AEROSOL GENERATION

Information

  • Patent Application
  • 20230118168
  • Publication Number
    20230118168
  • Date Filed
    January 29, 2021
    3 years ago
  • Date Published
    April 20, 2023
    a year ago
Abstract
An aerosol-generating composition in the form of an amorphous solid. The amorphous solid includes an aerosol-former material; a gelling agent; optionally a filler; optionally an active substance; and tobacco material. An article for use with a non-combustible aerosol provision devices, can include the aerosol generating composition.
Description
TECHNICAL FIELD

The present invention relates to aerosol generation.


BACKGROUND

Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Alternatives to these types of articles release an inhalable aerosol or vapor by releasing compounds from a substrate material by heating without burning. These may be referred to as non-combustible smoking articles or aerosol generating assemblies.


One example of such a product is a heating device, which release compounds by heating, but not burning, a solid aerosol-generating composition. This solid aerosol-generating composition may, in some cases, contain a tobacco material. The heating volatilizes at least one component of the material, typically forming an inhalable aerosol. These products may be referred to as heat-not-burn devices, tobacco heating devices or tobacco heating products. Various different arrangements for volatilizing at least one component of the solid aerosol-generating composition are known.


As another example, there are e-cigarette / tobacco heating product hybrid devices, also known as electronic tobacco hybrid devices. These hybrid devices contain a liquid source (which may or may not contain nicotine) which is vaporized by heating to produce an inhalable vapor or aerosol. The device additionally contains a solid aerosol-generating composition (which may or may not contain a tobacco material) and components of this material are entrained in the inhalable vapor or aerosol to produce the inhaled medium.


SUMMARY

According to a first aspect of the present invention, there is provided an aerosol-generating composition comprising:

  • an amorphous solid comprising:
    • aerosol-former material in an amount of from about 40 to 80 wt% of the amorphous solid;
    • gelling agent;
    • optionally, filler, wherein the amount of gelling agent and filler taken together is from about 10 to 60 wt% of the amorphous solid; and
    • optionally, active substance in an amount of up to about 20 wt% of the amorphous solid; and
  • tobacco material;

wherein the aerosol-generating composition has an aerosol-former material content of from about 5 to 30 wt% of the aerosol-generating composition, these weights being calculated on a dry weight basis.


According to a second aspect of the present invention, there is provided an article for use with a non-combustible aerosol provision device, the article comprising the aerosol-generating composition as described herein.


According to a third aspect of the present invention, there is provided a non-combustible aerosol provision system comprising an article as described herein and a non-combustible aerosol provision device, wherein the non-combustible aerosol provision device is configured to generate aerosol from the article when the article is used with the non-combustible aerosol provision device.


According to a further aspect of the present invention, there is provided a method of making an aerosol-generating composition, the method comprising:

  • providing an amorphous solid comprising:
    • aerosol-former material in an amount of from about 40 to 80 wt% of the amorphous solid;
    • gelling agent;
    • optionally, filler, wherein the amount of gelling agent and filler taken together is from about 10 to 60 wt% of the amorphous solid; and
    • optionally, active substance in an amount of up to about 20 wt% of the amorphous solid;
      • providing tobacco material; and
      • combining the amorphous solid and tobacco material to provide the aerosol-generating composition, the aerosol-generating composition having an aerosol-former content of from about 5 to 30 wt% of the aerosol-generating composition, weights being calculated on a dry weight basis.


According to a yet further aspect of the present invention, there is provided use of a non-combustible aerosol provision system as described herein.


To the extent that they are combinable, features described herein in relation to one aspect of the invention are explicitly disclosed in combination with each and every other aspect.


Further features and advantages of the invention will become apparent from the following description of preferred embodiments of the invention, given by way of example only, which is made with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a section view of an example of an aerosol-generating article.



FIG. 2 shows a perspective view of the article of FIG. 1.



FIG. 3 shows a sectional elevation of an example of an aerosol-generating article.



FIG. 4 shows a perspective view of the article of FIG. 3.



FIG. 5 shows a perspective view of an example of an aerosol generating assembly.



FIG. 6 shows a section view of an example of an aerosol generating assembly.



FIG. 7 shows a perspective view of an example of an aerosol generating assembly.





DETAILED DESCRIPTION OF THE DRAWINGS

The aerosol-generating composition described herein is a composition that is capable of generating aerosol, for example when heated, irradiated or energized in any other way. Aerosol-generating composition may, for example, be include features in the form of a solid, liquid or gel which may or may not contain nicotine and/or flavorants. The aerosol-generating composition comprises an “amorphous solid”, which may alternatively be referred to as a “monolithic solid” (i.e. non-fibrous). In some embodiments, the amorphous solid may be a dried gel. The amorphous solid is a solid material that may retain some fluid, such as liquid, within it.


In examples, there is provided an aerosol-generating composition. The aerosol-generating composition is suitable to be comprised in an article for use with a non-combustible aerosol provision device. The aerosol-generating composition comprises an amorphous solid and tobacco material. The aerosol-generating composition has an aerosol-former material content of from 5 to 30 wt%, weights being calculated on a dry weight basis. In examples, the aerosol-generating composition comprises aerosol-former material in an amount of from about 10 to 20 wt%, or about 13-17 wt%. In examples, the aerosol-generating composition comprises aerosol-former material in an amount of about 15 wt%.


A cut rag tobacco blend which might typically be used alone in a conventional combustible smoking article such as a cigarette has been found to be unsuitable for use in a non-combustible aerosol provision device. Without wishing to be bound be theory, it is believed that a cut rag tobacco blend for use in a cigarette typically cannot be loaded with sufficient aerosol-former material to provide a desirable inhalable aerosol when heated by a non-combustible aerosol provision device.


Previous attempts to address this problem have included replacing some or all of the cut rag tobacco of a typical combustible tobacco blend with reconstituted tobacco, such as paper-reconstituted tobacco. Paper reconstituted tobacco can typically contain a greater proportion of aerosol-former material. However, the present inventors have identified that a tobacco blend which comprises a high proportion of paper-reconstituted tobacco may have undesirable sensory characteristics when heated by a non-combustible aerosol provision device.


The present inventors have identified that, by providing an amorphous solid having a high aerosol-former material content in combination with tobacco material, it is possible to generate an acceptable aerosol without requiring the presence of a large amount of reconstituted tobacco (thereby reducing the undesirable sensory characteristics associated with reconstituted tobacco). In examples, the tobacco material comprises or consists of lamina tobacco (such as cut rag tobacco), which provides desirable sensory characteristics. In examples, the tobacco material comprises reconstituted tobacco in an amount less than about 50 wt%, 30 wt%, 10 wt%, 5 wt%, or 1 wt% by dry weight of the tobacco material. In examples, the tobacco material substantially does not comprise reconstituted tobacco.


The tobacco material is typically present in the aerosol-generating composition in an amount of from about 50 to 95 wt%, or about 60 to 90 wt%, or about 70 to 90 wt%, or about 75 to 85 wt%.


The tobacco material may be present in any format, but is typically fine-cut (e.g. cut into narrow shreds). Fine-cut tobacco material may advantageously be blended with the amorphous solid to provide an aerosol-generating composition, which has an even dispersion of tobacco material and amorphous solid throughout the aerosol-generating composition.


In examples, the tobacco material comprises one or more of ground tobacco, tobacco fiber, cut tobacco, extruded tobacco, tobacco stem, reconstituted tobacco and/or tobacco extract. Surprisingly, the inventors have identified that it is possible to use a relatively large amount of lamina tobacco in the aerosol-generating composition and still provide an acceptable aerosol when heated by a non-combustible aerosol provision system. Lamina tobacco typically provides superior sensory characteristics. In examples, the tobacco material comprises lamina tobacco in an amount of at least about 50 wt%, 60 wt%, 70 wt%, 80 wt%, 85 wt%, 90 wt%, or 95 wt% of the tobacco material. In particular examples, the tobacco material comprises cut tobacco in an amount of at least about 50 wt%, 60 wt%, 70 wt%, 80 wt%, 85 wt%, 90 wt%, or 95 wt% of the tobacco material.


The tobacco used to produce tobacco material may be any suitable tobacco, such as single grades or blends, cut rag or whole leaf, including Virginia and/or Burley and/or Oriental.


The amorphous solid is present in the aerosol-generating composition in any amount such that the overall aerosol-former material content of the aerosol-generating composition is from about 5 to 30 wt% of the aerosol-generating composition. In examples, the amorphous solid is comprised in the aerosol-generating composition in an amount of from about 5 to 40 wt%, 10 to 30 wt%, 15 to 25 wt%, or 17 to 23 wt%. In examples, the aerosol-generating composition comprises amorphous solid in an amount of about 20 wt% of the aerosol-generating composition. Surprisingly, by configuring the amorphous solid to have a relatively high aerosol-former material content, a relatively small amount of amorphous solid (e.g. around 20 wt%) can be employed in the aerosol-generating composition while still achieving a desirable aerosol in use with a non-combustible aerosol provision system.


The amorphous solid comprises gelling agent, aerosol-former material, optional filler, and optional active substance. In examples, the amorphous solid comprises:

  • aerosol-former material in an amount of from about 40 to 80 wt% of the amorphous solid;
  • gelling agent and optional filler (i.e. in some examples filler is present in the amorphous solid, in other examples filler is not present in the amorphous solid), wherein the amount of gelling agent and filler taken together is from about 10 to 60 wt% of the amorphous solid (i.e. the gelling agent and filler taken together account for about 10 to 60 wt% of the amorphous solid); and
  • optionally, active substance in an amount of up to about 20 wt% of the amorphous solid (i.e. the amorphous solid comprises ≤20 wt% active substance).


