater 30 is inserted into the bottom surface 7d of the end portion 7e of the cigarette 7.
The other side end portion 32 of the heater 30 is electrically connected, via an electrical wire 71, to an electricity supplying device 72 arranged at the rear of the casing 210. A base 19 surrounding the electricity supplying device 72 is connected to the rear of the casing 210. When electricity of the electricity supplying device 72 is supplied to the heater 30 while the cigarette 7 is being inserted into the one side end portion 31 of the heater 30, the heater 30 is heated, thereby heating the cigarette 7.
A plurality of protrusions 225 are arranged in the path 20 of the casing 210. The protrusions 225 are arranged apart from each other to face the outer surface 7s of the cigarette 7 in a circumferential direction with respect to the center of the cigarette 7. The structure in which the plurality of protrusions 225 are arranged apart from each other in a circumferential direction with respect to the center of the cigarette 7 is the same as the arrangement structure of the protrusions of the embodiments shown in
As described above, as some of the plurality of protrusions 225 are arranged to face the outer surface 7s of the cigarette 7 and apart from each other in a circumferential direction with respect to the center of the cigarette 7 and the other protrusions 225 are arranged to face the outer surface 7s of the cigarette 7 in a length direction of the cigarette 7, a flow passage 25p through which the air passes is formed between adjacent protrusions 225.
In the aerosol generating device according to the embodiment shown in
The aerosol generating device of the embodiment shown in
The casing 210 includes the bottom wall 29 covering the other end 20r of the path 20. The bottom wall 29 contacts the bottom surface 7d of an end portion of the cigarette 7 accommodated in the path 20. Also, the through hole 22 connected to the path 20 is formed in the bottom wall 29 to pass through the bottom wall 29.
The bottom wall 29 covering the other end 20r of the path 20 of the casing 210 includes a bottom protrusion 226. The bottom protrusion 226 protrudes from the bottom wall 29 toward the inner space of the path 20 to support the bottom surface 7d of the end portion of the cigarette 7. The bottom protrusion 226 has an approximately hemispherical shape.
A plurality of bottom protrusions 226 are arranged on the bottom wall 29 and apart from each other in a circumferential direction with respect to a center of the through hole 22 formed in the bottom wall 29. Thus, as the air may pass through the space between adjacent bottom protrusions 226, the air introduced from the outside into the path 20 through the opening 21 of the path 20 is supplied to the bottom surface 7d of the end portion of the cigarette 7 through the space between the bottom protrusions 226.
The heater 30 for heating the cigarette 7 is coupled to the casing 210. One side end portion 31 of the heater 30 is arranged inside the path 20 through the through hole 22 of the bottom wall 29, and when the cigarette 7 is accommodated in the casing 210, the one side end portion 31 of the heater 30 is inserted into the bottom surface 7d of the end portion 7e of the cigarette 7.
The other side end portion 32 of the heater 30 is electrically connected, via the electrical wire 71, to the electricity supplying device 72 arranged at the rear of the casing 210. The base 19 surrounding the electricity supplying device 72 is connected to the rear of the casing 210. When electricity of the electricity supplying device 72 is supplied to the heater 30 while the cigarette 7 is being inserted into the one side end portion 31 of the heater 30, the heater 30 is heated, thereby heating the cigarette 7.
A plurality of protrusions 225 are arranged in the path 20 of the casing 210. The protrusions 225 are arranged apart from each other in a circumferential direction with respect to the center of the cigarette 7 to face the outer surface 7s of the cigarette 7. The structure in which the plurality of protrusions 225 are arranged apart from each other in a circumferential direction with respect to the center of the cigarette 7 is the same as the arrangement structure of the protrusions of the embodiments shown in
In the aerosol generating device according to the embodiment shown in
The aerosol generating device of the embodiment shown in
The casing 310 includes a bottom wall 29 covering the other end 20r of the path 20. The bottom wall 29 contacts a bottom surface 7d of an end portion of the cigarette 7 accommodated in the path 20. Also, a through hole 22 connected to the path 20 is formed in the bottom wall 29 to pass through the bottom wall 29.
The bottom wall 29 covering the other end 20r of the path 20 of the casing 310 includes a bottom protrusion 326. The bottom wall 29 protrudes from the bottom wall 29 toward the inner space of the path 20 and extends in a radial direction toward a center of the through hole 22 to support the bottom surface 7d of the end portion of the cigarette 7. The bottom protrusion 326 has an approximately rectangular parallelepiped shape.
A plurality of bottom protrusions 326 are arranged on the bottom wall 29 and apart from each other in a circumferential direction with respect to a center of the through hole 22 formed in the bottom wall 29. Thus, as the air may pass through the space between adjacent bottom protrusions 326, the air introduced from the outside into the path 20 through the opening 21 of the path 20 is supplied to the bottom surface 7d of the end portion of the cigarette 7 through the space between the bottom protrusions 326.
A plurality of protrusions 325 are arranged in the path 20 of the casing 310. The protrusions 325 are arranged apart from each other to face the outer surface 7s of the cigarette 7 in a circumferential direction with respect to a center of the cigarette 7. The structure in which the plurality of protrusions 325 are arranged apart from each other in a circumferential direction with respect to the center of the cigarette 7 is the same as the arrangement structure of the protrusions of the embodiments shown in
In the aerosol generating device of the embodiment shown in
The aerosol generating device of the embodiment shown in
A plurality of protrusions 425 are arranged in the path 20 of the casing 410. As the protrusions 425 are arranged apart from each other in a circumferential direction with respect to a center of the cigarette 7 to face the outer surface 7s of the cigarette 7, a flow passage through which the air passes is formed between adjacent protrusions 425.
Also, the plurality of protrusions 425 extend in a length direction of the cigarette 7, that is, in an extension direction of the path 20 in a straight line from one end 20f of the path 20 to the other end 20r of the path 20.
While the plurality of protrusions 425 in
In addition, each of the protrusions 425 includes a bottom protruding portion 426 that is bent and protrudes toward a center of the path 20 to contact the bottom surface 7d of the end portion of the cigarette 7 accommodated in the path 20. The through hole 22 connected to the path 20 via the inner side surface of each of the bottom protruding portions 426 of the plurality of protrusions 425 is formed in the other end 20r of the path 20.
One side end portion 31 of the heater 30 is arranged inside the path 20 through the through hole 22 formed by the bottom protruding portions 426, and when the cigarette 7 is accommodated in the casing 410, the one side end portion 31 of the heater 30 is inserted into the bottom surface 7d of the end portion 7e of the cigarette 7.
In the aerosol generating device of the embodiment shown in
The aerosol generating device of the embodiment shown in
The casing 510 includes a bottom wall 29 covering the other end 20r of the path 20. The bottom wall 29 contacts a bottom surface 7d of an end portion 7e of the cigarette 7 accommodated in the path 20. Also, a through hole 22 connected to the path 20 is formed in the bottom wall 29 to pass through the bottom wall 29.
The bottom wall 29 covering the other end 20r of the path 20 of the casing 510 includes a bottom protrusion 526. The bottom protrusion 526 protrudes from the bottom wall 29 toward the inner space of the path 20 to support the bottom surface 7d of the end portion of the cigarette 7. The bottom protrusion 526 has an approximately hemispherical shape.
A plurality of bottom protrusions 526 are arranged on the bottom wall 29 and apart from each other in a circumferential direction with respect to a center of the through hole 22 formed in the bottom wall 29. Thus, as the air may pass through the space between adjacent bottom protrusions 526, the air introduced from the outside into the path 20 through the opening 21 of the path 20 is supplied to the bottom surface 7d of the end portion of the cigarette 7 through the space between the bottom protrusions 526.
A plurality of protrusions 525 are arranged in the path 20 of the casing 510. The protrusions 525 are arranged apart from each other in a circumferential direction with respect to the center of the cigarette 7 to face the outer surface 7s of the cigarette 7. The protrusions 525 have an approximately hemispherical shape.
The casing 510 includes an end protrusion 528 protruding from the other end 20r of the path 20. The end protrusion 528 protrudes from the path 20 to contact a portion of an outer surface 7r of the end portion 7e of the cigarette 7 located at the other end 20r of the path 20 when the cigarette 7 is accommodated in the path 20. The end protrusion 528 has an approximately hemispherical shape.
In the aerosol generating device according to the embodiment shown in
Also, after external air has been smoothly introduced to the through hole 22 of the casing 510 through the space between the plurality of protrusions 525 arranged apart from each other, the air may be smoothly supplied to the bottom surface 7d of the end portion 7e of the cigarette 7 through the space between the end protrusions 528 of the other end 20r of the path 20 and the space between the bottom protrusions 526.
A casing 610 of the aerosol generating device of the embodiment shown in
The casing 610 includes a bottom wall 29 covering the other end 20r of the path 20. The bottom wall 29 contacts a bottom surface 7d of an end portion 7e of the cigarette 7 accommodated in the path 20. Also, a through hole 22 connected to the path 20 is formed in the bottom wall 29 to pass through the bottom wall 29.
The bottom wall 29 covering the other end 20r of the path 20 of the casing 610 includes a bottom protrusion 626. The bottom protrusion 626 protrudes from the bottom wall 29 toward the inner space of the path 20 to support the bottom surface 7d of the end portion of the cigarette 7. The bottom protrusion 626 has an approximately hemispherical shape.
