The present disclosure relates to an aerosol provision system, a method of generating an aerosol in an aerosol provision device, a consumable for use in an aerosol provision device and an aerosol provision device.
Aerosol provision devices are known. Common devices use heaters to create an aerosol from a suitable medium which is then inhaled by a user. Often suitable media require significant levels of heating prior to generating an aerosol for inhalation. Similarly, current devices offer users a large variety in the media from which inhalable aerosol can be generated. Current devices often require a change in the device, such as the loading of the media, to enable a change in the aerosol generating medium active within the device.
It is desirable for aerosol provision devices to rapidly deliver an aerosolized payload to a user. Therefore there is a requirement to avoid long warm up times prior to a user receiving an aerosolized payload.
The present disclosure is directed toward solving some of the above problems.
Aspects of the disclosure are defined in the accompanying claims.
In accordance with some embodiments described herein, there is provided an aerosol provision system comprising: a substrate comprising aerosol generating medium, the substrate including a first surface and a second surface facing the first surface; a source of energy for heating arranged to face the second surface of the substrate, wherein the source of energy for heating is configured to cause heating of the aerosol generating medium to form an aerosol; and a movement mechanism arranged to enable movement of the aerosol generating medium relative to the source of energy for heating, wherein the aerosol generating medium is rotationally movable relative to the source of energy for heating such that portions of the aerosol generating medium are presented to the source of energy for heating, and wherein the aerosol generating medium is rotated around an axis at an angle to the first surface.
In accordance with some embodiments described herein, there is provided a method of generating an aerosol in an aerosol provision device, the method comprising: providing a substrate comprising aerosol generating medium, the substrate including a first surface and a second surface facing the first surface; providing a source of energy for heating; providing a movement mechanism; rotationally moving the substrate by the movement mechanism relative to the source of energy for heating thereby presenting an individual dose of aerosol generating medium to the source of energy for heating; heating the dose of aerosol generating medium presented to the source of energy for heating to form an aerosol, wherein at least one dose of aerosol generating medium is rotated around an axis at an angle to the first surface.
In accordance with some embodiments described herein, there is provided a consumable for use in an aerosol provision device comprising: a substrate comprising aerosol generating medium, and having a first surface and a second surface facing the first surface; wherein the substrate is configured to be rotatable about an axis in use in an aerosol provision device.
In accordance with some embodiments described herein, there is provided an aerosol provision device configured to receive a substrate, the substrate comprising aerosol generating medium, and having a first surface and a second surface facing the first surface, the aerosol provision device comprising: a source of energy for heating arranged to, in use, face the second surface of the substrate, wherein the source of energy for heating is configured to heat aerosol generating medium to form an aerosol; and a movement mechanism arranged to move aerosol generating medium relative to the source of energy for heating, wherein aerosol generating medium is rotationally movable relative to the source of energy for heating such that portions of the aerosol generating medium are, in use, presented to the source of energy for heating, and wherein, in use, the aerosol generating medium is rotated around an axis at an angle to the first surface.
In accordance with some embodiments described herein, there is provided aerosol provision means comprising: a substrate comprising aerosol generating means and having a first surface and a second surface facing the first surface; heating means arranged to face the second surface of the substrate, wherein the heating means is configured to heat the aerosol generating means to form an aerosol; and movement provision means arranged to move the aerosol generating means, wherein the aerosol generating means are rotationally movable relative to the heating means such that portions of the aerosol generating means are presented to the heating means, and wherein the aerosol generating means is rotated around an axis at an angle to the first surface.
The present teachings will now be described by way of example only with reference to the following figures in which like parts are depicted by like reference numerals:
While the invention is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the drawings and detailed description of the specific embodiments are not intended to limit the invention to the particular forms disclosed. On the contrary, the invention covers all modifications, equivalents and alternatives falling within the scope of the present invention as defined by the appended claims.
Aspects and features of certain examples and embodiments are discussed/described herein. Some aspects and features of certain examples and embodiments may be implemented conventionally and these are not discussed/described in detail in the interests of brevity. It will thus be appreciated that aspects and features of apparatus and methods discussed herein which are not described in detail may be implemented in accordance with any conventional techniques for implementing such aspects and features.
The present disclosure relates to aerosol provision systems, which may also be referred to as aerosol provision systems, such as e-cigarettes. Throughout the following description the term “e-cigarette” or “electronic cigarette” may sometimes be used, but it will be appreciated this term may be used interchangeably with aerosol provision system/device and electronic aerosol provision system/device. Furthermore, and as is common in the technical field, the terms “aerosol” and “vapour”, and related terms such as “vaporize”, “volatilize” and “aerosolize”, may generally be used interchangeably.