In examples, the amorphous solid comprises gelling agent and filler, taken together, in an amount of from about 10 wt%, 20 wt%, 25 wt%, 30 wt%, or 35 wt% to about 60 wt%, 55 wt%, 50 wt%, or 45 wt% of the amorphous solid. In examples, the amorphous solid comprises gelling agent and filler, taken together, in an amount of from about 20 to 60 wt%, 25 to 55 wt%, 30 to 50 wt%, or 35 to 45 wt% of the amorphous solid.


In examples, the amorphous solid comprises gelling agent (i.e. without taking into account the amount of filler) in an amount of from about 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, or 35 wt% to about 60 wt%, 55 wt%, 50 wt%, or 45 wt% of the amorphous solid. In examples, the amorphous solid comprises gelling agent (i.e. without taking into account the amount of filler) in an amount of from about 5 to 60 wt%, 20 to 60 wt%, 25 to 55 wt%, 30 to 50 wt%, or 35 to 45 wt% of the amorphous solid.


In examples, the gelling agent comprises a hydrocolloid. In some examples, the gelling agent comprises one or more compounds selected from the group comprising alginates, pectins, starches (and derivatives), celluloses (and derivatives), gums, silica or silicones compounds, clays, polyvinyl alcohol and combinations thereof. For example, in some examples, the gelling agent comprises one or more of alginates, pectins, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose, pullulan, xanthan gum guar gum, carrageenan, agarose, acacia gum, fumed silica, PDMS, sodium silicate, kaolin and polyvinyl alcohol. In some examples, the gelling agent comprises alginate and/or pectin, and may be combined with a setting agent (such as a calcium source) during formation of the amorphous solid. In some examples, the amorphous solid may comprise a calcium-crosslinked alginate and/or a calcium-crosslinked pectin.


The gelling agent may comprise one or more compounds selected from cellulosic gelling agents, non-cellulosic gelling agents, guar gum, acacia gum and mixtures thereof.


In some embodiments, the cellulosic gelling agent is selected from the group consisting of: hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose (CMC), hydroxypropyl methylcellulose (HPMC), methyl cellulose, ethyl cellulose, cellulose acetate (CA), cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP) and combinations thereof.


In some embodiments, the gelling agent comprises (or is) one or more of hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose, guar gum, or acacia gum.


In some embodiments, the gelling agent comprises (or is) one or more non-cellulosic gelling agents, including, but not limited to, agar, xanthan gum, gum Arabic, guar gum, locust bean gum, pectin, carrageenan, starch, alginate, and combinations thereof. In preferred embodiments, the non-cellulose based gelling agent is alginate or agar.


In some examples, the amorphous solid comprises alginate and/or pectin and/or guar gum.


In some examples, alginate is comprised in the gelling agent in an amount of from about 5 to 40 wt% of the amorphous solid, or 15 to 40 wt%. That is, the amorphous solid comprises alginate in an amount of about 5 to 40 wt% by dry weight of the amorphous solid, or 15 to 40 wt%. In some examples, the amorphous solid comprises alginate in an amount of from about 20 to 40 wt%, or about 15 wt% to 35 wt% of the amorphous solid.


In some examples, pectin is comprised in the gelling agent in an amount of from about 3 to 15 wt% of the amorphous solid. That is, the amorphous solid comprises pectin in an amount of from about 3 to 15 wt% by dry weight of the amorphous solid. In some examples, the amorphous solid comprises pectin in an amount of from about 5 to 10 wt% of the amorphous solid.


In some examples, guar gum is comprised in the gelling agent in an amount of from about 3 to 40 wt% of the amorphous solid. That is, the amorphous solid comprises guar gum in an amount of from about 3 to 40 wt% by dry weight of the amorphous solid. In some examples, the amorphous solid comprises guar gum in an amount of from about 5 to 10 wt% of the amorphous solid. In some examples, the amorphous solid comprises guar gum in an amount of from about 15 to 40 wt% of the amorphous solid, or from about 20 to 40 wt%, or from about 15 to 35 wt%.


In examples, the alginate is present in an amount of at least about 50 wt% of the gelling agent. In examples, the amorphous solid comprises alginate and pectin, and the ratio of the alginate to the pectin is from 1:1 to 10:1. The ratio of the alginate to the pectin is typically >1:1, i.e. the alginate is present in an amount greater than the amount of pectin. In examples, the ratio of alginate to pectin is from about 2:1 to 8:1, or about 3:1 to 6:1, or is approximately 4:1.


The amorphous solid may comprise filler. Taken together, the amorphous solid typically comprises gelling agent and filler (if present) in an amount of from about 10 to 60 wt% of the amorphous solid. In examples, the amorphous solid comprises filler in an amount of from 1 to 15 wt% of the amorphous solid, such as 5 wt% to 15 wt%, or 8 to 12 wt%. In examples, the amorphous solid comprises filler in an amount greater than 1 wt%, 5 wt%, or 8 wt% of the amorphous solid. In examples, the amorphous solid comprises filler in an amount less than 40 wt%, 30 wt%, 20 wt%, 15 wt%, 12 wt% 10 wt%, 5 wt%, or 1 wt% of the amorphous solid. In other examples, the amorphous solid does not comprise filler.


The filler, if present, may comprise one or more inorganic filler materials, such as calcium carbonate, perlite, vermiculite, diatomaceous earth, colloidal silica, magnesium oxide, magnesium sulphate, magnesium carbonate, and suitable inorganic sorbents, such as molecular sieves. The filler may comprise one or more organic filler materials such as wood pulp, cellulose and cellulose derivatives. In particular cases, the amorphous solid comprises no calcium carbonate such as chalk.


In some examples, which include filler, the filler is fibrous. For example, the filler is a fibrous organic filler material such as wood pulp, hemp fiber, cellulose or cellulose derivatives. Without wishing to be bound by theory, it is believed that including fibrous filler in an amorphous solid may increase the tensile strength of the material. This may be particularly advantageous in examples wherein the amorphous solid is provided as a sheet, such as when an amorphous solid sheet circumscribes a rod of tobacco material.


In examples, the amorphous solid does not comprise tobacco fibers. In particular examples, the amorphous solid does not comprise fibrous material.


The amorphous solid typically comprises aerosol-former material in an amount of up to about 80 wt% of the amorphous solid, such as about 40 to 80 wt%, 40 to 75 wt%, 50 to 70 wt%, or 55 to 65 wt%.


In examples, the tobacco material comprises aerosol-former material. Typically, the tobacco material comprises tobacco, which is fine-cut, and aerosol-former material is loaded onto the shreds of tobacco. In examples, the tobacco material comprises aerosol-former material in an amount of from about 1 to 10 wt% of the tobacco material, such as 3 to 6 wt%.


In examples, the aerosol-generating composition comprises aerosol-former material in an amount of from about 5 to 30 wt% of the aerosol-generating composition, such as 10 to 20 wt%, or 13 to 17 wt%. In examples, the aerosol-generating composition comprises aerosol-former material in an amount of about 15 wt% of the aerosol-generating composition. This amount includes any aerosol-former material present in the aerosol-generating composition, such as aerosol-former material provided in the amorphous solid and aerosol-former material loaded on to fine cut tobacco.


The aerosol-former material typically comprises one or more of glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate. In particular examples, the aerosol-former material comprises glycerol. For example, the amorphous solid and/or the tobacco material comprise glycerol.


In some embodiments, the aerosol-former material comprises one or more polyhydric alcohols, such as propylene glycol, triethylene glycol, 1,3-butanediol and glycerin; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and/or aliphatic esters of mono-, di-or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate.


In examples, the amorphous solid consists essentially of, or consists of a gelling agent, aerosol-former material, active substance, and water. In examples, the amorphous solid consists essentially of, or consists of a gelling agent, aerosol-former material, and water.


The aerosol-generating composition may comprise one or more active substances. In examples, the amorphous solid comprises one or more active substances, e.g. up to about 20 wt% of the amorphous solid. In examples, the amorphous solid comprises active substance in an amount of from about 1 wt%, 5 wt%, 10 wt%, or 15 wt% to about 20 wt%, 15 wt%, 15 wt% or 5 wt% of the amorphous solid.


In examples, the amorphous solid does not comprise a flavorant; in particular examples, the amorphous solid does not comprise an active substance.