A plurality of bottom protrusions 626 are arranged on a surface of the bottom wall 29 and apart from each other in a circumferential direction with respect to a center of the through hole 22 formed in the bottom wall 29. Thus, as the air may pass through the space between adjacent bottom protrusions 626, the air introduced from the outside into the path 20 through the opening 21 of the path 20 is supplied to the bottom surface 7d of the end portion of the cigarette 7 through the space between the bottom protrusions 626.
A plurality of protrusions 625 are arranged in the path 20 of the casing 610. The protrusions 625 are arranged apart from each other in a circumferential direction with respect to the center of the cigarette 7 to face the outer surface 7s of the cigarette 7. Also, the protrusions 625 are arranged apart from each other to face the outer surface 7s of the cigarette 7 in a length direction of the cigarette 7.
Also, a cross-sectional shape of each of the plurality of protrusions 625 in a length direction of the cigarette 7 may be an oval or a streamline shape vertically extending in the length direction of the cigarette 7. As the protrusions 625 have an oval cross-sectional shape or a streamline cross-sectional shape, an air flow passing through the space between adjacent protrusions 625 may be easily formed.
The casing 610 includes an end protrusion 628 protruding from the other end 20r of the path 20. The end protrusion 628 protrudes from the path 20 to contact a portion of the outer surface 7r of the end portion 7e of the cigarette 7 located at the other end 20r of the path 20 when the cigarette 7 is accommodated in the path 20. A cross-sectional shape of the end protrusion 628 in a length direction of the cigarette 7 may be an oval or a streamlined shape vertically extending in the length direction of the cigarette 7.
In the aerosol generating device according to the embodiment shown in
A casing 710 of the aerosol generating device of the embodiment shown in
The casing 710 includes a bottom wall 29 covering the other end 20r of the path 20. The bottom wall 29 contacts a bottom surface 7d of an end portion 7e of the cigarette 7 accommodated in the path 20. Also, a through hole 22 connected to the path 20 is formed in the bottom wall 29 to pass through the bottom wall 29.
The bottom wall 29 covering the other end 20r of the path 20 of the casing 710 includes a bottom protrusion 726. The bottom protrusion 726 protrudes from the bottom wall 29 toward the inner space of the path 20 to support the bottom surface 7d of the end portion of the cigarette 7.
A plurality of bottom protrusions 726 are arranged on a surface of the bottom wall 29 and arranged apart from each other in a circumferential direction with respect to a center of the through hole 22 formed in the bottom wall 29. Thus, as the air may pass through the space between adjacent bottom protrusions 726, the air introduced from the outside into the path 20 through the opening 21 of the path 20 is supplied to the bottom surface 7d of the end portion of the cigarette 7 through the space between the bottom protrusions 726.
A plurality of protrusions 725 are arranged in the path 20 of the casing 710. The protrusions 725 are arranged apart from each other in a circumferential direction with respect to the center of the cigarette 7 to face the outer surface 7s of the cigarette 7. Also, the protrusions 725 are arranged apart from each other in a length direction of the cigarette 7 to face the outer surface 7s of the cigarette 7.
Also, each of the plurality of protrusions 725 is inclined with respect to the length direction of the cigarette 7 and extends in a circumferential direction with respect to the center of the cigarette 7. The embodiment is not limited by the direction in which each of the plurality of protrusions 725 extends, and for example, each of the plurality of protrusions 725 may not be inclined with respect to the length direction of the cigarette 7 but may extend only horizontally in the circumferential direction with respect to the center of the cigarette 7.
The casing 710 includes an end protrusion 728 protruding from the other end 20r of the path 20. The end protrusion 728 protrudes from the path 20 to contact a portion of the outer surface 7r of the end portion 7e of the cigarette 7 located at the other end 20r of the path 20 when the cigarette 7 is accommodated in the path 20. Also, the end protrusion 728 and the bottom protrusion 726 may be connected to each other at an edge of the other end 20r of the path 20.
In the aerosol generating device according to the embodiment shown in
In the embodiments illustrated in
The reference numerals denoting the components in
Referring to
When a cigarette is inserted into the holder 1, the holder 1 heats the heater 130. The temperature of an aerosol generating material in the cigarette is raised by the heated heater 130, and thus aerosol is generated. The generated aerosol is delivered to a user through a cigarette filter. However, even when a cigarette is not inserted into the holder 1, the holder 1 may heat the heater 130.
The casing 140 may be detached from the holder 1. For example, when a user rotates the casing 140 clockwise or counterclockwise, the casing 140 may be detached from the holder 1.
The diameter of a hole formed by a terminal end 141 of the casing 140 may be smaller than the diameter of a space formed by the casing 140 and the heater 130. In this case, the hole may serve as a guide for a cigarette inserted into the holder 1.
The battery 110 supplies power used for the holder 1 to operate. For example, the battery 110 may supply power for heating the heater 130 and supply power for operating the control unit 120. In addition, the battery 110 may supply power for operating a display, a sensor, a motor, and the like installed in the holder 1.
The battery 110 may be a lithium iron phosphate (LiFePO4) battery, but is not limited to the example described above. For example, the battery 110 may be a lithium cobalt oxide (LiCoO2) battery, a lithium titanate battery, etc.
Also, the battery 110 may have a cylindrical shape having a diameter of 10 mm and a length of 37 mm, but is not limited thereto. The capacity of the battery 110 may be 120 mAh or more, and the battery 110 may be a rechargeable battery or a disposable battery. For example, when the battery 110 is rechargeable, the charging rate (C-rate) of the battery 110 may be 10 C and the discharging rate (C-rate) may be 16 C to 20 C. However, the present disclosure is not limited thereto. Also, for stable use, the battery 110 may be manufactured, such that 80% or more of the total capacity may be ensured even when charging/discharging are performed 8000 times.
Here, it may be determined whether the battery 110 is fully charged or completely discharged based on a level of power stored in the battery 110 as compared to the entire capacity of the battery 110. For example, when power stored in the battery 110 is equal to or more than 95% of the total capacity, it may be determined that the battery 110 is fully charged. Furthermore, when power stored in the battery 110 is 10% or less of the total capacity, it may be determined that the battery 110 is completely discharged. However, the criteria for determining whether the battery 110 is fully charged or completely discharged are not limited to the above examples.
The heater 130 is heated by power supplied from the battery 110. When a cigarette is inserted into the holder 1, the heater 130 is located inside the cigarette. Therefore, the heated heater 130 may raise the temperature of an aerosol generating material in the cigarette.
The shape of the heater 130 may be a combination of a cylindrical shape and a conical shape. For example, the heater 130 may have a diameter of 2 mm, a length of 23 mm, and a cylindrical shape. Also, end 131 of heater 130 may be processed to have an acute angle edge. But, the embodiments are not limited to these features. In other words, the heater 130 may have any shape as long as the heater 130 may be inserted into the cigarette. In addition, only a portion of the heater 130 may be heated. For example, if the heater 130 has a length of 23 mm, only a part of the heater 130, 12 mm distanced from the end 131, is heated, while other part of the heater 130 is not heated.
The heater 130 may be an electrical resistive heater. For example, the heater 130 includes an electrically conductive track, and the heater 130 may be heated as a current flows through the electrically conductive track.
For stable use, the heater 130 may be supplied with power according to the specifications of 3.2 V, 2.4 A, and 8 W, but is not limited thereto. For example, when power is supplied to the heater 130, the surface temperature of the heater 130 may rise to 400° C. or higher. The surface temperature of the heater 130 may rise to about 350° C. before 15 seconds after the power supply to the heater 130 starts.
The holder 1 may have a special temperature sensor. Alternatively, the holder 1 may not be provided with a temperature sensing sensor, and the heater 130 may serve as a temperature sensing sensor. For example, the heater 130 may further include a second electrically conductive track for sensing temperature in addition to a first electrically conductive track for sensing heating temperature.
For example, when a voltage applied to the second electrically conductive track and a current flowing through the second electrically conductive track are measured, a resistance R may be determined. At this time, a temperature T of the second electrically conductive track may be determined by Equation 1 below.
R=R0{1+α(T−T0)} [Equation 1]
In Equation 1, R denotes a current resistance value of the second electrically conductive track, R0 denotes a resistance value at a temperature T0 (e.g., 0° C.), and α denotes a resistance temperature coefficient of the second electrically conductive track. Since conductive materials (e.g., metals) have inherent resistance temperature coefficients, α may be determined in advance according to a conductive material constituting the second electrically conductive track. Therefore, when the resistance R of the second electrically conductive track is determined, the temperature T of the second electrically conductive track may be calculated according to Equation 1.
The heater 130 may include at least one electrically conductive track (a first electrically conductive track and a second electrically conductive track). For example, the heater 130 may include, but is not limited to, two first electrically conductive tracks and one or two second electrically conductive tracks.
An electrically conductive track includes an electro-resistive material. For example, an electrically conductive track may include a metal. In another example, an electrically conductive track may include an electrically conductive ceramic material, a carbon, a metal alloy, or a composite of a ceramic material and a metal.
In addition, the holder 1 may include both an electrically conductive track, which serves as temperature sensing sensors, and a temperature sensing sensor.
The control unit 120 controls the overall operation of the holder 1. Specifically, the control unit 120 controls not only operations of the battery 110 and the heater 130, but also operations of other components included in the holder 1. The control unit 120 may also check the status of each of the components of the holder 1 and determine whether the holder 1 is in an operable state.
The control unit 120 includes at least one processor. A processor may be implemented as an array of a plurality of logic gates or may be implemented as a combination of a general purpose microprocessor and a memory in which a program executable in the microprocessor is stored. It will be understood by one of ordinary skill in the art that the present disclosure may be implemented in other forms of hardware.