The substrate 110 has a first surface 112 which includes aerosol generating medium. In the described implementation, the substrate includes a carrier layer 111 (sometimes referred to herein as a carrier or a substrate supporting layer) which has a first surface on which the aerosol generating medium is disposed. In this implementation, a combination of the surface of the carrier layer 111 and of the aerosol generating material forms the first surface 112 of the substrate 110. In the described implementation, the aerosol generating medium may be arranged as a plurality of doses 114 of the medium. The substrate 110 has a second surface 116 which faces the first surface 112. The second surface 116 faces the first surface 112 and one or both of the first surface 112 and second surface 116 may be smooth or rough. In the described implementation, the second surface 116 is formed by the carrier layer 111. That is, the carrier layer 111 has a first surface and a second surface which faces the first surface, where aerosol generating material is disposed on the first surface of the carrier layer 111. The device 100 has a source of energy for heating 120 arranged to face the second surface 116 of the substrate 110. The source of energy for heating 120 is an element of the aerosol provision device 100 which transfers energy from a power source, such as a battery (not shown), to the aerosol generating medium 120 to generate aerosol from the aerosol generating medium 114. In the example described below, the source of energy for heating 120 is a heater, e.g., a resistive heater, that supplies energy (in the form of heat) to the aerosol generating medium to generate aerosol from the aerosol generating medium. The device 100 has a movement mechanism 130 arranged to move the substrate 110, and in particular portions 114 (or, in some cases, doses) of aerosol generating medium. The portions 114 of aerosol generating medium are rotationally movable relative to the heater 120 such that portions of the aerosol generating medium are presented, in this case individually, to the heater 120. The device 100 is arranged such that at least one dose 114 of the aerosol generating medium is rotated around an axis A at an angle θ to the second surface 116. The substrate 110 in this implementation is substantially flat. The carrier layer 111 of substrate 110 in this implementation may be formed of partially or entirely of paper or card.
The substrate 110 in
The substrate 110 of the present example includes aerosol generating medium disposed on the carrier layer 111 of the substrate 110. However, in other implementations, the substrate 110 may be formed exclusively of aerosol generating medium; that is, in some implementations, the substrate consists entirely of aerosol generating medium. In yet other implementations, the substrate 110 may have a layered structure from a plurality of materials. In one example, the substrate 110 may have a layer formed from at least one of thermally conductive material, inductive material, permeable material or impermeable material.
In some implementations, the carrier layer 111 of the substrate may be, or may include, a metallic element that is arranged to be heated by a varying magnetic field. In such implementations, the source of energy for heating 120 may include an induction coil, which, when energised, causes heating within the metallic element of the substrate 110. The degree of heating may be affected by the distance between the metallic element and the induction coil.
In an example the aerosol forming material is disposed on the carrier layer 111 of the substrate 110 such that the distance from the source of energy for heating 120 to the aerosol forming material is within the range of 0.010 mm, 0.015 mm, 0.017 mm, 0.020 mm. 0.023 mm, 0.025 mm, 0.05 mm, 0.075 mm, 0.1 mm, to about 4 mm, 3.5 mm, 3 mm, 2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm, 0.5 mm or 0.3 mm. In some cases, there may be a minimum spacing between the source of energy for heating 120 and aerosol forming material of the substrate 110 of at least about 10 μm, 15 μm, 17 μm, 20 μm, 23 μm, 25 μm, 50 μm, 75 μm or 0.1 mm.
The device 100 may have a plurality of chambers or regions that may or may not be separate from one another. The device 100 may have a power chamber (not shown) comprising a power source for supplying power to the source of energy for heating 120 or the movement mechanism 130. The source of energy for heating 120 in the described example is an electrically resistive heater 120. However, in other examples, the source of energy for heating 120 may be a chemically activated heater which may or may not operate via exothermic reactions or the like. The source of energy for heating 120 may be part of an inductive heating system, wherein the source of energy for heating 120 is the source of energy for inductive heating, such as a coil of copper wire, and the substrate 110 may contain a susceptor or the like. The susceptor may for example be a sheet of aluminium foil or the like. For the purposes of providing a concrete example, the source of energy for heating 120 is herein described as a resistive heater 120 (or heater 120 for conciseness), but it should be appreciated that different heaters or heating system components may be implemented in accordance with the present disclosure.
The heater 120 provides thermal energy, heat, to the surrounding environment of the heater 120. At least some portion of the substrate 110 is within the area of effect of the heater 120. The area of effect of the heater 120 is the area within which the heater 120 may provide heat to an item.