The active substance may comprise a physiologically and/or olfactory active substance which is included in the aerosol-generating composition in order to achieve a physiological and/or olfactory response. The active substance may for example be selected from nutraceuticals, nootropics, and psychoactives. The active substance may be naturally occurring or synthetically obtained. The active substance may comprise for example nicotine, caffeine, taurine, theine, a vitamin such as B6 or B12 or C, melatonin, a cannabinoid, or a constituent, derivative, or combinations thereof. In some embodiments, the active substance comprises nicotine. In some embodiments, the active substance comprises caffeine, melatonin or vitamin B12. The active substance may comprise a constituent, derivative or extract of tobacco or of another botanical such as cannabis, such as a cannabinoid or terpene. In some embodiments, the active substance is a physiologically active substance and may be selected from nicotine, nicotine salts (e.g. nicotine ditartrate/nicotine bitartrate), nicotine-free tobacco substitutes, other alkaloids such as caffeine, cannabinoids, or mixtures thereof. Cannabinoids are a class of natural or synthetic chemical compounds which act on cannabinoid receptors (i.e., CB1 and CB2) in cells that repress neurotransmitter release in the brain. Two of the most important cannabinoids are tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids may be naturally occurring (Phytocannabinoids) from plants such as cannabis, (endocannabinoids) from animals, or artificially manufactured (Synthetic cannabinoids). Cannabinoids are cyclic molecules exhibiting particular properties such as the ability to easily cross the blood-brain barrier, weak toxicity, and few side effects. Cannabis species express at least 85 different phytocannabinoids, and are divided into subclasses, including cannabigerols, cannabichromenes, cannabidiols, tetrahydrocannabinols, cannabinols and cannabinodiols, and other cannabinoids. Cannabinoids found in cannabis include, without limitation: cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN) and cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid (CBDA), Cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabmolic acid (THCA), and tetrahydrocannabivarinic acid (THCV A).


In some embodiments, the active substance comprises one or more cannabinoid compounds selected from the group consisting of: cannabidiol (CBD), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM) and cannabielsoin (CBE), cannabicitran (CBT).


The active substance may comprise one or more cannabinoid compounds selected from the group consisting of cannabidiol (CBD) and THC (tetrahydrocannabinol).


The active substance may comprise cannabidiol (CBD).


The active substance may comprise nicotine and cannabidiol (CBD).


The active substance may comprise nicotine, cannabidiol (CBD), and THC (tetrahydrocannabinol).


In some embodiments, the active substance is an olfactory active substance and may be selected from a “flavor” and/or “flavorant” which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. In some instances, such constituents may be referred to as flavors, flavorants, cooling agents, heating agents, or sweetening agents. They may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, khat, naswar, betel, shisha, pine, honey essence, rose oil, vanilla, lemon oil, orange oil, orange blossom, cherry blossom, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, wasabi, piment, ginger, coriander, coffee, hemp, a mint oil from any species of the genus Mentha, eucalyptus, star anise, cocoa, lemongrass, rooibos, flax, ginkgo biloba, hazel, hibiscus, laurel, mate, orange skin, rose, tea such as green tea or black tea, thyme, juniper, elderflower, basil, bay leaves, cumin, oregano, paprika, rosemary, saffron, lemon peel, mint, beefsteak plant, curcuma, cilantro, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, limonene, thymol, camphene), flavor enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, sugars and/or sugar substitutes (e.g., sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, or mannitol), and other additives such as charcoal, chlorophyll, minerals, botanicals, or breath freshening agents. They may be imitation, synthetic or natural ingredients or blends thereof. They may be in any suitable form, for example, liquid such as an oil, solid such as a powder, or gas.


In some embodiments, the flavor comprises menthol, spearmint and/or peppermint. In some embodiments, the flavor comprises flavor components of cucumber, blueberry, citrus fruits and/or redberry. In some embodiments, the flavor comprises eugenol. In some embodiments, the flavor comprises flavor components extracted from tobacco. In some embodiments, the flavor comprises flavor components extracted from cannabis. In some embodiments, the flavor may comprise a sensate, which is intended to achieve a somatosensorial sensation, which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect. A suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucalyptol, WS-3.


The term botanical includes any material derived from plants including, but not limited to, extracts, leaves, bark, fibers, stems, roots, seeds, flowers, fruits, pollen, husk, shells or the like. Alternatively, the material may comprise an active compound naturally existing in a botanical, obtained synthetically. The material may be in the form of liquid, gas, solid, powder, dust, crushed particles, granules, pellets, shreds, strips, sheets, or the like. Example botanicals are tobacco, eucalyptus, star anise, hemp, cocoa, cannabis, fennel, lemongrass, peppermint, spearmint, rooibos, chamomile, flax, ginger, ginkgo biloba, hazel, hibiscus, laurel, licorice (liquorice), matcha, mate, orange skin, papaya, rose, sage, tea such as green tea or black tea, thyme, clove, cinnamon, coffee, aniseed (anise), basil, bay leaves, cardamom, coriander, cumin, nutmeg, oregano, paprika, rosemary, saffron, lavender, lemon peel, mint, juniper, elderflower, vanilla, wintergreen, beefsteak plant, curcuma, turmeric, sandalwood, cilantro, bergamot, orange blossom, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, geranium, mulberry, ginseng, theanine, theacrine, maca, ashwagandha, damiana, guarana, chlorophyll, baobab or any combination thereof. The mint may be chosen from the following mint varieties: Mentha arvensis, Mentha c.v., Mentha niliaca, Mentha piperita, Mentha piperita citrata c.v., Mentha piperita c.v., Mentha spicata crispa, Mentha cordifolia, Mentha longifolia, Mentha suaveolens variegata, Mentha pulegium, Mentha spicata c.v. and Mentha suaveolens. In some embodiments, the botanical is selected from eucalyptus, star anise, cocoa and hemp. In some embodiments, the botanical is selected from rooibos and fennel.


The aerosol-generating composition or amorphous solid may comprise an acid. The acid may be an organic acid. In some of these embodiments, the acid may be at least one of a monoprotic acid, a diprotic acid and a triprotic acid. In some such embodiments, the acid may contain at least one carboxyl functional group. In some such embodiments, the acid may be at least one of an alpha-hydroxy acid, carboxylic acid, dicarboxylic acid, tricarboxylic acid and keto acid. In some such embodiments, the acid may be an alpha-keto acid.


In some such embodiments, the acid may be at least one of succinic acid, lactic acid, benzoic acid, citric acid, tartaric acid, fumaric acid, levulinic acid, acetic acid,


malic acid, formic acid, sorbic acid, benzoic acid, propanoic and pyruvic acid.


Suitably the acid is lactic acid. In other embodiments, the acid is benzoic acid. In other embodiments, the acid may be an inorganic acid. In some of these embodiments, the acid may be a mineral acid. In some such embodiments, the acid may be at least one of sulphuric acid, hydrochloric acid, boric acid and phosphoric acid. In some embodiments, the acid is levulinic acid.


The inclusion of an acid is particularly preferred in embodiments in which the aerosol-generating composition or amorphous solid comprises nicotine. In such embodiments, the presence of an acid may stabilize dissolved species in the slurry from which the aerosol-generating composition or amorphous solid is formed. The presence of the acid may reduce or substantially prevent evaporation of nicotine during drying of the slurry, thereby reducing loss of nicotine during manufacturing.


In certain embodiments, the aerosol-generating composition or amorphous solid comprises a gelling agent comprising a cellulosic gelling agent and/or a non-cellulosic gelling agent, an active substance and an acid.


The amorphous solid may comprise a colorant. The addition of a colorant may alter the visual appearance of the amorphous solid. The presence of colorant in the amorphous solid may enhance the visual appearance of the amorphous solid and the aerosol-generating composition. By adding a colorant to the amorphous solid, the amorphous solid may be color-matched to other components of the aerosol-generating composition or to other components of an article comprising the amorphous solid.


A variety of colorants may be used depending on the desired color of the amorphous solid. The color of amorphous solid may be, for example, white, green, red, purple, blue, brown or black. Other colors are also envisaged. Natural or synthetic colorants, such as natural or synthetic dyes, food-grade colorants and pharmaceutical-grade colorants may be used. In certain embodiments, the colorant is caramel, which may confer the amorphous solid with a brown appearance. In such embodiments, the color of the amorphous solid may be similar to the color of other components (such as tobacco material) in an aerosol-generating composition comprising the amorphous solid. In some embodiments, the addition of a colorant to the amorphous solid renders it visually indistinguishable from other components in the aerosol-generating composition.


The colorant may be incorporated during the formation of the amorphous solid (e.g. when forming a slurry comprising the materials that form the amorphous solid) or it may be applied to the amorphous solid after its formation (e.g. by spraying it onto the amorphous solid).


The amorphous solid may have any suitable water content, such as from 1 wt% to 15 wt%. Suitably, the water content of the amorphous solid is from about 5 wt%, 7 wt% or 9 wt% to about 15 wt%, 13 wt% or 11 wt% (WWB). The water content of the amorphous solid may, for example, be determined by Karl-Fischer-titration or Gas Chromatography with Thermal Conductivity Detector (GC-TCD).


The amorphous solid is present in the aerosol-generating composition in any suitable form. In examples, the amorphous solid is present in sheet form. In examples, the amorphous solid is present as a shredded sheet (e.g. the aerosol-generating composition comprises shreds of amorphous solid). In examples, the amorphous solid is present as a shredded sheet and is blended with tobacco material which is fine-cut and/or shredded, e.g. the amorphous solid and tobacco material are in a similar form. Advantageously, providing both the amorphous solid and tobacco material as shreds / fine-cut portions allows for an aerosol-generating composition blend, which has an even dispersion of amorphous solid and tobacco material throughout the aerosol-generating composition.


The amorphous solid may be present on or in a support to form a substrate. The support functions as a support on which the amorphous solid layer forms, easing manufacture. The support may provide rigidity to the amorphous solid layer, easing handling.