For example, the control unit 120 may control the operation of the heater 130. The control unit 120 may control an amount of power supplied to the heater 130 and a time for supplying the power, such that the heater 130 may be heated to a predetermined temperature or maintained at a proper temperature. The control unit 120 may also check the status of the battery 110 (e.g., the remaining amount of the battery 110) and generate a notification signal as occasions demand.
Also, the control unit 120 may check the presence or absence of a user's puff, check the strength of the puff, and count the number of puffs. Also, the control unit 120 may continuously check the time during which the holder 1 is operating. The control unit 120 may also check whether a cradle 2 to be described below is coupled with the holder 1 and control the operation of the holder 1 based on whether the cradle 2 is coupled with or separated from and the holder 1.
Meanwhile, the holder 1 may further include general-purpose components other than the battery 110, the control unit 120, and the heater 130.
For example, the holder 1 may include a display capable of outputting visual information or a motor for outputting tactile information. For example, when a display is included in the holder 1, the control unit 120 may provide a user information about the state of the holder 1 (e.g., availability of the holder, etc.), information about the heater 130 (e.g., start of preheating, progress of preheating, completion of preheating, etc.), information about the battery 110 (e.g., remaining power of the battery 110, availability, etc.), information about resetting of the holder 1 (e.g., reset timing, reset progress, reset completion, etc.), information about cleaning of the holder 1 (e.g., cleaning timing, cleaning progress, cleaning completion, etc.), information about charging of the holder 1 (e.g., need of charging, charging progress, charging completed, etc.), information about puff (e.g., the number of puffs, notification of expected completion of puffs, etc.), or information about safety (e.g., time of use, etc.) via the display. In another example, when a motor is included in the holder 1, the control unit 120 may transmit the above-described information to a user by generating a vibration signal by using the motor.
The holder 1 may also include a terminal coupled with at least one input device (e.g., a button) and/or the cradle 2 through which a user may control the function of the holder 1. For example, a user may perform various functions by using the input device of the holder 1. By adjusting the number of times a user presses the input device (e.g., once, twice, etc.) or the time during which the input device is being pressed (e.g., 0.1 second, 0.2 second, etc.), a desired function from among a plurality of functions of the holder 1 may be executed. As a user manipulates the input device, the holder 1 may perform a function of preheating the heater 130, a function of regulating the temperature of the heater 130, a function of cleaning the space in which a cigarette is inserted, a function of checking whether the battery 110 is in an operable state, a function of displaying the remaining power (available power) of the battery 110, a function of resetting the holder 1, etc. However, the functions of the holder 1 are not limited to the examples described above.
The holder 1 may also include a puff detecting sensor, a temperature sensing sensor, and/or a cigarette insertion detecting sensor. For example, the puff detecting sensor may be implemented by a conventional pressure sensor, and cigarette insertion detecting sensor may be implemented by a general capacitance sensor or electric resistive sensor. Also, the holder 1 may be fabricated to have a structure in which the outside air may flow in/out even in the state where the cigarette is inserted.
In
The battery 210 provides power used to operate the cradle 2. In addition, the battery 210 may supply power for charging the battery 110 of the holder 1. For example, when the holder 1 is inserted into the cradle 2 and the terminal 170 of the holder 1 is coupled with the terminal 260 of the cradle 2, the battery 210 of the cradle 2 may supply power to the battery 110 of the holder 1.
Also, when the holder 1 is coupled with the cradle 2, the battery 210 may supply power used for the holder 1 to operate. For example, when the terminal 170 of the holder 1 is coupled with the terminal 260 of the cradle 2, the holder 1 may operate by using power supplied by the battery 210 of the cradle 2 regardless of whether the battery 110 of the holder 1 is discharged or not.
The examples of type of battery 210 may be the same as the battery 110 shown in
The control unit 220 generally controls the overall operation of the cradle 2. The control unit 220 may control the overall operation of all the configurations of the cradle 2. The control unit 220 may also determine whether the holder 1 is coupled with the cradle 2 and control the operation of the cradle 2 according to coupling or separation of the cradle 2 and the holder 1.
For example, when the holder 1 is coupled with the cradle 2, the control unit 220 may supply power of the battery 210 to the holder 1, thereby charging the battery 110 or heating the heater 130. Therefore, even when remaining power of the battery 110 is low, a user may continuously smoke by coupling the holder 1 with the cradle 2.
The control unit 120 includes at least one processor. A processor may be implemented as an array of a plurality of logic gates or may be implemented as a combination of a general purpose microprocessor and a memory in which a program executable in the microprocessor is stored. It will be understood by one of ordinary skill in the art that the present disclosure may be implemented in other forms of hardware.
Meanwhile, the cradle 2 may further include general-purpose components other than the battery 210 and the control unit 220. For example, cradle 2 may include a display capable of outputting visual information. For example, when the cradle 2 includes a display, the control unit 220 generates a signal to be displayed on the display, thereby informing a user information regarding the battery 210 (e.g., the remaining power of the battery 210, availability of the battery 210, etc.), information regarding resetting of the cradle 2 (e.g., reset timing, reset progress, reset completion, etc.), information regarding cleaning of the holder 1 (e.g., cleaning timing, cleaning necessity, cleaning progress, cleaning completion, etc.), information regarding charging of the cradle 2 (e.g., charging necessity, charging progress, charging completion, etc.).
The cradle 2 may also include at least one input device (e.g., a button) for a user to control the function of the cradle 2, a terminal 260 to be coupled with the holder 1, and/or an interface for charging the battery 210 (e.g., an USB port, etc.).
For example, a user may perform various functions by using the input device of the cradle 2. By controlling the number of times that a user presses the input device or a period of time for which the input device is pressed, a desired function from among the plurality of functions of the cradle 2 may be executed. As a user manipulates the input device, the cradle 2 may perform a function of preheating the heater 130, a function of regulating the temperature of the heater 130, a function of cleaning the space in which a cigarette is inserted, a function of checking whether the cradle 2 is in an operable state, a function of displaying the remaining power (available power) of the battery 210 of the cradle 2, a function of resetting the cradle 2, etc. However, the functions of the cradle 2 are not limited to the examples described above.
As above explained along with
The cradle 2 may include at least one attaching member 271 and/or 272 to increase attachment strength with the holder 1. Also, at least one attaching member 181 may be included in the holder 1 as well. Here, attaching members 181, 271, and 272 may be magnets, but are not limited thereto. In
The holder 1 may include the attaching member 181 at a first position and the cradle 2 may include the attaching members 271 and 272 at a second position and a third position, respectively. In this case, the first position and the third position may be positions facing each other when the holder 1 is inserted into the cradle 2.
Since the attaching members 181, 271, and 272 are included in the holder 1 and the cradle 2, the holder 1 and the cradle 2 may be attached to each other more strongly even when the holder 1 is inserted into one side surface of the cradle 2. In other words, as the holder 1 and the cradle 2 further include the attaching members 181, 271, and 272 in addition to the terminals 170 and 260, the holder 1 and the cradle 2 may be attached to each other more strongly. Therefore, even when there is no separate component (e.g., a lid) in the cradle 2, the inserted holder 1 may not be easily separated from the cradle 2.
Also, if it is determined that the holder 2 is fully inserted into the cradle 2 through the terminals 170, 260 and/or the attaching members 271 and 272, the control unit 220 may charge the battery 110 of the holder 1 using electrical power of the battery 210.
If the holder 1 is fully tilted inside the cradle 2 as shown in
If the holder 1 is tilted as shown in
Also, even in the state that the holder 1 is tilted, the terminal 170 of the holder and the terminal 260 of the cradle 2 are coupled to each other. Therefore, the heater 130 of the holder 1 may be heated by power supplied by the battery 210 of the cradle 2. Therefore, the holder 1 may generate aerosol by using the battery 210 of the cradle 2 even when the remaining power of the battery 110 of the holder 1 is low or the battery 110 of the holder 1 is completely discharged.
Also, when it is determined that the holder 1 titled through the terminals 170 and 260 and/or the attaching members 181, 271, and 272, the control unit 220 may heat the heater 130 of the holder 1 or charge the battery 110 by using power of the battery 210.
A method for generating aerosols shown in
In operation 810, the holder 1 determines whether it is inserted in the cradle 2. For example, the control unit 120 may determine whether the holder 1 is inserted into the cradle 2 based on whether the terminals 170 and 260 of the holder 1 and the cradle 2 are connected to each other and/or whether the attaching members 181, 271, and 272 are operating.
When the holder 1 is inserted into the cradle 2, the method proceeds to operation 820. When the holder 1 is separated from the cradle 2, the method proceeds to operation 830.
In operation 820, the cradle 2 determines whether the holder 1 is tilted. For example, the control unit 220 may determine whether the holder 1 is inserted into the cradle 2 based on whether the terminals 170 and 260 of the holder 1 and the cradle 2 are connected to each other and/or whether attaching members 182, 273, and 274 are operating.
Although it is described that the cradle 2 determines whether the holder 1 is tilted in operation 820, the present disclosure is not limited thereto. In other words, the control unit 120 of the holder 1 may determine whether the holder 1 is tilted.
When the holder 1 is tilted, the method proceeds to operation 840. When the holder 1 is not tilted (i.e., the holder 1 is completely inserted into the cradle 2), the method proceeds to operation 870.
In operation 830, the holder 1 determines whether conditions of using the holder 1 are satisfied. For example, the control unit 120 may determine whether the conditions for using the holder 1 are satisfied by checking whether the remaining power of the battery 110 and whether other components of the holder 1 may be normally operated.
