The present invention relates to an aerosol generation device. In particular, the invention relates to an aerosol generation device with a partially opaque portion for rendering an illumination unit non-visible when the illumination unit is not emitting light.
Aerosol generation devices commonly comprise light-emitting indicators to indicate technical information or an operational state of the device or the consumable.
Typically, the light-emitting indicators are arranged within the housing of the aerosol generation device, and the housing is provided with light-guide portions or holes to allow the light-emitting indicators to be visible to a user. However, since the light-transmitting holes or light-guides are visible to a user even when the light-emitting indicators are not emitting any light, discerning between a state in which the light-emitting indicators are emitting light, and state in which the light-emitting indicators are not emitting light, can be become challenging under disadvantageous lighting situations. Additionally, such configurations of the housing are not aesthetically pleasing as they break up the visual appearance of the outer surface of the aerosol generation device.
Furthermore, where an illumination unit for of the aerosol generation device comprises a plurality of light sources forming a contiguous illumination region, visual feedback that indicates a state of the aerosol generation device or a consumable used with the aerosol generation device is typically provided by a number of the light sources being illuminated (“on”), and the remaining lights sources not being illuminated (“off”). However, a user may not be able to easily discern those light sources which are “off”. This is particularly true where the light sources of the illumination unit which do not emit light are difficult to detect by the eye of the user. The user may therefore have difficulties in understanding where the contiguous illumination region starts and where it ends, which may lead to a difficulty in understanding the value of the state indicated by the illuminated light sources.
Therefore, there is a need for an aerosol generation device with housing which is capable of a more reliable indication of information to a user of the device and/or which allows for an aesthetically pleasing design.
Some or all of the above objectives are achieved by the invention as defined by the features of the independent claims. Preferred embodiments of the invention are defined by the features of the dependent claims.
A first aspect of the invention is an aerosol generation device having a housing and an illumination unit capable of emitting light and covered by an exterior wall of the housing, the exterior wall comprising or substantially consisting of a light-transmissive portion arranged such that light emitted by the illumination unit is transmitted through the light-transmissive portion, wherein the illumination unit is not visible through the light-transmissive portion from the exterior of the device when the illumination unit does not emit light. The light-transmissive portion allows the illumination unit to be visible when the illumination unit is emitting light. Thus, it may allow the illumination unit to provide visual feedback indicating information regarding the aerosol generation device to a user of the device. On the other hand, the light-transmissive prevents the illuminations unit from being visible when it is not transmitting light, thus preventing that a user is lead to believe that the illumination unit is signaling certain information about the state of the device or the consumable, when in fact it is not. Furthermore, the non-visible illumination unit prevents any visual breakup of the lines and surfaces of the exterior surface of the device housing, which allows for an aesthetically pleasing design. It should be noted that term “not visible” refers to a non-visibility to the human eye that is achieved under common ambient lighting conditions.
According to a second aspect, in the preceding aspect, the light-transmissive portion comprises a laminar structure including a partially or fully transparent layer and a partially light-reflective layer. A laminar structure increases production flexibility. Furthermore, the layers of the laminar structure provide different characteristics for achieving light-transmission properties, in particular the property of transmitting light emitted by the illumination unit and of concealing the illumination unit from the eye of the user when it is not emitting light. The laminar structure may be adapted to suit different requirements and needs for the aerosol generation device and the respective production processes.
According to a third aspect, in the preceding aspect, the partially or fully transparent layer is arranged closer the illumination unit than the partially light-reflective layer. The light-reflective layer further improves the optical property of the light-transmissive portion by reflecting substantial parts of the light incident on the light-reflective layer from an exterior of the housing to improve concealment of the illumination unit when the illumination unit is not emitting light, and simultaneously allows light to transmitted through the light-reflective layer to an exterior of the housing to allow the illumination unit to visible through the light-transmissive layer when the illumination unit is emitting light.
According to a fourth aspect, in the preceding aspect, the partially light-reflective layer comprises a coating created by a physical vapor deposition (PVD), chemical vapor deposition (CVD) and/or non-conducting vacuum metallization (NCVM) process. These processes allow the accurate and precise deposition of layers onto a surface with well-defined properties for achieving desired optical properties of the light-reflective layer.
According to a fifth aspect, in any one of the second to fourth aspects, the partially light-reflective layer comprises an aluminum, copper, or bronze material. These are commonly available and cost-efficient materials that provide well-known light-reflective properties.
According to a sixth aspect, in any one of the preceding aspects, the laminar structure comprises a light-diffusive layer. The light-diffusive layer further aids in rendering the illumination unit non-visible when the illumination unit is not emitting light, while simultaneously allowing light to be transmitted through the light-diffusive layer.