The support may be any suitable material, which can be used to support an amorphous solid. In some cases, the support may be formed from materials selected from metal foil, paper, carbon paper, greaseproof paper, ceramic, carbon allotropes such as graphite and graphene, plastic, cardboard, wood or combinations thereof. In some cases, the support may comprise or consist of a tobacco material, such as a sheet of reconstituted tobacco. In some cases, the support may be formed from materials selected from metal foil, paper, cardboard, wood or combinations thereof. In some cases, the support comprises paper. In some cases, the support itself be a laminate structure comprising layers of materials selected from the preceding lists. In some cases, the support may also function as a flavor support. For example, the support may be impregnated with a flavorant or with tobacco extract.


Suitably, the thickness of the support layer may be in the range of about 10 µm, 15 µm, 17 µm, 20 µm, 23 µm, 25 µm, 50 µm, 75 µm or 0.1 mm to about 2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm or 0.5 mm. The support may comprise more than one layer, and the thickness described herein refers to the aggregate thickness of those layers.


In some cases, the surface of the support that abuts the amorphous solid may be porous. For example, in one case, the support comprises paper. The inventors have found that a porous support such as paper is particularly suitable for the present invention; the porous (e.g. paper) layer abuts the amorphous solid layer and forms a strong bond. The amorphous solid is formed by drying a gel and, without being limited by theory; it is thought that the slurry from which the gel is formed partially impregnates the porous support (e.g. paper) so that when the gel sets and forms cross-links, the support is partially bound into the gel. This provides a strong binding between the gel and the support (and between the dried gel and the support).


Additionally, surface roughness may contribute to the strength of bond between the amorphous material and the support. The inventors have found that the paper roughness (for the surface abutting the support) may suitably be in the range of 50-1000 Bekk seconds, suitably 50-150 Bekk seconds, suitably 100 Bekk seconds (measured over an air pressure interval of 50.66-48.00 kPa). (A Bekk smoothness tester is an instrument used to determine the smoothness of a paper surface, in which air at a specified pressure is leaked between a smooth glass surface and a paper sample, and the time (in seconds) for a fixed volume of air to seep between these surfaces is the “Bekk smoothness”.)


In some cases, the support is formed from or comprises metal foil, such as aluminum foil. A metallic support may allow for better conduction of thermal energy to the amorphous solid. Additionally, or alternatively, a metal foil may function as a susceptor in an induction heating system.


In some cases, the support may have a thickness of between about 0.017 mm and about 2.0 mm, suitably from about 0.02 mm, 0.05 mm or 0.1 mm to about 1.5 mm, 1.0 mm, or 0.5 mm.


The amorphous solid may have any suitable area density, such as from 30 g/m2 to 120 g/m2. In examples, the amorphous solid has an area density of from about 30 to 70 g/m2, or about 40 to 60 g/m2. In examples, the amorphous solid has an area density of from about 80 to 120 g/m2, or from about 70 to 110 g/m2, or particularly from about 90 to 110 g/m2. Such area densities may be particularly suitable where the amorphous solid is included in an aerosol-generating article/assembly in sheet form, or as a shredded sheet (described further hereinbelow).


In examples, the amorphous solid has an area density, which is from about 90 to 110% of the area density of the tobacco material. That is, the amorphous solid and the tobacco material have similar area densities. The inventors have identified that configuring the amorphous solid and tobacco material to have similar area densities allows for better blending of the amorphous solid and tobacco material, typically when provided as shredded sheet. For example, shredded amorphous solid sheet and cut rag tobacco, which have similar area densities can be blended to provide a more homogenous aerosol-generating composition (e.g. better distribution of each component throughout the aerosol-generating composition).


Fine cut tobacco (such as cut rag tobacco) has a cut width, typically represented as CPI (cuts per inch), and refers to the width of a shred of tobacco. Amorphous solid, which is provided as a solid sheet, has a cut width. In some examples where the tobacco material is fine cut (e.g. where the tobacco material comprises cut rag tobacco) and the amorphous solid is a shredded sheet, the cut width of the amorphous solid is from about 90 to 110% of the cut width of the cut rag tobacco. That is, the amorphous solid and the tobacco material have cut widths, or shred widths. The inventors have identified that configuring the amorphous solid and tobacco material to have similar cut widths allows for better blending of the amorphous solid and tobacco material. For example, shredded amorphous solid sheet and cut rag tobacco, which have similar cut widths can be blended to provide a more homogenous aerosol-generating composition (e.g. better distribution of each component throughout the aerosol-generating composition).


In some examples, the amorphous solid in sheet form may have a tensile strength of from around 150 N/m to around 1,200 N/m. In some examples, such as where the amorphous solid does not comprise a filler, the amorphous solid may have a tensile strength of from 150 N/m to 500 N/m, or 200 N/m to 300 N/m, or about 250 N/m. In some examples, such as where the amorphous solid comprises a filler, the amorphous solid may have a tensile strength of from 600 N/m to 1,200 N/m, or from 700 N/m to 900 N/m, or around 800 N/m.


An aspect of the present invention relates to an article for use with a non-combustible aerosol provision system. The article comprises the aerosol-generating composition described herein. A consumable is an article, part or all of which is intended to be consumed during use by a user. A consumable may comprise or consist of aerosol-generating composition. A consumable may comprise one or more other elements, such as a filter or an aerosol modifying substance. A consumable may comprise a heating element that emits heat to cause the aerosol-generating composition to generate aerosol in use. The heating element may, for example, comprise combustible material, or may comprise a susceptor that is heatable by penetration with a varying magnetic field.


A susceptor is material that is heatable by penetration with a varying magnetic field, such as an alternating magnetic field. The heating material may be an electrically conductive material, so that penetration thereof with a varying magnetic field causes induction heating of the heating material. The heating material may be magnetic material, so that penetration thereof with a varying magnetic field causes magnetic hysteresis heating of the heating material. The heating material may be both electrically conductive and magnetic, so that the heating material is heatable by both heating mechanisms.


Induction heating is a process in which an electrically conductive object is heated by penetrating the object with a varying magnetic field. The process is described by Faraday’s law of induction and Ohm’s law. An induction heater may comprise an electromagnet and a device for passing a varying electrical current, such as an alternating current, through the electromagnet. When the electromagnet and the object to be heated are suitably relatively positioned so that the resultant varying magnetic field produced by the electromagnet penetrates the object, one or more eddy currents are generated inside the object. The object has a resistance to the flow of electrical currents. Therefore, when such eddy currents are generated in the object, their flow against the electrical resistance of the object causes the object to be heated. This process is called Joule, ohmic, or resistive heating.


In examples, the susceptor is in the form of a closed circuit. It has been found that, when the susceptor is in the form of a closed circuit, magnetic coupling between the susceptor and the electromagnet in use is enhanced, which results in greater or improved Joule heating.


Magnetic hysteresis heating is a process in which an object made of a magnetic material is heated by penetrating the object with a varying magnetic field. A magnetic material can be considered to comprise many atomic-scale magnets, or magnetic dipoles. When a magnetic field penetrates such material, the magnetic dipoles align with the magnetic field. Therefore, when a varying magnetic field, such as an alternating magnetic field, for example as produced by an electromagnet, penetrates the magnetic material, the orientation of the magnetic dipoles changes with the varying applied magnetic field. Such magnetic dipole reorientation causes heat to be generated in the magnetic material. When an object is both electrically conductive and magnetic, penetrating the object with a varying magnetic field can cause both Joule heating and magnetic hysteresis heating in the object. Moreover, the use of magnetic material can strengthen the magnetic field, which can intensify the Joule heating.


In each of the above processes, as heat is generated inside the object itself, rather than by an external heat source by heat conduction, a rapid temperature rise in the object and more uniform heat distribution can be achieved, particularly through selection of suitable object material and geometry, and suitable varying magnetic field magnitude and orientation relative to the object. Moreover, as induction heating and magnetic hysteresis heating do not require a physical connection to be provided between the source of the varying magnetic field and the object, design freedom and control over the heating profile may be greater, and cost may be lower.


Articles of the present invention may be provided in any suitable shape. In some examples, the article is provided as a rod (e.g. substantially cylindrical).


In examples, the aerosol-generating composition includes the amorphous solid as a shredded sheet, optionally blended with the tobacco material (e.g. cut tobacco). In examples, there is provided an article having a substantially cylindrical shape comprising aerosol-generating composition, which includes amorphous solid as a shredded sheet blended with tobacco material.


Alternatively, or additionally, the article provided as a rod may include the amorphous solid as a sheet, such as a sheet circumscribing a rod of tobacco material.


An aspect of the invention provides non-combustible aerosol provision system comprising an article according as described herein and non-combustible aerosol provision device comprising a heater, which is configured to heat not burn the aerosol-generating article. A non-combustible aerosol provision system may also be referred to as an aerosol generating assembly. A non-combustible aerosol provision device may be referred to as an aerosol generating apparatus.


In some cases, in use, the heater may heat, without burning, the aerosol-generating composition to a temperature equal to or less than 350° C., such as between 120° C. and 350° C. In some cases, the heater may heat, without burning, the aerosol-generating composition to between 140° C. and 250° C. in use, or between 220° C. and 280° C.


The heater is configured to heat not burn the aerosol-generating article, and thus the aerosol-generating composition. The heater may be, in some cases, a thin film, electrically resistive heater. In other cases, the heater may comprise an induction heater or the like. The heater may be a combustible heat source or a chemical heat source, which undergoes an exothermic reaction to product heat in use. The aerosol generating assembly may comprise a plurality of heaters. The heater(s) may be powered by a battery.