When the conditions for using the holder 1 are satisfied, the method proceeds to operation 840. Otherwise, the method is terminated.
In operation 840, the holder 1 informs a user that the holder 1 is ready to be used. For example, the control unit 120 may output an image indicating that the holder 1 is ready to be used on the display of the holder 1 or may control the motor of the holder 1 to generate a vibration signal.
In operation 850, the heater 130 is heated. For example, when the holder 1 is separated from the cradle 2, the heater 130 may be heated by power of the battery 110 of the holder 1. In another example, when the holder 1 is tilted, the heater 130 may be heated by power of the battery 210 of the cradle 2.
The control unit 120 of the holder 1 or the control unit 220 of the cradle 2 may check the temperature of the heater 130 in real time and control an amount of power supplied to the heater 130 and a time for supplying the power to the heater 130. For example, the control unit 120 or 220 may check the temperature of the heater 130 in real time through a temperature sensor included in the holder 1 or an electrically conductive track of the heater 130.
In operation 860, the holder 1 performs an aerosol generation mechanism. For example, the control unit 120, 220 may check the temperature of the heater 130, which changes as a user performs puffs, and adjust an amount of power supplied to the heater 130 or stop supplying power to the heater 130. Also, the control unit 120 or 220 may count the number of puffs of the user and output information indicating that the holder 1 needs to be cleaned when the number of puffs reaches a certain number of times (e.g., 1500).
In operation 870, the cradle 2 performs charging of the holder 1. For example, the control unit 220 may charge the holder 1 by supplying power of the battery 210 of the cradle 2 to the battery 110 of the holder 1.
Meanwhile, the control unit 120 or 220 may stop the operation of the holder 1 according to the number of puffs of the user or the operation time of the holder 1. Hereinafter, an example in which the control unit 120 or 220 stops the operation of the holder 1 will be described with reference to
A method for generating aerosols shown in
In operation 910, the control unit 120 or 220 determines whether a user puffed. For example, the control unit 120 or 220 may determine whether the user puffed through the puff detecting sensor included in the holder 1.
In operation 920, aerosol is generated according to the puff of the user. The control unit 120 or 220 may adjust power supplied to the heater 130 according to the puff of the user and the temperature of the heater 130, as described above with reference to
In operation 930, the control unit 120 or 220 determines whether the number of puffs of the user is equal to or greater than a puff limit number. For example, assuming that the puff limit number is set to 14, the control unit 120 or 220 determines whether the number of counted puffs is 14 or more.
On the other hand, when the number of puffs of the user is close to the puff limit number (e.g., when the number of puffs of the user is 12), the control unit 120 or 220 may output a warning signal through a display or a vibration motor.
When the number of puffs of the user is equal to or greater than the puff limit number, the method proceeds to operation 950. When the number of puffs of the user is less than the puff limit number, the method proceeds to operation 940.
In operation 940, the control unit 120 or 220 determines whether the operation time of the holder 1 is equal to or greater than an operation limit time. Here, the operation time of the holder 1 refers to accumulated time from a time point at which the holder 1 started its operation to a current time point. For example, assuming that the operation limit time is set to 10 minutes, the control unit 120 or 220 determines whether the holder 1 is operating for 10 minutes or longer.
On the other hand, when the operation time of the holder 1 is close to the operation limit time (e.g., when the holder 1 is operating for 8 minutes), the control unit 120 or 220 may output a warning signal through a display or a vibration motor.
When the holder 1 is operating for the operation limit time or longer, the method proceeds to operation 950. When the operation time of the holder 1 is less than the operation limit time, the method proceeds to operation 920.
In operation 950, the control unit 120 or 220 forcibly terminates the operation of the holder 1. In other words, the control unit 120 or 220 terminates the aerosol generation mechanism of the holder 1. For example, the control unit 120 or 220 may forcibly terminate the operation of the holder 1 by interrupting the power supplied to the heater 130.
The flowchart shown in
Although not shown in
In operation 1010, the control unit 220 of the cradle 2 determines whether the button 240 is pressed. When the button 240 is pressed, the method proceeds to operation 1020. When the button 240 is not pressed, the method proceeds to operation 1030.
In operation 1020, the cradle 2 indicates the status of the battery 210. For example, the control unit 220 may output information regarding the current state of the battery 210 (e.g., remaining power, etc.) on the display 250.
In operation 1030, the control unit 220 of the cradle 2 determines whether a cable is connected to the cradle 2. For example, the control unit 220 determines whether a cable is connected to an interface (e.g., a USB port, etc.) included in the cradle 2. When a cable is connected to the cradle 2, the method proceeds to operation 1040. Otherwise, the method is terminated.
In operation 1040, the cradle 2 performs a charging operation. For example, the cradle 2 charges the battery 210 by using power supplied through a connected cable.
As described above with reference to
Hereinafter, an example of a cigarette that may be inserted into the holder 1 will be described with reference to
Referring to
The cigarette 3 may be similar to a typical burning cigarette. For example, the cigarette 3 may include a first portion 310 containing an aerosol generating material and a second portion 320 including a filter and the like. Meanwhile, the cigarette 3 according to one embodiment may also include an aerosol generating material in the second portion 320. For example, an aerosol generating material in the form of granules or capsules may be inserted into the second portion 320.
The entire first portion 310 may be inserted into the holder 1 and the second portion 320 may be exposed to the outside. Alternatively, only a portion of the first portion 310 may be inserted into the holder 1 or the entire first portion 310 and a portion the second portion 320 may be inserted into the holder 1.
A user may inhale the aerosol while holding the second portion 320 by his/her lips. At this time, the aerosol is mixed with the outside air and is delivered to a user's mouth. As shown in
Referring to
Meanwhile, referring to
But, the features of cigarette 3 shown in
The tobacco rod 310 includes an aerosol generating material. For example, the aerosol generating material may include at least one of glycerin, propylene glycol, ethylene glycol, dipropylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and oleyl alcohol. The tobacco rod 310 may have a length ranged between 7 mm to 15 mm, preferably about 12 mm. Also, the tobacco rod 310 may have a diameter ranged between 7 mm to 9 mm, preferably about 7.9 mm. The length and diameter of tobacco rod 310 are not limited to the above range.
Also, the tobacco rod 310 may include other additive materials like a flavoring agent, a wetting agent, and/or acetate compound. For example, the flavoring agent may include licorice, sucrose, fructose syrup, isosweet, cocoa, lavender, cinnamon, cardamom, celery, fenugreek, cascara, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, mint oil, cinnamon, keragene, cognac, jasmine, chamomile, menthol, cinnamon, ylang ylang, salvia, spearmint, ginger, coriander, coffee, etc. In addition, the wetting agent may include glycerin or propylene glycol.
For example, the tobacco rod 310 may be filled with cut tobacco leaves. Here, cut tobacco leaves may be formed by fine-cutting a tobacco sheet.
For a large wide tobacco sheet to be filled within the tobacco rod 310 having a narrow space, a special operation for facilitating folding of the tobacco sheet is further needed. Therefore, it is easier to fill the tobacco rod 310 with cut tobacco leaves compared to filling the tobacco rod 310 with a tobacco sheet, and thus the productivity and the efficiency of the process for producing the tobacco rod 310 may be improved.
In another example, the tobacco rod 310 may be filled with a plurality of cigarette strands formed by fine-cutting a tobacco sheet. For example, the tobacco rod 310 may be formed by combining a plurality of tobacco strands in the same direction (parallel to one another) or randomly. One tobacco strand may be formed into a cuboid shape with 1 mm width, 12 mm depth, and 0.1 mm height, but not limited thereto.
The tobacco rod 310 filled with tobacco strands may generate much more aerosol than tobacco rod 310 filled with tobacco sheet. By filling the tobacco rod with tobacco strands, wider surface area can be secured compared to using tobacco sheet. A wider surface area indicates that an aerosol generating material has a greater chance of contacting the outside air. Therefore, when the tobacco rod 310 is filled with tobacco strands, the tobacco rod can generate much more aerosol compared to when being filled with tobacco sheet.
Also, when the cigarette 3 is being disengaged from the holder 1, the tobacco rod 310 filled with tobacco strands can be easily pulled out compared to when being filled with tobacco sheet. Compared to tobacco sheet, the tobacco strands experience weaker friction when in contact with the heater 130. Therefore, when the tobacco rod 310 is filled with tobacco strands, the tobacco rod can be more easily removed from the holder 1 compared to when being filled with tobacco sheet.
The tobacco sheet can be formed by pulverizing raw tobacco material into a slurry and drying the slurry. For example, the slurry may contain 15% to 30% aerosol generating material. The raw tobacco material may be tobacco leaf fragments, tobacco stems, and/or fine tobacco powders formed during treatment of tobacco. The tobacco sheet may also include other additives like wood cellulose fibers.
The first filter segment 321 may be a cellulose acetate filter. For example, the first filter segment 321 may have a tubular structure including a hollowness therein. The length of the first filter segment 321 may be any suitable length within the range from 7 mm to 15 mm, preferably about 7 mm, but is not limited thereto. The length of the first filter segment 321 may be smaller than about 7 mm, but the first filter segment preferably should have enough length so that function of at least one of components (such as, cooling element, capsule, acetate filter) may not be damaged. The length of the first filter segment 321 is not limited to the above ranges. Meanwhile, the length of the first filter segment 321 may extended so that whole length of the cigarette 3 can be adjusted based on the length of the first filter segment 321.