According to a seventh aspect, in the preceding aspect, the light-diffusive layer forms the exterior surface of the light-transmissive portion. A light-diffusive layer as the exterior layer serves as a protective layer since damages to a light-diffusive layer, such as scratches, bumps, indentations and small holes are less visible on the light-diffusive layer due to the light-diffusive property than on a shiny, glossy or mirrored exterior layer.
According to an eighth aspect, in any one of the second to seventh aspects, one or more layers of the laminar structure are colored or tinted. This allows the light-transmissive portion to appear in various colors and tints for different visual appearances.
According to a ninth aspect, in any one of the preceding aspects, the housing comprises a main body on which the illumination unit is arranged, and a panel member that is movably and/or detachably attached to the main body and that comprises or substantially consists of the exterior wall of the housing. A movable and/or detachable panel that comprises the light-transmissive layer allows easy and convenient access to the illumination unit and other parts of the aerosol generation device in case maintenance or repairs are required.
According to a tenth aspect, in any one of the preceding aspects, the shape and/or length and/or width and/or radius of the light-transmissive portion corresponds to the shape and/or length and/or width and/or radius, respectively, of the illumination unit. This improves the homogenous illumination of the light-transmissive portion by light emitted from the illumination unit.
According to an eleventh aspect, in any one of the preceding aspects, the length and/or width and/or radius of the light-transmissive portion is so small that the light-transmissive portion is not visibly discernible from the exterior of the device when the illumination unit does not emit light. This further serves for rendering the illumination unit non-visible to the human eye when the illumination unit is not emitting light.
According to a twelfth aspect, in any one of the preceding aspects, the illumination unit is positioned such that at least parts of the light emitted by the illumination unit passes through the light-transmissive portion in a direction substantially perpendicular to the exterior surface of the exterior wall of the housing. This aspect makes clear that the position of the light-transmissive portion substantially corresponds to the position of the illumination unit and ensures transmission of light emitted from the illumination unit through the light-transmissive portion to an exterior side of the light-transmissive.
According to a thirteenth aspect, in any one of the preceding aspects, the light-transmissive portion and at least parts of the housing adjacent to the light-transmissive portion and/or substantially the entire exterior wall of the housing are provided with substantially the same exterior surface finish. This reduces the visibility of transitions between the light-transmissive portion and adjacent parts of the housing such that the light-transmissive portion and the device housing are not visually discernible, to further conceal the illumination unit when no light is emitted.
According to a fourteenth aspect, in the preceding aspect, the surface finish is a glossy, mirrored, or matte finish. This allows the light-transmissive portion to appear with a desired visual effect, and may further improve concealment of the illumination unit when not emitting light. Furthermore, a glossy or mirrored surface finish may improve tactile grip of the exterior surface of the light-transmissive portion, while a matte finish may provide a finish that can mask or hide surface imperfections due to, for example, the aerosol generation device being subjected to wear and tear.
According to a fifteenth aspect, in the preceding aspect, the surface finish is provided by one of the light-reflective layer, the light-diffusive layer, and a combination thereof. This may eliminate the need for an additional or separate step for providing a surface finish.
According to a sixteenth aspect, in any one of the preceding aspects, the illumination unit comprises one or more LED light sources or LED light strips. LED light sources offer high energy efficiency, longevity, miniaturization capabilities and low heat generation, making them ideal for use in small and portable devices such as an aerosol generation device.
According to a seventeenth aspect, in any one of the preceding aspects, the illumination unit comprises a plurality of light sources arranged in a straight or curved line.
An eighteenth aspect of the invention is an illumination unit for an aerosol generation device, comprising a plurality of light sources, wherein each of the light sources is configured to operate in a first power operation mode illuminating the light source at a first brightness level, and a second power operation mode for illuminating the light source at a second brightness level different from the first brightness level, wherein one or more light sources of the plurality of light sources form a contiguous illumination region when the one or more of the plurality of light source are emitting light, and wherein the illumination region is configured to provide to a user visual feedback that indicates a state of the aerosol generation device or a consumable used with the aerosol generation device. It should be noted that the first brightness level and the second brightness level are non-zero brightness levels. Like in the prior art, a state may be indicated by operating a number of the light sources in the first power operation mode (“on”). However, the difference in brightness between the first brightness level and the second brightness level allows the illumination unit to operate (illuminate) even those light sources which are “off”, e.g. with less power, rather than operating them not at all. This has the advantage that a user can more easily discern even those light sources which are “off”. This is particularly true if the illumination unit is used in an aerosol generation device according to any one of the first to seventeenth aspects, where the illumination unit is not visible from the exterior of the device when the illumination unit does not emit light, or in general in a device where the light sources of the illumination unit which do not emit light are difficult to detect by the eye of the user. It should be further noted that the term “light sources” refers to parts or components that generate light. These light sources typically are incandescent or luminescent light sources such as, but not limited to, incandescent light bulbs or LEDs.