The heater may comprise one or more electrically resistive heaters, including for example one or more nichrome resistive heater(s) and/or one or more ceramic heater(s). The one or more heaters may comprise one or more induction heaters, which includes an arrangement comprising one or more susceptors, which may form a chamber into which an article comprising aerosolizable material is inserted or otherwise located in use. Alternatively or in addition, one or more susceptors may be provided in the aerosolizable material. Other heating arrangements may also be used.


The aerosol-generating article may additionally comprise a cooling element and/or a filter. The cooling element, if present, may act or function to cool gaseous or aerosol components. In some cases, it may act to cool gaseous components such that they condense to form an aerosol. It may also act to space the very hot parts of the non-combustible aerosol provision device from the user. The filter, if present, may comprise any suitable filter known in the art such as a cellulose acetate plug.


In some cases, the aerosol generating assembly may be a heat-not-burn device. That is, it may contain a solid tobacco-containing material (and no liquid aerosol-generating material). In some cases, the amorphous solid may comprise the tobacco material. A heat-not-burn device is disclosed in WO 2015/062983 A2, which is incorporated by reference in its entirety.


The aerosol-generating article (which may be referred to herein as an article, a cartridge or a consumable) may be adapted for use in a THP, an electronic tobacco hybrid device or another aerosol-generating device. In some cases, the article may additionally comprise a filter and/or cooling element (which have been described above). In some cases, the aerosol-generating article may be circumscribed by a wrapping material such as paper. In particular, examples, the article is adapted for use with a tobacco-heating product.


The aerosol-generating article may additionally comprise ventilation apertures. These may be provided in the sidewall of the article. In some cases, the ventilation apertures may be provided in the filter and/or cooling element. These apertures may allow cool air to be drawn into the article during use, which can mix with the heated volatilized components thereby cooling the aerosol.


The ventilation enhances the generation of visible heated volatilized components from the article when it is heated in use. The heated volatilized components are made visible by the process of cooling the heated volatilized components such that supersaturation of the heated volatilized components occurs. The heated volatilized components then undergo droplet formation, otherwise known as nucleation, and eventually the size of the aerosol particles of the heated volatilized components increases by further condensation of the heated volatilized components and by coagulation of newly formed droplets from the heated volatilized components.


In some cases, the ratio of the cool air to the sum of the heated volatilized components and the cool air, known as the ventilation ratio, is at least 15%. A ventilation ratio of 15% enables the heated volatilized components to be made visible by the method described above. The visibility of the heated volatilized components enables the user to identify that the volatilized components have been generated and adds to the sensory experience of the smoking experience.


In another example, the ventilation ratio is between 50% and 85% to provide additional cooling to the heated volatilized components. In some cases, the ventilation ratio may be at least 60% or 65%.


In some cases, the aerosol generating material may be included in the article/assembly in sheet form. In some cases, the aerosol generating material may be included as a planar sheet. In some cases, the aerosol generating material may be included as a planar sheet, as a bunched or gathered sheet, as a crimped sheet, or as a rolled sheet (i.e. in the form of a tube). In some such cases, the amorphous solid of these embodiments may be included in an aerosol-generating article/assembly as a sheet, such as a sheet circumscribing a rod of tobacco material. In some other cases, the aerosol generating material may be formed as a sheet and then shredded and incorporated into the article. In some cases, the shredded sheet may be mixed with cut rag tobacco and incorporated into the article.


The assembly may comprise an integrated aerosol-generating article and heater, or may comprise a heater device into which the article is inserted in use.


Referring to FIGS. 1 and 2, there are shown a partially cut-away section view and a perspective view of an example of an aerosol-generating article 101. The article 101 is adapted for use with a device having a power source and a heater. The article 101 of this embodiment is particularly suitable for use with the device 51 shown in FIGS. 5 to 7, described below. In use, the article 101 may be removably inserted into the device shown in FIG. 5 at an insertion point 20 of the device 51.


The article 101 of one example is in the form of a substantially cylindrical rod that includes a body of aerosol generating material 103 and a filter assembly 105 in the form of a rod. The aerosol generating material comprises the amorphous solid material described herein. In some embodiments, it may be included in sheet form. In some embodiments, it may be included in the form of a shredded sheet. In some embodiments, the amorphous solid described herein may be incorporated in sheet form and in shredded form.


The filter assembly 105 includes three segments, a cooling segment 107, a filter segment 109 and a mouth end segment 111. The article 101 has a first end 113, also known as a mouth end or a proximal end and a second end 115, also known as a distal end. The body of aerosol generating material 103 is located towards the distal end 115 of the article 101. In one example, the cooling segment 107 is located adjacent the body of aerosol generating material 103 between the body of aerosol generating material 103 and the filter segment 109, such that the cooling segment 107 is in an abutting relationship with the aerosol generating material 103 and the filter segment 103. In other examples, there may be a separation between the body of aerosol generating material 103 and the cooling segment 107 and between the body of aerosol generating material 103 and the filter segment 109. The filter segment 109 is located in between the cooling segment 107 and the mouth end segment 111. The mouth end segment 111 is located towards the proximal end 113 of the article 101, adjacent the filter segment 109. In one example, the filter segment 109 is in an abutting relationship with the mouth end segment 111. In one embodiment, the total length of the filter assembly 105 is between 37 mm and 45 mm, more preferably, the total length of the filter assembly 105 is 41 mm.


In one example, the rod of aerosol generating material 103 is between 34 mm and 50 mm in length, suitably between 38 mm and 46 mm in length, suitably 42 mm in length.


In one example, the total length of the article 101 is between 71 mm and 95 mm, suitably between 79 mm and 87 mm, suitably 83 mm.


An axial end of the body of aerosol generating material 103 is visible at the distal end 115 of the article 101. However, in other embodiments, the distal end 115 of the article 101 may comprise an end member (not shown) covering the axial end of the body of aerosol generating material 103.


The body of aerosol generating material 103 is joined to the filter assembly 105 by annular tipping paper (not shown), which is located substantially around the circumference of the filter assembly 105 to surround the filter assembly 105 and extends partially along the length of the body of aerosol generating material 103. In one example, the tipping paper is made of 58 GSM standard tipping base paper. In one example, the tipping paper has a length of between 42 mm and 50 mm, suitably of 46 mm.


In one example, the cooling segment 107 is an annular tube and is located around and defines an air gap within the cooling segment. The air gap provides a chamber for heated volatilized components generated from the body of aerosol generating material 103 to flow. The cooling segment 107 is hollow to provide a chamber for aerosol accumulation yet rigid enough to withstand axial compressive forces and bending moments that might arise during manufacture and whilst the article 101 is in use during insertion into the device 51. In one example, the thickness of the wall of the cooling segment 107 is approximately 0.29 mm.


The cooling segment 107 provides a physical displacement between the aerosol generating material 103 and the filter segment 109. The physical displacement provided by the cooling segment 107 will provide a thermal gradient across the length of the cooling segment 107. In one example the cooling segment 107 is configured to provide a temperature differential of at least 40° C. between a heated volatilized component entering a first end of the cooling segment 107 and a heated volatilized component exiting a second end of the cooling segment 107. In one example the cooling segment 107 is configured to provide a temperature differential of at least 60° C. between a heated volatilized component entering a first end of the cooling segment 107 and a heated volatilized component exiting a second end of the cooling segment 107. This temperature differential across the length of the cooling element 107 protects the temperature sensitive filter segment 109 from the high temperatures of the aerosol generating material 103 when it is heated by the device 51. If the physical displacement was not provided between the filter segment 109 and the body of aerosol generating material 103 and the heating elements of the device 51, then the temperature sensitive filter segment 109 may become damaged in use, so it would not perform its required functions as effectively.


In one example, the length of the cooling segment 107 is at least 15 mm. In one example, the length of the cooling segment 107 is between 20 mm and 30 mm, more particularly 23 mm to 27 mm, more particularly 25 mm to 27 mm, suitably 25 mm.


The cooling segment 107 is made of paper, which means that it is comprised of a material that does not generate compounds of concern, for example, toxic compounds when in use adjacent to the heater of the device 51. In one example, the cooling segment 107 is manufactured from a spirally wound paper tube which provides a hollow internal chamber yet maintains mechanical rigidity. Spirally wound paper tubes are able to meet the tight dimensional accuracy requirements of high-speed manufacturing processes with respect to tube length, outer diameter, roundness and straightness.


In another example, the cooling segment 107 is a recess created from stiff plug wrap or tipping paper. The stiff plug wrap or tipping paper is manufactured to have a rigidity that is sufficient to withstand the axial compressive forces and bending moments that might arise during manufacture and whilst the article 101 is in use during insertion into the device 51.


The filter segment 109 may be formed of any filter material sufficient to remove one or more volatilized compounds from heated volatilized components from the aerosol generating material. In one example, the filter segment 109 is made of a mono-acetate material, such as cellulose acetate. The filter segment 109 provides cooling and irritation-reduction from the heated volatilized components without depleting the quantity of the heated volatilized components to an unsatisfactory level for a user.


In some embodiments, a capsule (not illustrated) may be provided in filter segment 109. It may be disposed substantially centrally in the filter segment 109, both across the filter segment 109 diameter and along the filter segment 109 length. In other cases, it may be offset in one or more dimension. The capsule may in some cases, where present, contain a volatile component such as a flavorant or aerosol generating agent.