The second filter segment 323 may also be a cellulose acetate filter. For example, the second filter segment 323 may be fabricated as a recess filter with a hollow cavity, but is not limited thereto. The length of the second filter segment 323 may be within the range from 5 mm to 15 mm, preferably about 12 mm. The length of the second filter segment 323 is not limited to above range.
Also, the second filter segment 323 may include at least one capsule 324. Here, the capsule 324 may have a structure in which a content liquid containing a flavoring material is wrapped with a film. For example, the capsule 324 may have a spherical or cylindrical shape. The capsule 324 may have a diameter equal to or greater than 2 mm, preferably ranged between 2˜4 mm.
A material forming a surface of the capsule 324 may be starch and/or gellant. For example, the gallant may include gelatin, or a gum. Also, a gelling agent may be further used as a material for forming the film of the capsule 324. Here, gelling agent may include, for example, a calcium chloride. Furthermore, a plasticizer may be further used as a material for forming the film of the capsule 324. As the plasticizer, glycerin and/or sorbitol may be used. Furthermore, a coloring agent may be further used as a material for forming the film of the capsule 324.
For example, as a flavoring material included in the content liquid of the capsule 324, menthol, plant essential oil, and the like may be used. As a solvent of the flavoring material included in the content liquid, for example, a medium chain fatty acid triglyceride (MCT) may be used. Also, the content liquid may include other additives like a figment, an emulsifying agent, a thickening agent, etc.
The cooling structure 322 cools aerosol generated as the heater 130 heats the tobacco rod 310. Therefore, a user may inhale aerosol cooled to a suitable temperature. The length of the cooling structure 322 may be ranged between about 10 mm to 20 mm, preferably about 14 mm. The length of the cooling structure 322 is not limited to the above range.
For example, the cooling structure 322 may be formed by polylactic acid. The cooling structure 322 may be fabricated into various shapes in order to increase a surface area per unit area, namely, a surface area contacting with aerosol. Hereinafter, Various examples of the cooling structure 322 will be explained referring to
The tobacco rod 310 and the first filter segment 321 are packed by a first wrapper 331. For example, the first wrapper 331 may be made of an oil-resistant paper sheet.
The cooling structure 322 and the second filter segment 323 are packed by a second wrapper 332. Also, a whole part of cigarette 3 is packaged again by a third wrapper 333. For example, the second wrapper 332 and the third wrapper 333 may be fabricated using a general filter wrapping paper. Alternatively, the second wrapper 332 may be a hard wrapping paper or PLA scented paper. Also, the second wrapper 332 may package a part of the second filter segment 323, and additionally package other part of the second filter segment 323 and the cooling structure 322.
Referring to
The fourth wrapper 334 may be formed by depositing or coating a predetermined material on one surface or both surfaces of wrapping paper. Here, an example of the predetermined material may be, but is not limited to, silicon. Silicon exhibits characteristics like heat resistance with little change due to the temperature, oxidation resistance, resistances to various chemicals, water repellency, electrical insulation, etc. However, any material other than silicon may be applied to (or coated on) the fourth wrapper 334.
Meanwhile, although
The fourth wrapper 334 may prevent the cigarette 3 from being burned. For example, when the tobacco rod 310 is heated by the heater 130, there is a possibility that the cigarette 3 is burned. In detail, when the temperature is raised to a temperature above the ignition point of any one of materials included in the tobacco rod 310, the cigarette 3 may be burned. Even in this case, since the fourth wrapper 334 includes a non-combustible material, the burning of the cigarette 3 may be prevented.
Furthermore, the fourth wrapper 334 may prevent the holder 1 from being contaminated by substances formed by the cigarette 3. Through puffs of a user, liquid substances may be formed in the cigarette 3. For example, as the aerosol formed by the cigarette 3 is cooled by the outside air, liquid materials (e.g., moisture, etc.) may be formed. As the fourth wrapper 334 wraps the tobacco rod 310 and/or the first filter segment 321, the liquid materials formed in the cigarette 3 may be prevented from being leaked out of the cigarette 3. Accordingly, the casing 140 of the holder 1 and the like may be prevented from being contaminated by the liquid materials formed by the cigarette 3.
For example, the cooling structure of any of
For example, when the cooling structure is manufactured by charging a film (sheet), the film (sheet) may be crushed by an external impact. In this case, an aerosol cooling effect of the cooling structure is reduced.
Alternatively, when the cooling structure is manufactured by using extrusion molding or the like, process efficiency is reduced due to the addition of processes such as cutting of a structure. Also, there are limitations in manufacturing the cooling structure in various shapes.
As the cooling structure according to an embodiment is manufactured by using polylactic acid fibers (e.g., weaving), the risk that the cooling structure is deformed or loses its function by an external impact may be reduced. Also, the cooling structure having various shapes may be manufactured by changing a method of combining fibers.
Also, when the cooling structure is manufactured by using fibers, a surface area contacting aerosol is increased. Accordingly, an aerosol cooling effect of the cooling structure may be further improved.
Referring to
Referring to
Referring to
Referring to
Referring to
The first cross-section 1351 may border on the first filter segment 321, and may include a gap through which aerosol is introduced. The second cross-section 1352 may border on the second filter segment 323, and may include a gap through which the aerosol may be discharged. For example, although each of the first cross-section 1351 and the second cross-section 1352 may include a single gap having the same diameter, diameters and numbers of gaps included in the first cross-section 1351 and the second cross-section 1352 are not limited thereto.
In addition, the cooling structure 1350 may include a third cross-section 1353 including a plurality of gaps between the first cross-section 1351 and the second cross-section 1352. For example, diameters of the plurality of gaps included in the third cross-section 1353 may be less than diameters of the gaps included in the first cross-section 1351 and the second cross-section 1352. Also, the number of the gaps included in the third cross-section 1353 may be greater than the number of the gaps included in the first cross-section 1351 and the second cross-section 1352.
Referring to
As described above, the holder may generate aerosol by heating the cigarette. Also, aerosol may be generated independently by the holder or even when the holder is inserted into the cradle and is tilted. Particularly, when the holder is tilted, the heater may be heated by power of a battery of the cradle.
The method described above may be written as computer programs executable on a computer and can be implemented in general-use digital computers that execute the programs using a computer-readable recording medium. In addition, the structure of the data used in the above-described method may be recorded on a computer-readable recording medium through various means. Examples of the computer-readable recording medium include magnetic storage media (e.g., ROM, RAM, USB drives, floppy disks, hard disks, etc.), optical recording media (e.g., CD-ROMs, or DVDs), etc.
It will be understood by one of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the appended claims. Therefore, the disclosed methods should be considered from an illustrative point of view, not from a restrictive point of view. The scope of the present disclosure is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present disclosure.
The embodiments are applicable to a heating-type cigarette or a heating-type aerosol generating device that generate aerosol by heating an aerosol-generating material in a cigarette.