The arrangement shown in
The shape of the device 100 may be cigarette-shape (longer in one dimension than the other two) or may be other shapes. In an example, the device 100 may have a shape that is longer in two dimensions than the other one, for example like a compact-disc player or the like. Alternatively, the shape may be any shape that can suitably house the substrate 110, source of energy for heating 120 and the movement mechanism 130.
In one example of the device 100, during use the heater 120 is activated after the dose 114C has been moved into the heating region 140. This arrangement has the advantage that energy is conserved during movement phases of the substrate 110. This leads to a longer operational life of the device 100, via length of life of a power source (not shown) to the heater 120 and via length of life of the heater 120 itself.
In another example, the heater 120 may be activated prior to the dose 114C being moved into the heating region 140. This arrangement has the advantage that a warm up period is not required for the heater 120 to reach a temperature suitable for inducing aerosolization of an aerosol generating medium once the dose 114C arrives in the heating region 140. As such, the delivery of aerosol to a user inhaling on the device 100 occurs more quickly and therefore improves the user experience of the device 100. In this arrangement, the heater 120 can be brought to an operational temperature suitable for aerosolising the aerosol generating medium prior to the dose 114C being moved into the heating region 140, or the heater 120 can be brought to a pre-heat temperature (i.e., a temperature between ambient and operational) prior to the dose 114C being moved into the heating region 140 and subsequently raised to the operational temperature after the dose 114C has been moved into the heating region 140.
Referring still to
Alternatively, additional structures may be used to allow the movement mechanism 130 to be located in any position relative to the substrate 110. Any such arrangement wherein the axis A (around which the substrate 110 may rotate) is off-centre to the central axis of the substrate 110 is possible, but may require intelligent arrangement of the doses 114 of aerosol generating medium on the substrate 110 alongside positioning of the heater 120. The additional structures may project from the sides of the housing of the device 100 and assist in fixing the substrate 110 in place, while allowing motion of the substrate 110.
The movement mechanism 130 and connecting element 132 may take the form of a rotatable shaft which is driven by a motor around a bearing, and a sprocketing or keying mechanism arranged to connect with the substrate 110. In this case, the motor is used to drive the rotatable shaft 132, while the bearing of the movement mechanism 130 supports the shaft and facilitates rotational movement of the shaft 132. The substrate 110 and connecting element 132 may be provided with a keying and alignment feature combination which allows the substrate to be connected to the connecting feature. Alternatively, the force to move the movement mechanism 130 could be supplied by a user, for example by manually moving the substrate 110. This manual movement may be by rotating the substrate 110 or pulling the substrate 110 or the like. Accordingly, the device 100 may expose at least a part of the substrate 110 for the user to physically contact and move the substrate 110, e.g., an opening may be provided to expose a part of the circumferential edge of the substrate 110. The movement provided by the movement mechanism 130 is not restricted to rotational movement. Linear movement and oscillatory movement, among others, may also be provided. Arrangements to provide such movements are well known. The substrate may be rotated via the movement mechanism 130 at a rotational speed which can be variable or consistent. A consistent movement provides the user with a substantially consistent level of aerosol production, as the substrate 110 consistently turns and so provides fresh aerosol forming material to the source of energy for heating 120. The rate at which aerosol is generated may depend on the rotational speed of the substrate, in addition to other parameters such as the temperature of the heater. Alternatively, the substrate may be rotated via the movement mechanism 130 at a variable rotational speed. In this example, the device 100 can provide greater or lesser amounts of aerosol as desired by the user by using a greater or lesser rotational speed. Use of varying rotational speeds may be used in conjunction with a variable heating profile from the source of energy for heating 120. The movement mechanism 130 may also provide indexed movement, such that the substrate 110 moves in a discretised manner. That is, the substrate 110 is arranged to move to pre-set angular positions. The amount by which the substrate 110 moves per indexed position may be consistent throughout the rotation of the substrate 110 (i.e., over 360 degrees) or variable.
Arranged substantially between the heater 120, the heating location 140 and the outlet 150, as shown in
In an example, the heater 120 is movable. In the example of a device 100 shown in
In an example, the heater 120 is moved into contact with the second surface 116 of the substrate facing a specific dose (or portion of a dose) which is moved into the heating location 140 in order to maximise heat transmission between the heater 120 and the specific dose. As mentioned above, after one specific dose is heated, the doses are moved so that a fresh dose is moved into the heating location 140. In instances where the heater 120 contacts the substrate 110, prior to moving the doses 114, so as to move a new specific dose into the heating location 140, the heater 120 is moved away from (or out of contact with) the substrate/doses to prevent high levels of friction which would otherwise occur during the movement of the doses 114 via the movement mechanism 130 if the heater 120 remained in contact with the second surface 116 of the substrate 110.