The density of the cellulose acetate tow material of the filter segment 109 controls the pressure drop across the filter segment 109, which in turn controls the draw resistance of the article 101. Therefore, the selection of the material of the filter segment 109 is important in controlling the resistance to draw of the article 101. In addition, the filter segment performs a filtration function in the article 101.


In one example, the filter segment 109 is made of a 8Y15 grade of filter tow material, which provides a filtration effect on the heated volatilized material, whilst also reducing the size of condensed aerosol droplets, which result from the heated volatilized material.


The presence of the filter segment 109 provides an insulating effect by providing further cooling to the heated volatilized components that exit the cooling segment 107. This further cooling effect reduces the contact temperature of the user’s lips on the surface of the filter segment 109.


In one example, the filter segment 109 is between 6 mm to 10 mm in length, suitably 8 mm.


The mouth end segment 111 is an annular tube and is located around and defines an air gap within the mouth end segment 111. The air gap provides a chamber for heated volatilized components that flow from the filter segment 109. The mouth end segment 111 is hollow to provide a chamber for aerosol accumulation yet rigid enough to withstand axial compressive forces and bending moments that might arise during manufacture and whilst the article is in use during insertion into the device 51. In one example, the thickness of the wall of the mouth end segment 111 is approximately 0.29 mm. In one example, the length of the mouth end segment 111 is between 6 mm to 10 mm, suitably 8 mm.


The mouth end segment 111 may be manufactured from a spirally wound paper tube which provides a hollow internal chamber yet maintains critical mechanical rigidity. Spirally wound paper tubes are able to meet the tight dimensional accuracy requirements of high-speed manufacturing processes with respect to tube length, outer diameter, roundness and straightness.


The mouth end segment 111 provides the function of preventing any liquid condensate that accumulates at the exit of the filter segment 109 from coming into direct contact with a user.


It should be appreciated that, in one example, the mouth end segment 111 and the cooling segment 107 may be formed of a single tube and the filter segment 109 is located within that tube separating the mouth end segment 111 and the cooling segment 107.


Referring to FIGS. 3 and 4, there are shown a partially cut-away section and perspective views of an example of an article 301. The reference signs shown in FIGS. 3 and 4 are equivalent to the reference signs shown in FIGS. 1 and 2, but with an increment of 200.


In the example of the article 301 shown in FIGS. 3 and 4, a ventilation region 317 is provided in the article 301 to enable air to flow into the interior of the article 301 from the exterior of the article 301. In one example, the ventilation region 317 takes the form of one or more ventilation holes 317 formed through the outer layer of the article 301. The ventilation holes may be located in the cooling segment 307 to aid with the cooling of the article 301. In one example, the ventilation region 317 comprises one or more rows of holes, and preferably, each row of holes is arranged circumferentially around the article 301 in a cross-section that is substantially perpendicular to a longitudinal axis of the article 301.


In one example, there are between one to four rows of ventilation holes to provide ventilation for the article 301. Each row of ventilation holes may have between 12 to 36 ventilation holes 317. The ventilation holes 317 may, for example, be between 100 to 500 µm in diameter. In one example, an axial separation between rows of ventilation holes 317 is between 0.25 mm and 0.75 mm, suitably 0.5 mm.


In one example, the ventilation holes 317 are of uniform size. In another example, the ventilation holes 317 vary in size. The ventilation holes can be made using any suitable technique, for example, one or more of the following techniques: laser technology, mechanical perforation of the cooling segment 307 or pre-perforation of the cooling segment 307 before it is formed into the article 301. The ventilation holes 317 are positioned so as to provide effective cooling to the article 301.


In one example, the rows of ventilation holes 317 are located at least 11 mm from the proximal end 313 of the article, suitably between 17 mm and 20 mm from the proximal end 313 of the article 301. The location of the ventilation holes 317 is positioned such that user does not block the ventilation holes 317 when the article 301 is in use.


Providing the rows of ventilation holes between 17 mm and 20 mm from the proximal end 313 of the article 301 enables the ventilation holes 317 to be located outside of the device 51, when the article 301 is fully inserted in the device 51, as can be seen in FIGS. 6 and 7. By locating the ventilation holes outside of the device, non-heated air is able to enter the article 301 through the ventilation holes from outside the device 51 to aid with the cooling of the article 301.


The length of the cooling segment 307 is such that the cooling segment 307 will be partially inserted into the device 51, when the article 301 is fully inserted into the device 51. The length of the cooling segment 307 provides a first function of providing a physical gap between the heater arrangement of the device 51 and the heat sensitive filter arrangement 309, and a second function of enabling the ventilation holes 317 to be located in the cooling segment, whilst also being located outside of the device 51, when the article 301 is fully inserted into the device 51. As can be seen from FIGS. 6 and 7, the majority of the cooling element 307 is located within the device 51. However, there is a portion of the cooling element 307 that extends out of the device 51. It is in this portion of the cooling element 307 that extends out of the device 51 in which the ventilation holes 317 are located.


Referring now to FIGS. 5 to 7 in more detail, there is shown an example of a device 51 arranged to heat aerosol-generating material to volatilize at least one component of said aerosol generating material, typically to form an aerosol, which can be inhaled. The device 51 is a heating device, which releases compounds by heating, but not burning, the aerosol generating material.


A first end 53 is sometimes referred to herein as the mouth or proximal end 53 of the device 51 and a second end 55 is sometimes referred to herein as the distal end 55 of the device 51. The device 51 has an on/off button 57 to allow the device 51 as a whole to be switched on and off as desired by a user.


The device 51 comprises a housing 59 for locating and protecting various internal components of the device 51. In the example shown, the housing 59 comprises a uni-body sleeve 11 that encompasses the perimeter of the device 51, capped with a top panel 17 which defines generally the ‘top’ of the device 51 and a bottom panel 19 which defines generally the ‘bottom’ of the device 51. In another example, the housing comprises a front panel, a rear panel and a pair of opposite side panels in addition to the top panel 17 and the bottom panel 19.


The top panel 17 and/or the bottom panel 19 may be removably fixed to the uni-body sleeve 11, to permit easy access to the interior of the device 51, or may be “permanently” fixed to the uni-body sleeve 11, for example to deter a user from accessing the interior of the device 51. In an example, the panels 17 and 19 are made of a plastics material, including for example glass-filled nylon formed by injection molding, and the uni-body sleeve 11 is made of aluminum, though other materials and other manufacturing processes may be used.


The top panel 17 of the device 51 has an opening 20 at the mouth end 53 of the device 51 through which, in use, the article 101, 301 including the aerosol generating material may be inserted into the device 51 and removed from the device 51 by a user.


The housing 59 has located or fixed therein a heater arrangement 23, control circuitry 25 and a power source 27. In this example, the heater arrangement 23, the control circuitry 25 and the power source 27 are laterally adjacent (that is, adjacent when viewed from an end), with the control circuitry 25 being located generally between the heater arrangement 23 and the power source 27, though other locations are possible.


The control circuitry 25 may include a controller, such as a microprocessor arrangement, configured and arranged to control the heating of the aerosol generating material in the article 101, 301 as discussed further below.


The power source 27 may be for example a battery, which may be a rechargeable battery or a non-rechargeable battery. Examples of suitable batteries include for example a lithium-ion battery, a nickel battery (such as a nickel-cadmium battery), an alkaline battery and/or the like. The battery 27 is electrically coupled to the heater arrangement 23 to supply electrical power when required and under control of the control circuitry 25 to heat the aerosol generating material in the article (as discussed, to volatilize the aerosol generating material without causing the aerosol generating material to burn).


An advantage of locating the power source 27 laterally adjacent to the heater arrangement 23 is that a physically large power source 25 may be used without causing the device 51 as a whole to be unduly lengthy. As will be understood, in general, a physically large power source 25 has a higher capacity (that is, the total electrical energy that can be supplied, often measured in Amp-hours or the like) and thus the battery life for the device 51 can be longer.


In one example, the heater arrangement 23 is generally in the form of a hollow cylindrical tube, having a hollow interior heating chamber 29 into which the article 101, 301 comprising the aerosol generating material is inserted for heating in use. Different arrangements for the heater arrangement 23 are possible. For example, the heater arrangement 23 may comprise a single heating element or may be formed of plural heating elements aligned along the longitudinal axis of the heater arrangement 23. The or each heating element may be annular or tubular, or at least part-annular or part-tubular around its circumference. In an example, the or each heating element may be a thin film heater. In another example, the or each heating element may be made of a ceramics material. Examples of suitable ceramics materials include alumina and aluminum nitride and silicon nitride ceramics, which may be laminated and sintered. Other heating arrangements are possible, including for example inductive heating, infrared heater elements, which heat by emitting infrared radiation, or resistive heating elements formed by for example a resistive electrical winding.


In one particular example, the heater arrangement 23 is supported by a stainless steel support tube and comprises a polyimide-heating element. The heater arrangement 23 is dimensioned so that substantially the whole of the body of aerosol generating material 103, 303 of the article 101, 301 is inserted into the heater arrangement 23 when the article 101, 301 is inserted into the device 51.


The or each heating element may be arranged so that selected zones of the aerosol generating material can be independently heated, for example in turn (over time, as discussed above) or together (simultaneously) as desired.