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0046938 | Apr 2017 | KR | national |
10-2017-0077586 | Jun 2017 | KR | national |
10-2017-0100888 | Aug 2017 | KR | national |
10-2017-0119664 | Sep 2017 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2018/004179 | 4/10/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/190606 | 10/18/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2638904 | Mitchell | May 1953 | A |
4637407 | Bonanno et al. | Jan 1987 | A |
5144962 | Counts et al. | Sep 1992 | A |
5240012 | Ehrman et al. | Aug 1993 | A |
5249586 | Morgan et al. | Oct 1993 | A |
5388594 | Counts et al. | Feb 1995 | A |
5465738 | Rowland | Nov 1995 | A |
5479948 | Counts et al. | Jan 1996 | A |
5498855 | Deevi | Mar 1996 | A |
5591368 | Fleischhauer et al. | Jan 1997 | A |
5666977 | Higgins et al. | Sep 1997 | A |
5878752 | Adams et al. | Mar 1999 | A |
6053176 | Adams et al. | Apr 2000 | A |
6418938 | Fleischhauer et al. | Jul 2002 | B1 |
6532965 | Abhulimen et al. | Mar 2003 | B1 |
6615840 | Fournier et al. | Sep 2003 | B1 |
6810883 | Felter et al. | Nov 2004 | B2 |
7861726 | Lukasavitz | Jan 2011 | B1 |
8375959 | Dittrich et al. | Feb 2013 | B2 |
8419085 | Kim et al. | Apr 2013 | B2 |
8752545 | Buchberger | Jun 2014 | B2 |
8973587 | Liu | Mar 2015 | B2 |
9078472 | Liu | Jul 2015 | B2 |
9271528 | Liu | Mar 2016 | B2 |
9320299 | Hearn et al. | Apr 2016 | B2 |
9427023 | Liu | Aug 2016 | B2 |
9497991 | Besso et al. | Nov 2016 | B2 |
9499332 | Fernando et al. | Nov 2016 | B2 |
9516899 | Plojoux et al. | Dec 2016 | B2 |
9560883 | Hawes | Feb 2017 | B2 |
9603388 | Fernando et al. | Mar 2017 | B2 |
9655383 | Holzherr et al. | May 2017 | B2 |
9693587 | Plojoux et al. | Jul 2017 | B2 |
9723871 | Xiang | Aug 2017 | B2 |
9814263 | Cochand et al. | Nov 2017 | B2 |
9854841 | Ampolini et al. | Jan 2018 | B2 |
9854845 | Plojoux et al. | Jan 2018 | B2 |
9894934 | Li et al. | Feb 2018 | B2 |
9918494 | Mironov et al. | Mar 2018 | B2 |
9955724 | Lord | May 2018 | B2 |
9986760 | Macko et al. | Jun 2018 | B2 |
9999247 | Ruscio et al. | Jun 2018 | B2 |
10015990 | Mironov | Jul 2018 | B2 |
10031183 | Novak, III et al. | Jul 2018 | B2 |
10070667 | Lord et al. | Sep 2018 | B2 |
10104911 | Thorens et al. | Oct 2018 | B2 |
10130780 | Talon | Nov 2018 | B2 |
10136673 | Mironov | Nov 2018 | B2 |
10194697 | Fernando et al. | Feb 2019 | B2 |
10299513 | Perez et al. | May 2019 | B2 |
10368584 | Fernando et al. | Aug 2019 | B2 |
10439419 | Bernauer et al. | Oct 2019 | B2 |
10440987 | Zeng et al. | Oct 2019 | B2 |
10448670 | Talon et al. | Oct 2019 | B2 |
10492542 | Worm et al. | Dec 2019 | B1 |
10548350 | Greim et al. | Feb 2020 | B2 |
10555553 | Binassi et al. | Feb 2020 | B2 |
10588351 | Ricketts | Mar 2020 | B2 |
10645971 | Zitzke | May 2020 | B2 |
10668058 | Rose et al. | Jun 2020 | B2 |
10716329 | Matsumoto et al. | Jul 2020 | B2 |
10813174 | Schneider et al. | Oct 2020 | B2 |
10881143 | Suzuki et al. | Jan 2021 | B2 |
10959463 | Mironov | Mar 2021 | B2 |
11039642 | Zuber et al. | Jun 2021 | B2 |
20040261802 | Griffin et al. | Dec 2004 | A1 |
20050045198 | Larson et al. | Mar 2005 | A1 |
20050172976 | Newman et al. | Aug 2005 | A1 |
20080001052 | Kalous et al. | Jan 2008 | A1 |
20100307518 | Wang | Dec 2010 | A1 |
20110155151 | Newman et al. | Jun 2011 | A1 |
20110209717 | Han | Sep 2011 | A1 |
20110290248 | Schennum | Dec 2011 | A1 |
20110290269 | Shimizu | Dec 2011 | A1 |
20120247494 | Oglesby et al. | Oct 2012 | A1 |
20130213419 | Tucker et al. | Aug 2013 | A1 |
20130284192 | Peleg et al. | Oct 2013 | A1 |
20130319439 | Gorelick et al. | Dec 2013 | A1 |
20130340775 | Juster et al. | Dec 2013 | A1 |
20140020698 | Fiebelkorn | Jan 2014 | A1 |
20140096782 | Ampolini et al. | Apr 2014 | A1 |
20140116455 | Youn | May 2014 | A1 |
20140246035 | Minskoff et al. | Sep 2014 | A1 |
20140299137 | Kieckbusch et al. | Oct 2014 | A1 |
20140305448 | Zuber et al. | Oct 2014 | A1 |
20140318559 | Thorens et al. | Oct 2014 | A1 |
20140345633 | Talon et al. | Nov 2014 | A1 |
20140345634 | Zuber et al. | Nov 2014 | A1 |
20140363145 | Plojoux et al. | Dec 2014 | A1 |
20150007838 | Fernando et al. | Jan 2015 | A1 |
20150013696 | Plojoux | Jan 2015 | A1 |
20150020832 | Greim et al. | Jan 2015 | A1 |
20150024355 | Ghofrani et al. | Jan 2015 | A1 |
20150027474 | Zuber et al. | Jan 2015 | A1 |
20150100441 | Alarcon et al. | Apr 2015 | A1 |
20150136124 | Aronie et al. | May 2015 | A1 |
20150136154 | Mitrev et al. | May 2015 | A1 |
20150163859 | Schneider et al. | Jun 2015 | A1 |
20150201676 | Shin | Jul 2015 | A1 |
20150208725 | Tsai | Jul 2015 | A1 |
20150245654 | Memari et al. | Sep 2015 | A1 |
20150257445 | Henry, Jr. et al. | Sep 2015 | A1 |
20150272211 | Chung | Oct 2015 | A1 |
20160150824 | Memari et al. | Jun 2016 | A1 |
20160205998 | Matsumoto et al. | Jul 2016 | A1 |
20160270437 | Nappi | Sep 2016 | A1 |
20160286861 | Liu | Oct 2016 | A1 |
20160302488 | Fernando et al. | Oct 2016 | A1 |
20160031032 | Malgat et al. | Nov 2016 | A1 |
20160331032 | Malgat et al. | Nov 2016 | A1 |
20160345629 | Mironov | Dec 2016 | A1 |
20160366946 | Murison et al. | Dec 2016 | A1 |
20160374402 | Fernando et al. | Dec 2016 | A1 |
20170006916 | Liu | Jan 2017 | A1 |
20170027229 | Cameron | Feb 2017 | A1 |
20170027234 | Farine et al. | Feb 2017 | A1 |
20170042243 | Plojoux et al. | Feb 2017 | A1 |
20170042251 | Yamada et al. | Feb 2017 | A1 |
20170055580 | Blandino et al. | Mar 2017 | A1 |
20170065002 | Fernando et al. | Mar 2017 | A1 |
20170071251 | Goch | Mar 2017 | A1 |
20170095006 | Egoyants et al. | Apr 2017 | A1 |
20170150757 | Worm et al. | Jun 2017 | A1 |
20170164659 | Schneider et al. | Jun 2017 | A1 |
20170172214 | Li et al. | Jun 2017 | A1 |
20170172215 | Li et al. | Jun 2017 | A1 |
20170238596 | Matsumoto et al. | Aug 2017 | A1 |
20180177234 | Lee | Jun 2018 | A1 |
20180206556 | Thorens et al. | Jul 2018 | A1 |
20180235283 | Zuber et al. | Aug 2018 | A1 |
20190014826 | Thorens et al. | Jan 2019 | A1 |
20190075849 | Hawes | Mar 2019 | A1 |
20190320719 | Liu et al. | Oct 2019 | A1 |
20190364975 | Fernando et al. | Dec 2019 | A1 |
20200006950 | Holzherr | Jan 2020 | A1 |
20200120983 | Chen | Apr 2020 | A1 |
20200154765 | Lee | May 2020 | A1 |
20200232766 | Flick | Jul 2020 | A1 |
20200305508 | Talon | Oct 2020 | A1 |
20200352224 | Plojoux et al. | Nov 2020 | A1 |
20200359681 | Han | Nov 2020 | A1 |
20210000182 | Ruscio et al. | Jan 2021 | A1 |
20210030059 | Moloney | Feb 2021 | A1 |
20210030071 | Reevell | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
2 973 143 | Aug 2016 | CA |
310239 | Dec 1955 | CH |
1102964 | May 1995 | CN |
1209731 | Mar 1999 | CN |
1973706 | Jun 2007 | CN |
101043827 | Sep 2007 | CN |
101444335 | Jun 2009 | CN |
102438470 | May 2012 | CN |
202407082 | Sep 2012 | CN |
202774134 | Mar 2013 | CN |
103096741 | May 2013 | CN |
103281920 | Sep 2013 | CN |
103338665 | Oct 2013 | CN |
203457802 | Mar 2014 | CN |
103859606 | Jun 2014 | CN |
203633505 | Jun 2014 | CN |
103974640 | Aug 2014 | CN |
103997921 | Aug 2014 | CN |
203789137 | Aug 2014 | CN |
1039979622 | Aug 2014 | CN |
104023568 | Sep 2014 | CN |
104039183 | Sep 2014 | CN |
104095295 | Oct 2014 | CN |
104106842 | Oct 2014 | CN |
203943078 | Nov 2014 | CN |
204070570 | Jan 2015 | CN |
204146338 | Feb 2015 | CN |
104382237 | Mar 2015 | CN |
104470387 | Mar 2015 | CN |
104489933 | Apr 2015 | CN |
104544559 | Apr 2015 | CN |
204317494 | May 2015 | CN |
204317504 | May 2015 | CN |
104754964 | Jul 2015 | CN |
104770878 | Jul 2015 | CN |
104812260 | Jul 2015 | CN |
204444239 | Jul 2015 | CN |
204763414 | Nov 2015 | CN |
105163610 | Dec 2015 | CN |
105208882 | Dec 2015 | CN |
105341993 | Feb 2016 | CN |
105357994 | Feb 2016 | CN |
205018293 | Feb 2016 | CN |
105361250 | Mar 2016 | CN |
205180371 | Apr 2016 | CN |
205197003 | May 2016 | CN |
205337598 | Jun 2016 | CN |
105747281 | Jul 2016 | CN |
105831812 | Aug 2016 | CN |
205512358 | Aug 2016 | CN |
205597118 | Sep 2016 | CN |
106037014 | Oct 2016 | CN |
205648910 | Oct 2016 | CN |
106102492 | Nov 2016 | CN |
106132217 | Nov 2016 | CN |
106163307 | Nov 2016 | CN |