According to a nineteenth aspect, in the preceding aspect, the illumination region comprises a region illuminated at the first brightness level and/or a region illuminated at the second brightness level. This enables the illumination unit to indicate states based on the region at the first brightness level and the region at the second brightness level.
According to a twentieth aspect, in the preceding aspect, the full extent of the illumination region is either the extent of a region illuminated at the first brightness level, if the illuminated region contains only the region illuminated at the first brightness level, or the combined extent of a region illuminated at the first brightness level and a region illuminated at the second brightness level, if the illumination region contains only the region illuminated at the first brightness level and the region illuminated at the second brightness level, or the extent of a region at the second brightness level, if the illumination region contains only the region illuminated at the second brightness level.
According to a twenty-first aspect, in the nineteenth or twentieth aspects, the visual feedback is based on a relation between the extent of the region illuminated at the second brightness level and the full extent of the illumination region. This enables the illumination unit to indicate a state based on the full extent of the illumination region as a reference for the indicated state.
According to a twenty-second aspect, in the eighteenth to twenty-first aspects, the full extent of the illumination region is indicative of a maximum range of values of a state indicated by the visual feedback.
According to a twenty-third aspect, in the preceding aspect, the extent of the region illuminated at the second brightness level is indicative of the a sub-range within the maximum range of values for the indicated information, and the extent of the sub-range in relation to the extent of the maximum range of values corresponds to the extent of the region illuminated at the second brightness level in relation to the full extent of the illumination region. This enables the illumination unit to indicate more complex states, in particular states within a reference range or in relation to a particular reference point of technical relevance to the aerosol generation device or the consumable in use with the aerosol generation device.
According to a twenty-fourth aspect, in any one of the eighteenth to twenty-third aspects, each of the plurality of light sources is an LED which is capable of emitting light in a plurality of colors.
According to a twenty-fifth aspect, in the preceding aspect, the illumination region is illuminated in a color.
According to a twenty-sixth aspect, in any one of the twenty-fourth or twenty-fifth aspects, different colors of the illumination region are indicative of different types of information. This enables to illumination unit to indicate several types of states.
According to a twenty-seventh aspect, in any one of the eighteenth to twenty-sixth aspects, the illumination unit is configured to form one or more patterns on the illumination region, wherein each of the one or more patterns is indicative of different states of the aerosol generation device or a consumable used with the aerosol generation device. This enables the illumination unit to simultaneously indicate one or more types of states.
According to a twenty-eighth aspect, in the preceding aspect, at least one of the one or more patterns includes a moving pattern or a dynamically changing pattern.
According to a twenty-ninth aspect, in the preceding aspect, the moving direction of the moving pattern indicates a change in the state indicated by the one of the one or more patterns. The twenty-eighth and twenty-ninth aspects of the invention enable to illumination unit to indicate changes in an indicated state.
According to a thirtieth aspect, in any one of the eighteenth to twenty-ninth aspects, the states of the aerosol generation device or a consumable used with the aerosol generation device comprise at least one of: elapsed and/or remaining start-up time period of the device, vaping progress on the device, time of use of the device since start-up, consumed and/or remaining amount of aerosol generation substrate in the consumable, an operational temperature of the device, and depletion level of a battery of the device. Indicating these states to a user provides the user with information based on which the user can correctly operate, maintain and/or care for the aerosol generation device or the consumable in use with the aerosol generation device.
According to a thirty-first aspect, in the preceding aspect, the start-up time period is a time period required for heating-up a heating unit comprised by the aerosol generation device before the user can start consuming the consumable. This enables the user to operate the aerosol generation device and the consumable in use with the aerosol generation device in a predetermined manner.
According to a thirty-second aspect, in any one of the eighteenth to thirty-first aspects, the plurality of light sources is arranged in a straight or curved line, and/or the illumination region comprises a curved or bent shape.
According to a thirty-third aspect, in any one of the eighteenth to thirty-second aspects, the second brightness level is higher than the first brightness level.
According to a thirty-fourth aspect, in any one of the eighteenth to thirty-third aspects, the first brightness level is at least 2%, preferably at least 3%, more preferably at least 5% of the maximum brightness of each of the light sources, and at most 30%, preferably at most 20%, more preferably at most 15% of the maximum brightness of each of the light sources. These brightness levels offer a compromise between a visibility and visual contrast of regions at the first brightness and energy consumption of the illumination unit.
According to a thirty-fifth aspect, in any one of the eighteenth to thirty-fourth aspects, the second brightness level is at least 70%, preferably at least 80%, more preferably at least 90% of the maximum brightness of each of the light sources. These brightness levels provide an optimal contrast between regions of the illumination region illuminated at the first brightness level, and regions of the illumination region illuminated at the second brightness level, and further improve visibility of the illumination region under ambient lighting conditions.