In the example of
In an example, the source of energy for heating 120 or the aerosol generating medium are moved in the linear direction, prior to the aerosol generating medium being rotationally moved relative to the source of energy for heating 120.
In the examples shown in
The device 100 may have a controller 172 for monitoring or controlling movement provided by the movement mechanism 130. The controller 172 may control the movement of the doses 114 such that doses 114 are controllably moved into the heating location 140. The controller 172 may also be able to inform the user on the number of remaining viable doses 114 in the device 100.
In an example, the device 100 may have a motion monitoring system 170 which comprises the controller 172. The monitoring system 170 may monitor the motion within the device 100. The monitoring system 170 may also comprise a detector 174 for detecting movement information. The monitoring system 170 monitors the motion of the substrate 110 or the doses 114 of aerosol generating medium to record movement that has occurred and thereby avoid moving the same specific dose into the heating location 140 twice. This avoids undesired aerosol being formed from reheating of a “spent” dose. The detector 174 may relay to the user information relating to the number of “unspent” doses remaining in the device 100, so that the user is informed when to replace the plurality of doses 114 within the device 100. The detector 174 can also provide feedback on the functioning of the movement mechanism 130 by observing the movement of the substrate 110 or doses 114 or heater 120, so as to inform a user if the movement mechanism 130 (or any associated element, e.g., connecting element 132) malfunctions.
The controller 172 may be a microcontroller so as to reduce space requirements. The detector 174 may be a break beam sensor, brushed system, speed tracker or the like to provide information on e.g., the number of rotations of the substrate 110 and the locations of the substrate 110 which have been moved to the heating location 140. This information may be relayed to a user or to a diagnostics element (not shown) to enable regular checks on the functioning of the device 100.
The motion monitoring system 170 may be connected to the movement mechanism 130 by a wired connection such as a simple electrical connection or any other connection including wireless such as Bluetooth etc.
The movement mechanism 130 shown in
The substrate 110 as shown in the example of
The device 100 may comprise a receiving mechanism 138 into which the substrate 110 may be received having been heated in the heating location 140. The receiving mechanism 138 is connected to the movement mechanism 130 by receiving mechanism connecting element 136. The receiving mechanism 138 may be a spool, wheel, roller, reel or the like, which may be wound by the movement mechanism 130 so as to move the doses 114 from a starting position near the rotating element 118, through the heating location 140 and then into the receiving mechanism 138. The receiving mechanism 138 may alternatively be any other mechanism which can receive aerosol generating medium. The device 100 may comprise a monitoring system 170 as described above for monitoring the movement of the doses 114. The monitoring system 170 may be contained within the receiving mechanism 138, and may operate based on the detected amount of substrate 110 in the receiving mechanism 138.
The strip may be deemed depleted when the strip has moved entirely from the rotating element 118 and the original spool to the receiving mechanism 138 and onto the second spool. The user may then easily remove both spools 118, 138 from the device and replace with new spools 118, 138. This improves the cleanliness with which the aerosol generating material may be inserted and removed from the device 100.
The arrangement shown in
The substrate 110 or the plurality of doses 114 of aerosol generating medium may be substantially in the form of a number of shapes. The example shown in
In all the examples described so far, an aerosol generating medium 114 is in some way moved past a heater 120. This movement is provided by a movement mechanism 130. The movement mechanism 130 may comprise an indexing system (not shown) arranged to enable indexed motion of the doses 114 of aerosol generating medium. The indexing system moves a specific dose 114 in a stepwise manner into the heating location 140 prior to generating an aerosol from that specific dose 114 and then out of the heating location 140 after having generated an aerosol. The indexing system may enable greater precision of movement of one dose into the heating location 140, that dose then being replaced by another dose. The indexing system can be provided by sprocketing or a keying mechanism arranged on, or forming part of, the substrate 110. In alternative examples, a Geneva wheel and cam combination can be used to provide an indexed motion of the doses 114 of aerosol generating medium.