205728067 | Nov 2016 | CN |
106174699 | Dec 2016 | CN |
106413439 | Feb 2017 | CN |
106455708 | Feb 2017 | CN |
106455716 | Feb 2017 | CN |
106473233 | Mar 2017 | CN |
106901404 | Jun 2017 | CN |
105342011 | Jun 2018 | CN |
3302518 | Jul 1984 | DE |
012169 | Aug 2009 | EA |
026076 | Feb 2017 | EA |
1 119 267 | Jul 2004 | EP |
2113178 | Nov 2009 | EP |
2 201 850 | Jun 2010 | EP |
2253233 | Nov 2010 | EP |
2316286 | May 2011 | EP |
3 098 738 | Nov 2016 | EP |
2 432 339 | Mar 2017 | EP |
3 179 828 | Jun 2017 | EP |
3 275 319 | Aug 2020 | EP |
2542018 | Mar 2017 | GB |
3-232481 | Oct 1991 | JP |
7-184627 | Jul 1995 | JP |
11-164679 | Jun 1999 | JP |
3845921 | May 2005 | JP |
2006-320286 | Nov 2006 | JP |
4278306 | Jun 2009 | JP |
4728306 | Jun 2009 | JP |
2010-178730 | Aug 2010 | JP |
2010-526553 | Aug 2010 | JP |
2011-87569 | May 2011 | JP |
2011-518567 | Jun 2011 | JP |
4739433 | Aug 2011 | JP |
2012-527222 | Nov 2012 | JP |
2014-500017 | Jan 2014 | JP |
2014-521419 | Aug 2014 | JP |
2014-525237 | Sep 2014 | JP |
2014-533513 | Dec 2014 | JP |
2014-534813 | Dec 2014 | JP |
2015-503916 | Feb 2015 | JP |
2015-506170 | Mar 2015 | JP |
2015-507477 | Mar 2015 | JP |
2015-508996 | Mar 2015 | JP |
2015-524261 | Aug 2015 | JP |
2015-180214 | Oct 2015 | JP |
2015-529458 | Oct 2015 | JP |
2015-204833 | Nov 2015 | JP |
2016-528910 | Sep 2016 | JP |
3207506 | Nov 2016 | JP |
2017-51189 | Mar 2017 | JP |
2017-70297 | Apr 2017 | JP |
2017-514463 | Jun 2017 | JP |
10-0304044 | Nov 2001 | KR |
10-0636287 | Oct 2006 | KR |
10-0806461 | Feb 2008 | KR |
10-0965099 | Jun 2010 | KR |
10-1001077 | Dec 2010 | KR |
10-2011-0096548 | Aug 2011 | KR |
20-2011-0009632 | Oct 2011 | KR |
10-1098112 | Dec 2011 | KR |
10-2012-0027029 | Mar 2012 | KR |
10-2012-0101637 | Sep 2012 | KR |
10-1184499 | Sep 2012 | KR |
10-2012-0109634 | Oct 2012 | KR |
10-2012-0114333 | Oct 2012 | KR |
10-2012-0121314 | Nov 2012 | KR |
10-2013-0027909 | Mar 2013 | KR |
20-0466757 | May 2013 | KR |
10-2013-0081238 | Jul 2013 | KR |
10-2013-0139266 | Dec 2013 | KR |
10-2014-0015774 | Feb 2014 | KR |
10-1383577 | Apr 2014 | KR |
10-2014-0068203 | Jun 2014 | KR |
10-2014-0092312 | Jul 2014 | KR |
10-2014-0116055 | Oct 2014 | KR |
10-2014-0118983 | Oct 2014 | KR |
10-2014-0119072 | Oct 2014 | KR |
10-2014-0135774 | Nov 2014 | KR |
10-2015-0033617 | Apr 2015 | KR |
10-2015-0058569 | May 2015 | KR |
10-1516304 | May 2015 | KR |
10-1523088 | May 2015 | KR |
10-2015-0099704 | Sep 2015 | KR |
10-2015-0099771 | Sep 2015 | KR |
10-2016-0009678 | Jan 2016 | KR |
10-2016-0012110 | Feb 2016 | KR |
10-2016-0012329 | Feb 2016 | KR |
10-2016-0015144 | Feb 2016 | KR |
10-2016-0040643 | Apr 2016 | KR |
10-1609715 | Apr 2016 | KR |
10-2016-0052607 | May 2016 | KR |
10-2016-0060006 | May 2016 | KR |
10-1619032 | May 2016 | KR |
20-2016-0001476 | May 2016 | KR |
10-2016-0088163 | Jul 2016 | KR |
10-2016-0094938 | Aug 2016 | KR |
10-2016-0096744 | Aug 2016 | KR |
10-2016-0108855 | Sep 2016 | KR |
10-1656061 | Sep 2016 | KR |
10-2016-0114743 | Oct 2016 | KR |
10-2016-0124091 | Oct 2016 | KR |
10-1667124 | Oct 2016 | KR |
10-1668175 | Oct 2016 | KR |
10-2016-0129024 | Nov 2016 | KR |
10-2016-0131035 | Nov 2016 | KR |
10-2016-0133665 | Nov 2016 | KR |
10-2016-0137627 | Nov 2016 | KR |
10-1679489 | Nov 2016 | KR |
10-2016-0140608 | Dec 2016 | KR |
10-2016-0142896 | Dec 2016 | KR |
10-2016-0147253 | Dec 2016 | KR |
10-1690389 | Dec 2016 | KR |
10-2017-0006282 | Jan 2017 | KR |
10-2017-0007262 | Jan 2017 | KR |
10-2017-0044158 | Apr 2017 | KR |
10-2017-0071486 | Jun 2017 | KR |
10-2017-0074898 | Jun 2017 | KR |
10-1740160 | Jun 2017 | KR |
2302806 | Jul 2007 | RU |
2425608 | Aug 2011 | RU |
2 531 890 | Oct 2014 | RU |
2564600 | Oct 2015 | RU |
2014 125 232 | Dec 2015 | RU |
2581999 | Apr 2016 | RU |
2589437 | Jul 2016 | RU |
2594557 | Aug 2016 | RU |
2595593 | Aug 2016 | RU |
2 602 053 | Nov 2016 | RU |
2 602 962 | Nov 2016 | RU |
2 603 559 | Nov 2016 | RU |
2 604 012 | Dec 2016 | RU |
2604012 | Dec 2016 | RU |
9406314 | Mar 1994 | WO |
9823171 | Jun 1998 | WO |
0027232 | May 2000 | WO |
2010133342 | Nov 2010 | WO |
2011028372 | Mar 2011 | WO |
2011050964 | May 2011 | WO |
2011095781 | Aug 2011 | WO |
2012072264 | Jun 2012 | WO |
2012123702 | Sep 2012 | WO |
2013034458 | Mar 2013 | WO |
2013060743 | May 2013 | WO |
2013076098 | May 2013 | WO |
2013098395 | Jul 2013 | WO |
2013098398 | Jul 2013 | WO |
2013098409 | Jul 2013 | WO |
2013102609 | Jul 2013 | WO |
2013102612 | Jul 2013 | WO |
2013102609 | Jul 2013 | WO |
2013120565 | Aug 2013 | WO |
2013126777 | Aug 2013 | WO |
2013137084 | Sep 2013 | WO |
2013190036 | Dec 2013 | WO |
2014029880 | Feb 2014 | WO |
2015046386 | Apr 2015 | WO |
2015088744 | Jun 2015 | WO |
2015128665 | Sep 2015 | WO |
2015155289 | Oct 2015 | WO |
2015165813 | Nov 2015 | WO |
2015177044 | Nov 2015 | WO |
2015197627 | Dec 2015 | WO |
2016059073 | Apr 2016 | WO |
2016075028 | May 2016 | WO |
2016076147 | May 2016 | WO |
2016107766 | Jul 2016 | WO |
2016124550 | Aug 2016 | WO |
2016124552 | Aug 2016 | WO |
2016150019 | Sep 2016 | WO |
2016156103 | Oct 2016 | WO |
2016156219 | Oct 2016 | WO |
2016159013 | Oct 2016 | WO |
2016166064 | Oct 2016 | WO |
2016178377 | Nov 2016 | WO |
2017029088 | Feb 2017 | WO |
2017029089 | Feb 2017 | WO |
2017037457 | Mar 2017 | WO |
2017042297 | Mar 2017 | WO |
2017139963 | Aug 2017 | WO |
2018050449 | Mar 2018 | WO |
2018189195 | Oct 2018 | WO |
2019020826 | Jan 2019 | WO |
2019030172 | Feb 2019 | WO |
2019095268 | May 2019 | WO |
Entry |
---|
Office Action dated Nov. 14, 2019 in Korean Application No. 10-2017-0084385. |
Office Action dated Nov. 14, 2019 in Korean Application No. 10-2017-0147605. |
International Search Report dated Jul. 24, 2018 in International Application No. PCT/KR2018/003691. |
Office Action dated Jul. 2, 2019 in Korean Application No. 10-2019-0018815. |
Office Action dated Jul. 3, 2019 in Korean Application No. 10-2019-0017391. |
International Search Report dated Oct. 29, 2018 in International Application No. PCT/KR2018/004181. |
International Search Report dated Sep. 6, 2018 in International Application No. PCT/KR2018/004179. |
International Search Report dated Nov. 6, 2018 in International Application No. PCT/KR2018/004178. |
International Search Report dated Sep. 6, 2018 in International Application No. PCT/KR2018/004176. |
International Search Report dated Sep. 7, 2018 in International Application No. PCT/KR2018/004172. |
International Search Report dated Sep. 7, 2018 in International Application No. PCT/KR2018/004171. |
International Search Report dated Nov. 6, 2018 in International Application No. PCT/KR2018/004130. |
International Search Report dated Nov. 14, 2018 in International Application No. PCT/KR2018/004118. |
International Search Report dated May 29, 2018 in International Application No. PCT/KR2017/012486. |
Office Action dated Aug. 7, 2019 for Korean Patent Application No. 10-2018-0067035, and its English translation provided by Applicants foreign counsel. |
Office Action dated Jun. 27, 2019 for Korean Patent Application No. 10-2018-0063759, and its English translation provided by Applicants foreign counsel. |
Office Action dated Jul. 2, 2019 for Korean Patent Application No. 10-2019-0018815, and its English translation provided by Applicants foreign counsel. |
Office Action dated Jul. 3, 2019 for Korean Patent Application No. 10-2019-0017391, and its English translation provided by Applicants foreign counsel. |
International Preliminary Report on Patentability (Chapter I) dated Jun. 18, 2019 for PCT/KR2017/012486 and its English translation from WIPO. |
Written Opinion of the International Searching Authority for PCT/KR2017/012486 dated May 29, 2018 and its English translation by Google Translate (now published as WO 2018/110834). |
Partial supplementary European search report dated Aug. 3, 2020 in Application No. 17880867.1. |
Extended European search report dated Nov. 4, 2020 by the European Patent Office in Application No. 17880867.1. |
Office Action dated Oct. 29, 2020 by the Korean Patent Office in Application No. 10-2018-0010837. |