The heater arrangement 23 in this example is surrounded along at least part of its length by a thermal insulator 31. The insulator 31 helps to reduce heat passing from the heater arrangement 23 to the exterior of the device 51. This helps to keep down the power requirements for the heater arrangement 23 as it reduces heat losses generally. The insulator 31 also helps to keep the exterior of the device 51 cool during operation of the heater arrangement 23. In one example, the insulator 31 may be a double-walled sleeve, which provides a low-pressure region between the two walls of the sleeve. That is, the insulator 31 may be for example a “vacuum” tube, i.e. a tube that has been at least partially evacuated so as to minimize heat transfer by conduction and/or convection. Other arrangements for the insulator 31 are possible, including using heat-insulating materials, including for example a suitable foam-type material, in addition to or instead of a double-walled sleeve.


The housing 59 may further comprises various internal support structures 37 for supporting all internal components, as well as the heating arrangement 23.


The device 51 further comprises a collar 33 which extends around and projects from the opening 20 into the interior of the housing 59 and a generally tubular chamber 35 which is located between the collar 33 and one end of the vacuum sleeve 31. The chamber 35 further comprises a cooling structure 35f, which in this example, comprises a plurality of cooling fins 35f spaced apart along the outer surface of the chamber 35, and each arranged circumferentially around outer surface of the chamber 35. There is an air gap 36 between the hollow chamber 35 and the article 101, 301 when it is inserted in the device 51 over at least part of the length of the hollow chamber 35. The air gap 36 is around all of the circumference of the article 101, 301 over at least part of the cooling segment 307.


The collar 33 comprises a plurality of ridges 60 arranged circumferentially around the periphery of the opening 20 and which project into the opening 20. The ridges 60 take up space within the opening 20 such that the open span of the opening 20 at the locations of the ridges 60 is less than the open span of the opening 20 at the locations without the ridges 60. The ridges 60 are configured to engage with an article 101, 301 inserted into the device to assist in securing it within the device 51. Open spaces (not shown in the Figures) defined by adjacent pairs of ridges 60 and the article 101, 301 form ventilation paths around the exterior of the article 101, 301. These ventilation paths allow hot vapors that have escaped from the article 101, 301 to exit the device 51 and allow cooling air to flow into the device 51 around the article 101, 301 in the air gap 36.


In operation, the article 101, 301 is removably inserted into an insertion point 20 of the device 51, as shown in FIGS. 5 to 7. Referring particularly to FIG. 6, in one example, the body of aerosol generating material 103, 303, which is located towards the distal end 115, 315 of the article 101, 301, is entirely received within the heater arrangement 23 of the device 51. The proximal end 113, 313 of the article 101, 301 extends from the device 51 and acts as a mouthpiece assembly for a user.


In operation, the heater arrangement 23 will heat the article 101, 301 to volatilize at least one component of the aerosol generating material from the body of aerosol generating material 103, 303.


The primary flow path for the heated volatilized components from the body of aerosol generating material 103, 303 is axially through the article 101, 301, through the chamber inside the cooling segment 107, 307, through the filter segment 109, 309, through the mouth end segment 111, 313 to the user. In one example, the temperature of the heated volatilized components that are generated from the body of aerosol generating material is between 60° C. and 250° C., which may be above the acceptable inhalation temperature for a user. As the heated volatilized component travels through the cooling segment 107, 307, it will cool and some volatilized components will condense on the inner surface of the cooling segment 107, 307.


In the examples of the article 301 shown in FIGS. 3 and 4, cool air will be able to enter the cooling segment 307 via the ventilation holes 317 formed in the cooling segment 307. This cool air will mix with the heated volatilized components to provide additional cooling to the heated volatilized components.


Another aspect of the invention provides a method of making an aerosol-generating composition described herein.


The method typically comprises providing an amorphous solid as described hereinabove, providing tobacco material as described hereinabove, and combining the amorphous solid and tobacco material in a ratio such that there is provided an aerosol-generating composition having an aerosol-former material content of from about 5 to 30 wt% of the aerosol-generating composition.


In examples, the amorphous solid is provided as a shredded sheet. In particular examples, the providing the amorphous solid comprises shredding a sheet of the amorphous solid to provide the amorphous solid as a shredded sheet. In examples, the tobacco material is fine-cut, and the combining the amorphous solid and tobacco material comprises blending the shredded sheet of amorphous solid with the fine-cut tobacco material.


In examples, the providing the amorphous solid comprises (a) forming a slurry comprising components of the amorphous solid or precursors thereof, (b) forming a layer of the slurry, (c) setting the slurry to form a gel, and (d) drying to form an amorphous solid.


The (b) forming a layer of the slurry typically comprises spraying, casting or extruding the slurry. In examples, the slurry layer is formed by electrospraying the slurry. In examples, the slurry layer is formed by casting the slurry.


In some examples, (b) and/or (c) and/or (d), at least partially, occur simultaneously (for example, during electrospraying). In some examples, (b), (c) and (d) occur sequentially.


In some examples, the slurry is applied to a support. The layer may be formed on a support.


In examples, the slurry comprises gelling agent, aerosol-former material and active substance. The slurry may comprise these components in any of the proportions given herein in relation to the composition of the amorphous solid. For example, the slurry may comprise (on a dry weight basis):

  • gelling agent and, optionally, filler, wherein the amount of gelling agent and filler taken together is about 10 to 60 wt% of the slurry;
  • aerosol-former material in an amount of about 40 to 80 wt% of the slurry; and
  • optionally, active substance in an amount of up to about 20 wt% of the slurry.


The setting the gel (c) may comprise supplying a setting agent to the slurry. For example, the slurry may comprise sodium, potassium or ammonium alginate as a gel-precursor, and a setting agent comprising a calcium source (such as calcium chloride), may be added to the slurry to form a calcium alginate gel.


In examples, the setting agent comprises or consists of calcium acetate, calcium formate, calcium carbonate, calcium hydrogencarbonate, calcium chloride, calcium lactate, or a combination thereof. In some examples, the setting agent comprises or consists of calcium formate and/or calcium lactate. In particular examples, the setting agent comprises or consists of calcium formate. The inventors have identified that, typically, employing calcium formate as a setting agent results in an amorphous solid having a greater tensile strength and greater resistance to elongation.


The total amount of the setting agent, such as a calcium source, may be 0.5-5 wt% (calculated on a dry weight basis). Suitably, the total amount may be from about 1 wt%, 2.5 wt% or 4 wt% to about 4.8 wt% or 4.5 wt%. The inventors have found that the addition of too little setting agent may result in an amorphous solid which does not stabilize the amorphous solid components and results in these components dropping out of the amorphous solid. The inventors have found that the addition of too much setting agent results in an amorphous solid that is very tacky and consequently has poor handleability.


When the amorphous solid does not contain tobacco, a higher amount of setting agent may need to be applied. In some cases, the total amount of setting agent may therefore be from 0.5-12 wt% such as 5-10 wt%, calculated on a dry weight basis. Suitably, the total amount may be from about 5 wt%, 6 wt% or 7 wt% to about 12 wt% or 10 wt%. In this case, the amorphous solid will not generally contain any tobacco.


In examples, supplying the setting agent to the slurry comprises spraying the setting agent on the slurry, such as a top surface of the slurry.


Alginate salts are derivatives of alginic acid and are typically high molecular weight polymers (10-600 kDa). Alginic acid is a copolymer of β-D-mannuronic (M) and α-L-guluronic acid (G) units (blocks) linked together with (1,4)-glycosidic bonds to form a polysaccharide. On addition of calcium cations, the alginate crosslinks to form a gel. The inventors have determined that alginate salts with a high G monomer content more readily form a gel on addition of the calcium source. In some cases therefore, the gel-precursor may comprise an alginate salt in which at least about 40%, 45%, 50%, 55%, 60% or 70% of the monomer units in the alginate copolymer are α-L-guluronic acid (G) units.


In examples, the drying (d) removes from about 50 wt%, 60 wt%, 70 wt%, 80 wt% or 90 wt% to about 80 wt%, 90 wt% or 95 wt% (WWB) of water in the slurry.


In examples, the drying (d) reduces the cast material thickness by at least 80%, suitably 85% or 87%. For instance, the slurry is cast at a thickness of 2 mm, and the resulting dried amorphous solid material has a thickness of 0.2 mm.


The slurry itself also forms part of the invention. In some examples, the slurry solvent consists essentially of or consists of water. In some examples, the slurry comprises from about 50 wt%, 60 wt%, 70 wt%, 80 wt% or 90 wt% of solvent (WWB).


In examples where the solvent consists of water, the dry weight content of the slurry may match the dry weight content of the amorphous solid. Thus, the discussion herein relating to the solid composition is explicitly disclosed in combination with the slurry aspect of the invention.


According to an aspect of the present invention there is provided a method of generating an aerosol using a non-combustible aerosol provision system as described herein. In examples, the method comprises heating the aerosol-generating composition to a temperature of less than or equal to 350° C. The method typically comprises heating the aerosol-generating composition to a temperature of from about 220° C. to about 280° C. In some examples, the method comprises heating at least a portion of the aerosol-generating composition to a temperature of from about 220° C. to about 280° C. over a session of use.


“Session of use” as used herein refers to a single period of use of the non-combustible aerosol provision system by a user. The session of use begins at the point at which power is first supplied to at least one heating unit present in the heating assembly. The device will be ready for use after a period of time has elapsed from the start of the session of use. The session of use ends at the point at which no power is supplied to any of the heating elements in the aerosol-generating device. The end of the session of use may coincide with the point at which the smoking article is depleted (the point at which the total particulate matter yield (mg) in each puff would be deemed unacceptably low by a user). The session will have a duration of a plurality of puffs. Said session may have a duration less than 7 minutes, or 6 minutes, or 5 minutes, or 4 minutes and 30 seconds, or 4 minutes, or 3 minutes and 30 seconds. In some embodiments, the session of use may have a duration of from 2 to 5 minutes or from 3 to 4.5 minutes, or 3.5 to 4.5 minutes, or suitably 4 minutes. A session may be initiated by the user actuating a button or switch on the device, causing at least one heating element to begin rising in temperature.