The indexing system may be arranged to move adjacent doses 114 of aerosol generating medium into the heating location 140 in turn. An advantage of this arrangement is that the indexing system is simple to construct and operate. Referring back to
Alternatively, the indexing system may be arranged to move only non-adjacent doses 114 of aerosol generating medium into the heating location 140 in turn. This enables a high density of doses 114 to be arranged on the carrier layer 111 without the danger of overheating any particular dose 114B due to overly high levels of indirect heat (heat indirectly transferred to the dose during heating of a preceding dose 114A) followed by direct heat (heat provided to the dose during the heating of that same dose 114B). Each dose 114 may contain a prescribed amount of nicotine or aerosol forming components, and supplying energy at the incorrect time can cause nicotine or aerosol forming components from that dose to be released at an earlier time than intended. Alternatively, spent doses can be re-heated after the nicotine or aerosol forming components are released which can lead to other components of the dose being heated. However, the described arrangement removes any need for a sophisticated heating control system which provides variations in time or heating power for specific doses so as to prevent overheating.
The indexing system may be observed by the monitoring system 170, using techniques as described above. This enables checks on the functionality of the indexing system to ensure the system is working as expected. In any of the above-described arrangements, the monitoring system 170 may be used to assist in preventing overheating of any specific dose 114.
The movement mechanism 130 and monitoring system 170 can operate in combination with the heater 120 to ensure that indexed movements of the doses 114 and the heating periods for any specific dose 114 are coordinated to prevent overheating of a dose 114. The movement mechanism 130 may be arranged to present one dose 114A of aerosol generating medium to the heater 120 for a period of time and present another dose 114B of aerosol generating medium to the heater 120 for a different period of time. This may be so as to provide different heating levels to different doses. This may be advantageous in avoiding overheating in the event of linear indexing as mentioned above. This may also be advantageous when one dose 114A of aerosol generating medium is of a different structure or substance to another dose 114B, such that different heating periods are required to generate an aerosol.
The movement mechanism 130 and monitoring system 170 can operate in combination with the heater 120 to ensure that indexed movements of the doses 114 and the heater power levels for any specific dose 114 are coordinated. This may be so as to provide different heating levels to different doses. This may be advantageous in avoiding overheating in the event of linear indexing, or high density dose provision. For example, the heater power level could be high for a first dose 114A and then less high for a second dose 114B. This is advantageous as the second dose 114B will have received some level of indirect heat during the heating of the first dose, such that a second dose 114B requires less direct heating (achieved by reducing the power level of the heater) to provide an aerosol. This may also be advantageous when one dose 114A of aerosol generating medium is of a different structure or substance to another dose 114B, such that different heater power levels are required to generate an aerosol.
Doses 114 of aerosol generating medium may comprise at least one of tobacco and glycol and may include extracts (e.g., licorice, hydrangea, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, menthol, Japanese mint, aniseed, cinnamon, herb, wintergreen, cherry, berry, peach, apple, Drambuie, bourbon, scotch, whiskey, spearmint, peppermint, lavender, cardamon, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla, lemon oil, orange oil, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, piment, ginger, anise, coriander, coffee, or a mint oil from any species of the genus Mentha), flavour enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, sugars or sugar substitutes (e.g., sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, or mannitol), and other additives such as charcoal, chlorophyll, minerals, botanicals, or breath freshening agents. They may be imitation, synthetic or natural ingredients or blends thereof. The doses 114 may be separated, adjacent or overlapping.
The aerosol generating medium described herein comprises an “amorphous solid”, which may alternatively be referred to as a “monolithic solid” (i.e., non-fibrous), or as a “dried gel”. The amorphous solid is a solid material that may retain some fluid, such as liquid, within it. In some cases, the aerosol-forming layer comprises from about 50 wt %, 60 wt % or 70 wt % of amorphous solid, to about 90 wt %, 95 wt % or 100 wt % of amorphous solid. In some cases, the aerosol-forming layer consists of amorphous solid.
In some cases, the amorphous solid may comprise 1-50 wt % of a gelling agent wherein these weights are calculated on a dry weight basis.
Suitably, the amorphous solid may comprise from about 1 wt %, 5 wt %, 10 wt %, 15 wt %, 20 wt % or 25 wt % to about 50 wt %, 45 wt %, 40 wt %, 35 wt %, 30 wt % or 27 wt % of a gelling agent (all calculated on a dry weight basis). For example, the amorphous solid may comprise 5-40 wt %, 10-30 wt % or 15-27 wt % of a gelling agent.
In some embodiments, the gelling agent comprises a hydrocolloid. In some embodiments, the gelling agent comprises one or more compounds selected from the group comprising alginates, pectins, starches (and derivatives), celluloses (and derivatives), gums, silica or silicones compounds, clays, polyvinyl alcohol and combinations thereof. For example, in some embodiments, the gelling agent comprises one or more of alginates, pectins, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose, pullulan, xanthan gum guar gum, carrageenan, agarose, acacia gum, fumed silica, PDMS, sodium silicate, kaolin and polyvinyl alcohol. In some cases, the gelling agent comprises alginate or pectin, and may be combined with a setting agent (such as a calcium source) during formation of the amorphous solid. In some cases, the amorphous solid may comprise a calcium-crosslinked alginate or a calcium-crosslinked pectin.