According to a thirty-sixth aspect, in the first aspect, the illumination unit is an illumination unit according to any one of the eighteenth to thirty-fifth aspects of the invention.
Preferred embodiments of the present invention are described hereinafter and in conjunction with the accompanying drawings.
An aerosol generation 100 as depicted in
It should be noted that in any of the embodiments of the invention described herein, the term “non-visible” denotes that the illumination unit cannot be seen through the light-transmissive portion by a naked human eye, under commonly occurring ambient lighting conditions, without any special viewing aids or equipment or under special, not naturally occurring lighting conditions, when the illumination unit is not emitting light.
As shown in
The partially light-reflective layer may be achieved by means of a physical vapor deposition (PVD), chemical vapor deposition (CVD) and/or non-conducting vacuum metallization (NCVM) process or similar deposition method. The deposited material may comprise a copper, silver, bronze or similar metallic material. The partially light-reflective layer 330 may be an exterior layer that forms the exterior surface of the light-transmissive portion and, additionally, may provide the light-transmissive portion with a glossy or mirrored surface finish.
As shown in
It should be noted that the layers of the laminar structure, as described above in the context of
The light-reflective layer 330 reflects some light and is penetrated by the rest. Light can pass through the light-reflective layer 330 in both directions. However, when the illumination unit 210 does not emit light and the illumination region is kept dark behind the light-transmissive portion 300, relative to a surrounding area of the aerosol generation device, which is typically a bright side in this case, the dark side become difficult to see from the bright side because the dark side is masked by the much brighter reflection of the bright side.
More specifically, the light from the bright side reflected by the light-reflective layer 330 back into the same side is much greater than the light transmitted from the dark side, overwhelming the small amount of light transmitted from the dark to the bright side. This is how the illumination unit 210 is kept invisible when it doesn't emit light. On the other hand, when the illumination unit 210 emits light, the illumination region becomes a bright side and the light transmitted from the illumination unit 210 is bright enough to be visible through the light-transmissive portion 330, without being overwhelmed by the light from the surrounding area reflected by the light reflective layer 330. In this way, the light-transmissive portion 330 operates like an one-way mirror and makes the illumination unit 210 either visible or invisible from the surrounding area depending on whether the illumination unit 210 is lit or not.
It should be noted that in case the housing of an aerosol generation device according to embodiments of the invention comprises a main body and a movable panel member that comprises or substantially consists of the light-transmissive portion, the panel member and the main body are coupled close to each other to substantially prevent any light emitted from the illumination unit arranged on the main body from leaking out from between the panel member and the main body unit to prevent any leakage light from negatively impacting visibility of the illumination region through the light-transmissive portion.
In
In
As shown in
The states that may be indicated by visual feedback comprise elapsed and/or remaining start-up time period of the device, total amount of puffs by user, total amount of puffs by user in relation to a predetermined maximum amount of puffs for a consumable, total time of use of a consumable in relation to a predetermined maximum of time of use for a consumable, time of use of the device since start-up, consumed and/or remaining amount of aerosol generation substrate in the consumable, an operational temperature of the device, and depletion level of a battery of the device, charging status of the battery etc.
Additionally, a pattern 210a/210b of the illumination region 210 may be a dynamically changing or moving pattern. Furthermore, the moving direction of the pattern may indicate a change in a state indicated by the pattern. For example, in the embodiments described in the context of
Additionally, or alternatively, any pattern on the illumination region 210 may dynamically change by, for exampling, periodically blinking, to indicate a state of the aerosol generation device. Additionally, or alternatively, only one of the plurality of light source may emit light, and an adjacent light source of the plurality of light sources following in a direction of the illumination unit may start emitting light when previous light source stops emitting light after a predetermined amount of time to form a pattern of a moving light source to indicate a state of the aerosol generation device. Such states may comprise, for example, a low charging level of the battery, a low remaining amount of an aerosol generation substrate in the consumable in use with the aerosol generation device, or a malfunction of the aerosol generation device.
While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the scope of this disclosure, as defined by the independent and dependent claims.
Number | Date | Country | Kind |
---|---|---|---|
20164046.3 | Mar 2020 | EP | regional |
The present application is a continuation of U.S. patent application Ser. No. 17/912,231, filed on Sep. 16, 2022, which is a national phase entry under 35 U.S.C. § 317 of International Application No. PCT/EP2021/056639, filed on Mar. 16, 2021, which claims priority from European Patent Application No. 20164046.3, filed on Mar. 18, 2020, all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17912231 | Sep 2022 | US |
Child | 18654603 | US |