According to an aspect of the invention there is provided use of the non-combustible aerosol provision system as described herein. Use of the non-combustible aerosol provision system may comprise interacting with the non-combustible aerosol provision device (e.g. activating an actuator) to initiate a smoking session.


EXAMPLES
Example 1

Two amorphous solids (AS1 and AS2) were prepared according to the method described herein. Each amorphous solid was formed from a slurry comprising water and the following components:





TABLE 1





Component
Proportion (dry weight %)




Alginate
32


Pectin
8


Glycerol
60


Total
100






AS1 was formed by supplying calcium lactate to the slurry as a setting agent; AS2 was formed by supplying calcium formate to the slurry as setting agent. The compositions exhibited the following physical properties (measurements obtained from standard protocols known to the skilled person):





TABLE 2







AS1
AS2




Sheet weight (gm-2)
101
107


Moisture* (wt%)
14.9
15.6


Glycerol (wt%)
51.1
48.0


Tensile strength (Nm-1)
196
442


Elongation (%)
31.8
20.1


*data collected by Karl-Fischer-titration






Example 2

Third, fourth and fifth amorphous solids (AS3, AS4 and AS5) was prepared according to the method described herein. The amorphous solids were formed from a slurry comprising water and the following components:





TABLE 3





Component
Proportion (dry weight %)




Alginate
24


Pectin
6


Cellulose fibers
10


Glycerol
60


Total
100






AS3 was formed without addition of a setting agent; AS4 was formed by supplying calcium lactate to the slurry as a setting agent; AS5 was formed by supplying calcium formate to the slurry as setting agent. The compositions exhibited the following physical properties (measurements obtained from standard protocols known to the skilled person):





TABLE 4








AS3
AS4
AS5




Sheet weight (gm-2)
98.9
105
110


Moisture* (wt%)
12.2
11.8
11.3


Glycerol (wt%)
47.3
51.7
50.3


Tensile strength (Nm-1)
742
947
1144


Elongation (%)
12.5
11.9
8.0






Each of the amorphous solids prepared in Examples 1 and 2 were blended with cut tobacco to provide an aerosol-generating composition, which was found to have desirable sensory characteristics and aerosol generation.


All percentages by weight described herein (denoted wt%) are calculated on a dry weight basis, unless explicitly stated otherwise. All weight ratios are also calculated on a dry weight basis. A weight quoted on a dry weight basis refers to the whole of the extract or slurry or material, other than the water, and may include components, which by themselves are liquid at room temperature and pressure, such as glycerol. Conversely, a weight percentage quoted on a wet weight basis refers to all components, including water.


For the avoidance of doubt, where in this specification the term “comprises” is used in defining the invention or features of the invention, embodiments are also disclosed in which the invention or feature can be defined using the terms “consists essentially of” or “consists of” in place of “comprises”. Reference to a material “comprising” certain features means that those features are included in, contained in, or held within the material.


Any feature described in relation to one aspect of the invention is expressly disclosed in combination with any other aspect described herein.


The above embodiments are to be understood as illustrative examples of the invention. Further embodiments of the invention are envisaged. It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the invention, which is defined in the accompanying claims.

Claims
  • 1. An aerosol-generating composition comprising: an amorphous solid comprising:aerosol-former material in an amount of from about 40 to 80 wt% of the amorphous solid;gelling agent;optionally, filler, wherein the amount of gelling agent and filler taken together is from about 10 to 60 wt% of the amorphous solid; andoptionally, active substance in an amount of up to about 20 wt% of the amorphous solid; andtobacco material;wherein the aerosol-generating composition has an aerosol-former material content of from about 5 to 30 wt% of the aerosol-generating composition, these weights being calculated on a dry weight basis.
  • 2. The aerosol-generating composition according to claim 1, wherein the aerosol-former content is from about 10 to 20 wt% of the of the aerosol-generating composition.
  • 3. The aerosol-generating composition according to claim 1 , wherein the amorphous solid is comprised in the aerosol-generating composition in an amount of from about 5 to 40 wt% of the aerosol-generating composition.
  • 4. The aerosol-generating composition according to ] claim 1, wherein the filler is comprised in the amorphous solid in an amount of from about 1 to 15 wt% of the amorphous solid or wherein the amorphous solid does not comprise filler.
  • 5. (canceled)
  • 6. The aerosol-generating composition according to claim 1, wherein the aerosol-former material is comprised in the amorphous solid in an amount of from 50 to 70 wt% of the amorphous solid, and optionally wherein the aerosol aerosol-former material comprises glycerol.
  • 7. The aerosol-generating composition according to claim 1, wherein the gelling agent is comprised in the amorphous solid in an amount of from about 5 to 50 wt% of the amorphous solid, optionally wherein the gelling agent comprises alginate and/or pectin and/or guar gum, and optionally wherein the alginate is present in an amount of at least 50 wt% of the gelling agent.
  • 8-12. (canceled)
  • 13. The aerosol-generating composition according to claim 1, wherein the tobacco material is fine-cut.
  • 14. The aerosol-generating composition according to claim 1 , wherein the tobacco material comprises lamina tobacco, optionally wherein the tobacco material comprises lamina tobacco in an amount of at least about 60 wt% of the tobacco material, preferably at least about 95 wt% of the tobacco material.
  • 15-17. (canceled)
  • 18. The aerosol-generating composition according to claim 1 , wherein the tobacco material comprises less than 1 wt% reconstituted tobacco, preferably wherein the tobacco material substantially does not comprise reconstituted tobacco.
  • 19. (canceled)
  • 20. The aerosol-generating composition according to claim 1 , wherein the tobacco material comprises cut rag tobacco, preferably in an amount of at least 90wt% of the tobacco material.
  • 21. (canceled)
  • 22. The aerosol-generating composition according to claim 1, wherein the tobacco material comprises aerosol-former material in an amount of from 1 to 10wt% of the tobacco material.
  • 23. The aerosol-generating composition according to claim 1, wherein the amorphous solid is a shredded sheet, preferably wherein the shredded sheet of amorphous solid is blended with the tobacco material.
  • 24. (canceled)
  • 25. The aerosol-generating composition according to claim 23 , wherein the tobacco material comprises cut rag tobacco having a cut width, and the amorphous solid shredded sheet has a cut width, the cut width of the amorphous solid being from about 90 to 110% of the cut width of the cut rag tobacco and/or wherein the tobacco material has an area density, and the amorphous solid has an area density, the area density of the amorphous solid being from about 90 to 110% of the area density of the tobacco material.
  • 26. (canceled)
  • 27. An article for use with a non-combustible aerosol provision device, the article comprising the aerosol-generating composition according to claim 1, optionally wherein the tobacco material is in the form of a substantially cylindrical rod and the amorphous solid is in sheet form, and the sheet of amorphous solid circumscribes the rod of tobacco material.
  • 28-30. (canceled)
  • 31. A non-combustible aerosol provision system comprising an article according to claim 27 and a non-combustible aerosol provision device, wherein the non-combustible aerosol provision device is configured to generate aerosol from the article when the article is used with the non-combustible aerosol provision device, preferably wherein the non-combustible aerosol provision device comprises a heater configured to heat but not burn the article.
  • 32. (canceled)
  • 33. A method of making an aerosol-generating composition, the method comprising: providing an amorphous solid comprising: aerosol-former material in an amount of from about 40 to 80 wt% of the amorphous solid;gelling agent;optionally, filler, wherein the amount of gelling agent and filler taken together is from about 10 to 60 wt% of the amorphous solid; andoptionally, active substance in an amount of up to about 20 wt% of the amorphous solid;providing tobacco material; andcombining the amorphous solid and tobacco material to provide the aerosol-generating composition, the aerosol-generating composition having an aerosol-former content of from about 5 to 30 wt% of the aerosol-generating composition, weights being calculated on a dry weight basis.
  • 34. The method according to claim 33, wherein the providing the amorphous solid comprises: providing a slurry comprising gelling agent, aerosol-former material, optionally filler, and optionally active substance;forming a layer of the slurry;setting the slurry to form a gel; anddrying the gel to form the amorphous solid.
  • 35. The method according to claim 34, wherein the setting comprises supplying a setting agent to the slurry, preferably wherein the supplying the setting agent comprises spraying the setting agent onto a surface of the slurry, and optionally wherein the setting agent comprises calcium formate.
  • 36-41. (canceled)
  • 42. A method of generating an aerosol using a non-combustible aerosol provision system according to claim 31 , the method comprising heating the aerosol-generating composition to a temperature of less than 350° C.
  • 43. Use of the non-combustible aerosol provision system according to claim 31.
Priority Claims (1)
Number Date Country Kind
2001310.8 Jan 2020 GB national
PRIORITY CLAIM

The present application is a National Phase entry of PCT Application No. PCT/EP2021/052103, filed Jan. 29, 2021, which claims priority from GB Application No. 2001310.8, filed Jan. 30, 2020, each of which is hereby fully incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2021/052103 1/29/2021 WO