Suitably, the amorphous solid may comprise from about 5 wt %, 10 wt %, 15 wt %, or 20 wt % to about 80 wt %, 70 wt %, 60 wt %, 55 wt %, 50 wt %, 45 wt % 40 wt %, or 35 wt % of an aerosol generating agent (all calculated on a dry weight basis). The aerosol generating agent may act as a plasticiser. For example, the amorphous solid may comprise 10-60 wt %, 15-50 wt % or 20-40 wt % of an aerosol generating agent. In some cases, the aerosol generating agent comprises one or more compound selected from erythritol, propylene glycol, glycerol, triacetin, sorbitol and xylitol. In some cases, the aerosol generating agent comprises, consists essentially of or consists of glycerol. The inventors have established that if the content of the plasticiser is too high, the amorphous solid may absorb water resulting in a material that does not create an appropriate consumption experience in use. The inventors have established that if the plasticiser content is too low, the amorphous solid may be brittle and easily broken. The plasticiser content specified herein provides an amorphous solid flexibility which allows the amorphous solid sheet to be wound onto a bobbin, which is useful in manufacture of aerosol generating articles.
In some cases, the amorphous solid may comprise a flavour. Suitably, the amorphous solid may comprise up to about 60 wt %, 50 wt %, 40 wt %, 30 wt %, 20 wt %, 10 wt % or 5 wt % of a flavour. In some cases, the amorphous solid may comprise at least about 0.5 wt %, 1 wt %, 2 wt %, 5 wt % 10 wt %, 20 wt % or 30 wt % of a flavour (all calculated on a dry weight basis). For example, the amorphous solid may comprise 10-60 wt %, 20-50 wt % or 30-40 wt % of a flavour. In some cases, the flavour (if present) comprises, consists essentially of or consists of menthol. In some cases, the amorphous solid does not comprise a flavour.
In some cases, the amorphous solid additionally comprises a tobacco material or nicotine. For example, the amorphous solid may additionally comprise powdered tobacco or nicotine or a tobacco extract. In some cases, the amorphous solid may comprise from about 1 wt %, 5 wt %, 10 wt %, 15 wt %, 20 wt % or 25 wt % to about 70 wt %, 60 wt %, 50 wt %, 45 wt % or 40 wt % (calculated on a dry weight basis) of a tobacco material or nicotine.
In some cases, the amorphous solid comprises a tobacco extract. In some cases, the amorphous solid may comprise 5-60 wt % (calculated on a dry weight basis) of tobacco extract. In some cases, the amorphous solid may comprise from about 5 wt %, 10 wt %, 15 wt %, 20 wt % or 25 wt % to about 55 wt %, 50 wt %, 45 wt % or 40 wt % (calculated on a dry weight basis) tobacco extract. For example, the amorphous solid may comprise 5-60 wt %, 10-55 wt % or 25-55 wt % of tobacco extract. The tobacco extract may contain nicotine at a concentration such that the amorphous solid comprises 1 wt % 1.5 wt %, 2 wt % or 2.5 wt % to about 6 wt %, 5 wt %, 4.5 wt % or 4 wt % (calculated on a dry weight basis) of nicotine. In some cases, there may be no nicotine in the amorphous solid other than that which results from the tobacco extract.
In some embodiments the amorphous solid comprises no tobacco material but does comprise nicotine. In some such cases, the amorphous solid may comprise from about 1 wt %, 2 wt %, 3 wt % or 4 wt % to about 20 wt %, 15 wt %, 10 wt % or 5 wt % (calculated on a dry weight basis) of nicotine. For example, the amorphous solid may comprise 1-20 wt % or 2-5 wt % of nicotine.
In some cases, the total content of tobacco material, nicotine and flavour may be at least about 1 wt %, 5 wt %, 10 wt %, 20 wt %, 25 wt % or 30 wt %. In some cases, the total content of tobacco material, nicotine and flavour may be less than about 70 wt %, 60 wt %, 50 wt % or 40 wt % (all calculated on a dry weight basis).
In some embodiments, the amorphous solid is a hydrogel and comprises less than about 20 wt % of water calculated on a wet weight basis. In some cases, the hydrogel may comprise less than about 15 wt %, 12 wt % or 10 wt % of water calculated on a wet weight basis (WWB). In some cases, the hydrogel may comprise at least about 2 wt % or at least about 5 wt % of water (WWB).