Office Action dated Nov. 4, 2020 by the Japanese Patent Office in Application No. 2019-554453. |
Office Action dated Nov. 4, 2020 by the Japanese Patent Office in Application No. 2020-128346. |
Decision on Grant dated Nov. 26, 2020 by the Russian Federal Service for Intellectual Property Patent Application No. 2020124607. |
Office Action dated Nov. 26, 2020 by Russian Federal Service for Intellectual Property Office Patent Application No. 2020124609. |
Decision on Grant dated Oct. 26, 2020 by Russian Federal Service for Intellectual Property in Application No. 2020124610. |
Office Action dated Jun. 29, 2020 by the Korean Patent Office in Application No. 10-2018-0010836. |
Office Action dated Jan. 3, 2020 in Korean Application No. 10-2017-0084389. |
Office Action dated Jan. 16, 2020 in Korean Application No. 10-2017-0084388. |
Office Action dated Jan. 16, 2020 in Korean Application No. 10-2017-0084387. |
Office Action dated Jan. 3, 2020 in Korean Application No. 10-2017-0084386. |
Office Action dated Jan. 3, 2020 in Korean Application No. 10-2018-0018693. |
Office Action dated Jan. 3, 2020 in Korean Application No. 10-2018-0012456. |
Office Action dated Jan. 8, 2020 in Korean Application No. 10-2017-0128293. |
Office Action dated Jan. 8, 2020 in Korean Application No. 10-2017-0119664. |
Office Action dated Feb. 11, 2020 in Korean Application No. 10-2018-0010834. |
Office Action dated Feb. 11, 2020 in Korean Application No. 10-2018-0010835. |
Office Action dated Dec. 11, 2019 in Korean Application No. 10-2018-0010836. |
Office Action dated Feb. 13, 2020 in Korean Application No. 10-2018-0010837. |
Office Action dated Dec. 11, 2019 in Korean Application No. 10-2018-0010841. |
Office Action dated Dec. 19, 2019 in Korean Application No. 10-2018-0090910. |
Office Action dated Feb. 18, 2020 in Russian Application No. 2019121813. |
Extended European Search Report dated Dec. 11, 2020 in European Application No. 20188967.2. |
Extended European Search Report dated Dec. 16, 2020 in European Application No. 20188985.4. |
Office Action dated Dec. 30, 2020 in Russian Application No. 2020124651. |
Office Action dated Dec. 28, 2020 in Russian Application No. 2020124652. |
Office Action dated Dec. 11, 2020 in Russian Application No. 2020124653. |
Office Action dated Jan. 22, 2021 in Russian Application No. 2020124657. |
Office Action dated Jan. 22, 2021 in Russian Application No. 2020124658. |
Extended European Search Report dated Dec. 18, 2020 in European Application No. 18775504.6. |
Office Action dated Jan. 19, 2021 in Japanese Application No. 2019-553569. |
Extended European Search Report dated Jan. 14, 2021 in European Application No. 18784738.9. |
Extended European Search Report dated Dec. 10, 2020 in European Application No. 20188932.6. |
Office Action dated Jan. 12, 2021 in Japanese Application No. 2019-555201. |
Office Action dated Jan. 12, 2021 in Japanese Application No. 2019-555169. |
Office Action dated Jan. 5, 2021 in Japanese Application No. 2019-558557. |
Extended European Search Report dated Nov. 19, 2020 in European Application No. 20188792.4. |
Office Action dated Dec. 1, 2020 in Japanese Application No. 2020-501188. |
Extended European Search Report dated Dec. 18, 2020 in European Application No. 20188926.8. |
Office Action dated Jan. 19, 2021 in Japanese Application No. 2020-501514. |
Office Action dated Sep. 24, 2020 in Korean Application No. 10-2018-0012456. |
Office Action dated May 28, 2020 in Korean Application No. 10-2017-0147605. |
Office Action dated Feb. 4, 2021 in Russian Application No. 2020124609. |
Office Action dated Mar. 2, 2021 in Japanese Application No. 2019-555170. |
Extended European Search Report dated Mar. 15, 2021 in European Application No. 18785061.5. |
Office Action dated Mar. 2, 2021 in Japanese Application No. 2019-555182. |
Extended European Search Report dated Mar. 25, 2021 in European Application No. 18784841.1. |
Office Action dated Feb. 24, 2021 in Japanese Application No. 2019-555203. |
Extended European Search Report dated Jan. 25, 2021 in European Application No. 18785166.2. |
Extended European Search Report dated Jan. 29, 2021 in European Application No. 18784464.2. |
Extended European Search Report dated Mar. 24, 2021 in European Application No. 18784268.7. |
Extended European Search Report dated Mar. 25, 2021 in European Application No. 18784370.1. |
Office Action dated Feb. 9, 2021 in Japanese Application No. 2019-555184. |
Extended European Search Report dated Mar. 19, 2021 in European Application No. 18784164.8. |
Office Action dated Feb. 24, 2021 in Japanese Application No. 2019-555204. |
Extended European Search Report dated Jan. 14, 2021 in European Application No. 18783776.0. |
Office Action dated Feb. 24, 2021 in Japanese Application No. 2019-555168. |
Office Action dated Mar. 30, 2021 in Japanese Application No. 2020-501377. |
Office Action dated Jan. 26, 2021 in Japanese Application No. 2020-501521. |
Office Action dated Jan. 19, 2021 in Indonesian Application No. P00201906007. |
Office Action dated Apr. 9, 2021 in Korean Application No. 10-2020-0116256. |
Office Action dated May 5, 2021 in Canadian Application No. 3,047,236. |
Extended European Search Report dated Apr. 1, 2021 in European Application No. 18805933.1. |
Office Action dated Apr. 4, 2019 in Korean Application No. 10-2019-0019194. |
Office Action dated Apr. 4, 2019 in Korean Application No. 10-2019-0019195. |
Office Action dated Apr. 5, 2019 in Korean Application No. 10-2019-0027638. |
Office Action dated Apr. 25, 2019 in Korean Application No. 10-2019-0033784. |
Office Action dated Jun. 10, 2021 in Russian Application No. 2020124657. |
Office Action dated Jun. 10, 2021 in Russian Application No. 2020124658. |
Extended European Search Report dated Jan. 15, 2021 in European Application No. 20188949.0. |
International Search Report dated Aug. 29, 2018 in International Application No. PCT/KR2018/005945. |
International Search Report dated Nov. 6, 2018 in International Application No. PCT/KR2018/004129. |
International Search Report dated Nov. 30, 2018 in International Application No. PCT/KR2018/006702. |
International Search Report dated Dec. 4, 2018 in International Application No. PCT/KR2018/006747. |
International Search Report dated Nov. 26, 2018 in International Application No. PCT/KR2018/009094. |
International Search Report dated Feb. 28, 2019 in International Application No. PCT/KR2018/009100. |
Communication dated Jul. 22, 2021 by the Korean Patent Office in Korean Application No. 10-2021-0051359. |
Communication dated Jul. 27, 2021 by the Chinese Patent Office in Chinese Application No. 201780084891.5. |
Communication dated Jun. 29, 2021 by the Chinese Patent Office in Chinese Application No. 201880022072.2. |
Communication dated Aug. 16, 2021 by the Chinese Patent Office in Chinese Application No. 201880024006.9. |
Communication dated Aug. 26, 2021 by the Chinese Patent Office in Chinese Application No. 20188024107.6. |
Communication dated Jul. 26, 2021 by the Chinese Patent Office in Chinese Application No. 201880024059.0. |
Communication dated Jul. 19, 2021 by the Chinese Patent Office in Chinese Application No. 201880024070.7. |
Extended European Search Report dated Jun. 16, 2021 in European Application No. 18853434.1. |
Extended European Search Report dated Jul. 1, 2021 in European Application No. 18854661.8. |
Extended European Search Reported dated Jun. 14, 2021 in European Application No. 18842951.8. |
Communication dated Aug. 4, 2021 by the Chinese Patent Office in Chinese Application No. 201880024289.7. |
Communication dated Jul. 16, 2021 by the Chinese Patent Office in Chinese Application No. 201880024367.3. |
Communication dated Sep. 17, 2021 by the Chinese Patent Office in Chinese Application No. 201880030699.2. |
Office Action dated Sep. 24, 2021 in Chinese Application No. 201880024010.5. |
Office Action dated Sep. 29, 2021 in Chinese Application No. 201880024276.X. |
Office Action dated Sep. 29, 2021 in Chinese Application No. 201880024311.8. |
Number | Date | Country | |
---|---|---|---|
20200154765 A1 | May 2020 | US |