The amorphous solid may be made from a gel, and this gel may additionally comprise a solvent, included at 0.1-50 wt %. However, the inventors have established that the inclusion of a solvent in which the flavour is soluble may reduce the gel stability and the flavour may crystallise out of the gel. As such, in some cases, the gel does not include a solvent in which the flavour is soluble.
The amorphous solid comprises less than 20 wt %, suitably less than 10 wt % or less than 5 wt % of a filler. The filler may comprise one or more inorganic filler materials, such as calcium carbonate, perlite, vermiculite, diatomaceous earth, colloidal silica, magnesium oxide, magnesium sulphate, magnesium carbonate, and suitable inorganic sorbents, such as molecular sieves. The filler may comprise one or more organic filler materials such as wood pulp, cellulose and cellulose derivatives. In some cases, the amorphous solid comprises less than 1 wt % of a filler, and in some cases, comprises no filler. In particular, in some cases, the amorphous solid comprises no calcium carbonate such as chalk.
In some cases, the amorphous solid may consist essentially of, or consist of a gelling agent, an aerosol generating agent, a tobacco material or a nicotine source, water, and optionally a flavour.
It should be appreciated that the aerosol generating material may be any other suitable aerosol generating material as deemed appropriate by the skilled person.
Referring to
It is clear that there is no restriction that the portions 114 should be in an arrangement with rotational symmetry particularly with lateral movement of the heater 120.
In the examples above wherein the device has doses 114 arranged on a carrier layer 111, the substrate 110 may have a base layer which is substantially impermeable to aerosol. For example, the base layer may be disposed on the second surface of the carrier layer (or the base layer may be the carrier layer in other implementations). This arrangement encourages the aerosol generated from heating of the aerosol generating medium doses 114 to flow away from the heater 120 and along the flow path 160 towards the outlet 150. This reduces the likelihood of condensation of aerosol within the device 100 and, as mentioned above, therefore increases both the cleanliness and lifetime of the device 100. The base may be formed of at least one of materials such as paper, cardboard, wood pulp, plastic, ceramic, etc.
The substrate 110 may be impermeable to aerosol or may be porous such that the aerosol forming material may be located in the pores of the substrate 110. In an example, the substrate 110 may have permeable and impermeable portions. Permeable portions may be located in portions wherein it is desirable to have aerosol pass through the substrate, such as to allow flow through the substrate 110 and towards the outlet of the device 100. Impermeable portions may be located in portions wherein it is desirable to prevent aerosol flowing towards the source of energy for heating 120.
Referring to
The heater 120 may have a plurality of heating elements 120A, 120B, 120C. Alternatively, rather than one heater 120 with a plurality of heating elements, the portion 101 may have a heater arrangement 120 having a plurality of heaters 120A, 120B, 120C. The example described herein will be of a heater 120 with a plurality of heating elements 120A, 120B, 120C though use of a heater arrangement 120 having a plurality of heaters 120A, 120B, 120C could equally be used.
The heater 120 may be activated by a power source so as to provide heat to the substrate 110. In use, the heating elements 120A, 120B, 120C of the heater 120 may not be activated simultaneously. In an example, the heating elements 120A, 120B, 120C of the heater 120 are activated separately. The heating elements 120A, 120B, 120C may be activated in a sequence. In a specific example, the heating elements 120A, 120B, 120C are activated one after the other in the order of a first heating element 120A, then a second heating element 120B, then a third heating element 120C. In the example shown in
In an example, the first heating element 120A is activated to heat a portion of the substrate 110 proximal to the first heating element 120A. Subsequently, the second heating element 120B is activated to heat a different portion of the substrate 110, which is proximal to the second heating element 120B. Subsequently, the third heating element 120C is activated to heat another different portion of the substrate 110, which is proximal to the third heating element 120C. The order of the activated of the heating elements 120A, 120B, 120C may be vary based on the desired output of aerosol. The activation of the heating elements 120A, 120B, 120C may be controlled with the arrangement of the aerosol generating medium on the substrate 110 in mind.
In the specific example shown in
In an example, the first heating element 120A is activated for a first puff, the second heating element 120B is activated for a second puff and the third heating element 120C is activated for a third puff. After the final heating element is activated (in this three heating element example, this is the third heating element 120C), the substrate 110 may move relatively to heater 120 to present fresh aerosol generating medium to the heater 120.
The heating elements 120A, 120B, 120C may be different shapes or sizes. The heating elements 120A, 120B, 120C may occupy the same area or a different area. By this it is meant that, when viewed from a e.g. top view, the heating elements 120A, 120B, 120C cover a relatively similar area of the substrate 110. The heating elements 120A, 120B, 120C cover a relatively similar area in
The relative movement of the substrate 110 to the heater 120 may be a stepwise (e.g. indexed) movement. The movement may be a fixed amount and may occur after each session of heating, where a session is the activation of each of the heating elements 120A, 120B, 120C. In this way, fresh aerosol generating medium may be provided to the heater 120 for heating to produce an aerosol. This arrangement reduces the likelihood of a portion of aerosol generating medium being heated twice and producing undesirable compounds from overheating or burning.
Thus there has been described an aerosol provision system comprising: a substrate comprising aerosol generating medium, the substrate including a first surface and a second surface facing the first surface; a source of energy for heating arranged to face the second surface of the substrate, wherein the source of energy for heating is configured to cause heating of the aerosol generating medium to form an aerosol; and a movement mechanism arranged to enable movement of the aerosol generating medium relative to the source of energy for heating, wherein the aerosol generating medium is rotationally movable relative to the source of energy for heating such that portions of the aerosol generating medium are presented to the source of energy for heating, and wherein the aerosol generating medium is rotated around an axis at an angle to the first surface.
The aerosol provision system may be used in a tobacco industry product, for example a non-combustible aerosol provision system.
In one embodiment, the tobacco industry product comprises one or more components of a non-combustible aerosol provision system, such as a heater and an aerosolizable substrate (e.g., a substrate comprising aerosol generating material).
In one embodiment, the aerosol provision system is an electronic cigarette also known as a vaping device.
In one embodiment the electronic cigarette comprises a heater, a power supply capable of supplying power to the heater, an aerosolizable substrate such as a liquid or gel, a housing and optionally a mouthpiece.
In one embodiment the aerosolizable substrate is contained in or on a substrate container. In one embodiment the substrate container is combined with or comprises the heater.
In one embodiment, the tobacco industry product is a heating product which releases one or more compounds by heating, but not burning, a substrate material. The substrate material is an aerosolizable material which may be for example tobacco or other non-tobacco products, which may or may not contain nicotine. In one embodiment, the heating device product is a tobacco heating product.
In one embodiment, the heating product is an electronic device.
In one embodiment, the tobacco heating product comprises a heater, a power supply capable of supplying power to the heater, an aerosolizable substrate such as a solid or gel material.
In one embodiment the heating product is a non-electronic article.
In one embodiment the heating product comprises an aerosolizable substrate such as a solid or gel material, and a heat source which is capable of supplying heat energy to the aerosolizable substrate without any electronic means, such as by burning a combustion material, such as charcoal.
In one embodiment the heating product also comprises a filter capable of filtering the aerosol generated by heating the aerosolizable substrate.
In some embodiments the aerosolizable substrate material may comprise an aerosol or aerosol generating agent or a humectant, such as glycerol, propylene glycol, triacetin or diethylene glycol.
In one embodiment, the tobacco industry product is a hybrid system to generate aerosol by heating, but not burning, a combination of substrate materials. The substrate materials may comprise for example solid, liquid or gel which may or may not contain nicotine. In one embodiment, the hybrid system comprises a liquid or gel substrate and a solid substrate. The solid substrate may be for example tobacco or other non-tobacco products, which may or may not contain nicotine. In one embodiment, the hybrid system comprises a liquid or gel substrate and tobacco.
In order to address various issues and advance the art, the entirety of this disclosure shows by way of illustration various embodiments in which the disclosure may be practiced and provide for a superior electronic aerosol provision system. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive or exclusive. They are presented only to assist in understanding and teach the claimed features. It is to be understood that advantages, embodiments, examples, functions, features, structures, or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilized and modifications may be made without departing from the scope or spirit of the disclosure. Various embodiments may suitably comprise, consist of, or consist essentially of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. In addition, the disclosure includes other inventions not presently claimed, but which may be claimed in future.
Number | Date | Country | Kind |
---|---|---|---|
1904841.2 | Apr 2019 | GB | national |
1917439.0 | Nov 2019 | GB | national |
This application is a National Phase entry of PCT Application No. PCT/GB2020/050709, filed Mar. 18, 2020, which application claims the benefit of priority to GB 1904841.2 filed Apr. 5, 2019, and GB 1917439.0, filed Nov. 29, 2019 the entire disclosures of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2020/050709 | 3/18/2020 | WO | 00 |